Coinfection and Interference Phenomena Are the Results of Multiple Thermodynamic Competitive Interactions
Abstract
:1. Introduction
2. Methods
2.1. Viruses Considered in This Study
2.2. Gibbs Energy of Binding from Dissociation Constants
2.3. Elemental Composition of Viruses
2.4. Standard Thermodynamic Properties of Viruses
2.5. Gibbs Energy of Growth
2.6. Uncertainties
3. Results and Discussion
3.1. Gibbs Energy Determines the Outcome of Virus–Virus–Host Interactions
3.2. The Arena: Theoretical Predictions and Experimental Evidence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Influenza Update—383, 21 December 2020 [Online]. Available online: https://www.who.int/influenza/surveillance_monitoring/updates/2020_12_21_update_GIP_surveillance/en/ (accessed on 10 March 2021).
- Hagen, A. COVID-19 and the Flu [Online]. In The American Society for Microbiology; 2020; Available online: https://asm.org/Articles/2020/July/COVID-19-and-the-Flu (accessed on 8 March 2021).
- Jones, N. How COVID-19 is changing the cold and flu season. Nature 2020, 588, 388–390. [Google Scholar] [CrossRef] [PubMed]
- Schultz-Cherry, S. Viral Interference: The Case of Influenza Viruses. J. Infect. Dis. 2015, 212, 1690–1691. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Mihaylova, V.T.; Landry, M.L.; Foxman, E.F. Interference between rhinovirus and influenza A virus: A clinical data analysis and experimental infection study. Lancet Microbe 2020, 1, e254–e262. [Google Scholar] [CrossRef]
- Dianzani, F. Viral interference and interferon. La Ric. Clin. Lab. 1975, 5, 196–213. [Google Scholar] [CrossRef]
- Nickbakhsh, S.; Mair, C.; Matthews, L.; Reeve, R.; Johnson, P.; Thorburn, F.; von Wissmann, B.; Reynolds, A.; McMenamin, J.; Gunson, R.N.; et al. Virus-virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl. Acad. Sci. USA 2019, 116, 27142–27150, Advance online publication. [Google Scholar] [CrossRef] [Green Version]
- Casadevall, A.; Pirofski, L.-A. Host-Pathogen Interactions: Basic Concepts of Microbial Commensalism, Colonization, Infection, and Disease. Infect. Immun. 2000, 68, 6511–6518. [Google Scholar] [CrossRef] [Green Version]
- Popovic, M.; Minceva, M. A thermodynamic insight into viral infections: Do viruses in a lytic cycle hijack cell metabolism due to their low Gibbs energy? Heliyon 2020, 6, e03933. [Google Scholar] [CrossRef]
- Popovic, M.; Minceva, M. Thermodynamic insight into viral infections 2: Empirical formulas, molecular compositions and thermodynamic properties of SARS, MERS and SARS-CoV-2 (COVID-19) viruses. Heliyon 2020, 6, e04943. [Google Scholar] [CrossRef]
- Albrecht, T.; Fons, M.; Boldogh, I.; Rabson, A.S. Effects on cells Galveston (TX). In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; Chapter 44. Available online: https://www.ncbi.nlm.nih.gov/books/NBK7979/ (accessed on 28 September 2021).
- Domingo, P.; Mur, I.; Pomar, V.; Corominas, H.; Casademont, J.; de Benito, N. The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine 2020, 58, 102887. [Google Scholar] [CrossRef] [PubMed]
- Domingo, E. Interaction of virus populations with their hosts. Virus Popul. 2019, 123–166. [Google Scholar] [CrossRef]
- Datta, S.; Hett, E.C.; Vora, K.A.; Hazuda, D.J.; Oslund, R.C.; Fadeyi, O.O.; Emili, A. The chemical biology of coronavirus host–cell interactions. RSC Chem. Biol. 2020, 2, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Maginnis, M.S. Virus–Receptor Interactions: The Key to Cellular Invasion. J. Mol. Biol. 2018, 430, 2590–2611. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.; Lim, W.S.; Semple, C.; Ramsay, M.; Bernal, J.L.; McMenamin, J.; Openshaw, P.; Hiscox, J. Respiratory Viral Infections, Their Interactions with SARS-CoV-2 and Implications for a Winter Resurgence of COVID-19 [Online]. Scientific Advisory Group for Emergencies. 2020. Available online: https://www.gov.uk/government/publications/nervtag-respiratory-viral-infections-their-interactions-with-sars-cov-2-and-implications-for-a-winter-resurgence-of-covid-19-16-july-2020 (accessed on 5 June 2021).
- Marshall, J.A. Chapter 15: Mixed Infections of Intestinal Viruses and Bacteria in Humans. In Polymicrobial Diseases; Brogden, K.A., Guthmiller, J.M., Eds.; ASM Press: Washington, DC, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK2483/ (accessed on 28 September 2021).
- Tegally, H.; Wilkinson, E.; Lessells, R.J.; Giandhari, J.; Pillay, S.; Msomi, N.; Mlisana, K.; Bhiman, J.N.; von Gottberg, A.; Walaza, S.; et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat. Med. 2021, 27, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K. Epidemiologic interference of virus populations. J. Math. Biol. 1979, 8, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Bang, F.B. Epidemiological Interference. Int. J. Epidemiol. 1975, 4, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Song, Z.; Li, Y.; Zhang, J.; Wang, X.-L. Possible interference between seasonal epidemics of influenza and other respiratory viruses in Hong Kong, 2014–2017. BMC Infect. Dis. 2017, 17, 772. [Google Scholar] [CrossRef] [Green Version]
- Ojosnegros, S.; Beerenwinkel, N.; Antal, T.; Nowak, M.A.; Escarmís, C.; Domingo, E. Competition-colonization dynamics in an RNA virus. Proc. Natl. Acad. Sci. USA 2010, 107, 2108–2112. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D. Competition and Biodiversity in Spatially Structured Habitats. Ecology 1994, 75, 2–16. [Google Scholar] [CrossRef]
- Silveira, S.; Falkenberg, S.; Dassanayake, R.; Walz, P.; Ridpath, J.; Canal, C.; Neill, J. In vitro method to evaluate virus competition between BVDV-1 and BVDV-2 strains using the PrimeFlow RNA assay. Virology 2019, 536, 101–109. [Google Scholar] [CrossRef]
- Pepin, K.M.; Lambeth, K.; Hanley, K.A. Asymmetric competitive suppression between strains of dengue virus. BMC Microbiol. 2008, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casasnovas, J.M.; Springer, T.A. Kinetics and Thermodynamics of Virus Binding to Receptor: Studies with Rhinovirus, Intercellular Adhesion Molecule-1 (Icam-1), and Surface Plasmon Resonance. J. Biol. Chem. 1995, 270, 13216–13224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, R.R. VIRAL INTERFERENCE. SOME CONSIDERATIONS OF BASIC MECHANISMS AND THEIR POTENTIAL RELATIONSHIP TO HOST RESISTANCE. Bacteriol. Rev. 1960, 24, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Casasnovas, J.M. Virus-Receptor Interactions and Receptor-Mediated Virus Entry into Host Cells. In Structure and Physics of Viruses. Subcellular Biochemistry; Mateu, M., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 68. [Google Scholar] [CrossRef]
- Dimitrov, D.S. Cell Biology of Virus Entry. Cell 2000, 101, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Stram, Y.; Kuzntzova, L. Inhibition of Viruses by RNA Interference. Virus Genes 2006, 32, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Yin, J.; Fang, L.; Yang, M.; Wang, T.; Wu, W.; Bellucci, M.A.; Zhang, P. Computational Prediction of Mutational Effects on SARS-CoV-2 Binding by Relative Free Energy Calculations. J. Chem. Inf. Model. 2020, 60, 5794–5802. [Google Scholar] [CrossRef]
- Forouzesh, N.; Onufriev, A.V. MMGB/SA Consensus Estimate of the Binding Free Energy Between the Novel Coronavirus Spike Protein to the Human ACE2 Receptor. bioRxiv Prepr. Serv. Biol. 2020. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Zhou, X.; Chen, P.; Liang, H.; Li, X.; Zhong, W.; Hao, P. Molecular simulation of SARS-CoV-2 spike protein binding to pangolin ACE2 or human ACE2 natural variants reveals altered susceptibility to infection. J. Gen. Virol. 2020, 101, 921–924. [Google Scholar] [CrossRef]
- Yin, J.; Redovich, J. Kinetic Modeling of Virus Growth in Cells. Microbiol. Mol. Biol. Rev. 2018, 82, e00066-17. [Google Scholar] [CrossRef] [Green Version]
- Whitaker-Dowling, P.; Youngner, J.S. Virus-host cell interactions. In Encyclopedia of Virology, 2nd ed.; Granoff, A., Webster, R.S., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 1957–1961. [Google Scholar] [CrossRef]
- Lozach, P.-Y. Early Virus–Host Cell Interactions. J. Mol. Biol. 2018, 430, 2555–2556. [Google Scholar] [CrossRef]
- Von Stockar, U. Live cells as open non-equilibrium systems. In Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering; EPFL Press: Lausanne, Switzerland, 2013. [Google Scholar]
- Von Stockar, U. Biothermodynamics of Live Cells: Energy Dissipation and Heat Generation in Cellular Cultures. In Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering; EPFL Press: Lausanne, Switzerland, 2013. [Google Scholar]
- Gale, P. How virus size and attachment parameters affect the temperature sensitivity of virus binding to host cells: Predictions of a thermodynamic model for arboviruses and HIV. Microb. Risk Anal. 2020, 15, 100104. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Yuan-Ling, X.; Xia, Y.-L.; Ai, S.-M.; Liang, J.; Sang, P.; Ji, X.-L.; Liu, S.-Q. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods. Int. J. Mol. Sci. 2016, 17, 144. [Google Scholar] [CrossRef] [PubMed]
- Balliet, J.W.; Berson, J.; D’Cruz, C.M.; Huang, J.; Crane, J.; Gilbert, J.M.; Bates, P. Production and Characterization of a Soluble, Active Form of Tva, the Subgroup a Avian Sarcoma and Leukosis Virus Receptor. J. Virol. 1999, 73, 3054–3061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, D.J.; Martin, S.R.; Wharton, S.A.; McCauley, J.W. Biophysical Measurement of the Balance of Influenza A Hemagglutinin and Neuraminidase Activities. J. Biol. Chem. 2015, 290, 6516–6521. [Google Scholar] [CrossRef] [Green Version]
- Lortat-Jacob, H.; Chouin, E.; Cusack, S.; van Raaij, M.J. Kinetic Analysis of Adenovirus Fiber Binding to Its Receptor Reveals an Avidity Mechanism for Trimeric Receptor-Ligand Interactions. J. Biol. Chem. 2001, 276, 9009–9015. [Google Scholar] [CrossRef] [Green Version]
- Tappert, M.M.; Porterfield, J.Z.; Mehta-D’Souza, P.; Gulati, S.; Air, G.M. Quantitative Comparison of Human Parainfluenza Virus Hemagglutinin-Neuraminidase Receptor Binding and Receptor Cleavage. J. Virol. 2013, 87, 8962–8970. [Google Scholar] [CrossRef] [Green Version]
- Gale, P. Towards a thermodynamic mechanistic model for the effect of temperature on arthropod vector competence for transmission of arboviruses. Microb. Risk Anal. 2019, 12, 27–43. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Riedel, S.; Morse, S.; Mietzner, T.; Miller, S. Jawetz, Melnick & Adelbergs Medical Microbiology, 28th ed.; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Knight, C.A. Chemistry of Viruses; Springer: Berlin, Germany, 1975. [Google Scholar]
- Neuman, B.W.; Kiss, G.; Kunding, A.; Bhella, D.; Baksh, M.F.; Connelly, S.; Droese, B.; Klaus, J.P.; Makino, S.; Sawicki, S.G.; et al. A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol. 2011, 174, 11–22. [Google Scholar] [CrossRef]
- Neuman, B.W.; Adair, B.D.; Yoshioka, C.; Quispe, J.D.; Orca, G.; Kuhn, P.; Milligan, R.A.; Yeager, M.; Buchmeier, M.J. Supramolecular Architecture of Severe Acute Respiratory Syndrome Coronavirus Revealed by Electron Cryomicroscopy. J. Virol. 2006, 80, 7918–7928. [Google Scholar] [CrossRef] [Green Version]
- Popovic, M. Thermodynamic properties of microorganisms: Determination and analysis of enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32 microorganism species. Heliyon 2019, 5, e01950. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.A.; Erickson, L.E. Estimation of heats of combustion of biomass from elemental analysis using available electron concepts. Biotechnol. Bioeng. 1981, 23, 2051–2067. [Google Scholar] [CrossRef]
- Battley, E.H. The development of direct and indirect methods for the study of the thermodynamics of microbial growth. Thermochim. Acta 1998, 309, 17–37. [Google Scholar] [CrossRef]
- Atkins, P.; de Paula, J. Physical Chemistry: Thermodynamics, Structure, and Change, 10th ed.; W.H. Freeman and Company: New York, NY, USA, 2014. [Google Scholar]
- Atkins, P.; de Paula, J. Physical Chemistry for the Life Sciences, 2nd ed.; W.H. Freeman and Company: New York, NY, USA, 2011. [Google Scholar]
- Chase, M.W. NIST-JANAF Thermochemical Tables, 4th ed.; American Institute of Physics: College Park, AD, USA, 1998; pp. 1–1951. [Google Scholar]
- Battley, E.H. An empirical method for estimating the entropy of formation and the absolute entropy of dried microbial biomass for use in studies on the thermodynamics of microbial growth. Thermochim. Acta 1999, 326, 7–15. [Google Scholar] [CrossRef]
- Duponchel, S.; Fischer, M.G. Viva lavidaviruses! Five features of virophages that parasitize giant DNA viruses. PLoS Pathog. 2019, 15, e1007592. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, J.; Gonçalves, P.F.B.; Netz, P.A. Why Does the Novel Coronavirus Spike Protein Interact so Strongly with the Human ACE2? A Thermodynamic Answer. ChemBioChem 2020, 22, 865–875. [Google Scholar] [CrossRef]
- Demirel, Y. Nonequilibrium Thermodynamics: Transport and Rate Processes. In Physical, Chemical and Biological Systems, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Balmer, R.T. Modern Engineering Thermodynamics; Academic Press: Burlington, UK, 2010. [Google Scholar]
- Westerhoff, H.V.; Lolkema, J.S.; Otto, R.; Hellingwerf, K.J. Thermodynamics of growth non-equilibrium thermodynamics of bacterial growth the phenomenological and the Mosaic approach. Biochim. Biophys. Acta 1982, 683, 181–220. [Google Scholar] [CrossRef]
- Hellingwerf, K.J.; Lolkema, J.S.; Otto, R.; Neijssel, O.M.; Stouthamer, A.H.; Harder, W.; Van Dam, K.; Westerhoff, H. Energetics of microbial growth: An analysis of the relationship between growth and its mechanistic basis by mosaic non-equilibrium thermodynamics. FEMS Microbiol. Lett. 1982, 15, 7–17. [Google Scholar] [CrossRef]
- Gelderblom, H.R. Chapter 41: Structure and Classification of Viruses. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Pinky, L.; Dobrovolny, H.M. Coinfections of the Respiratory Tract: Viral Competition for Resources. PLoS ONE 2016, 11, e0155589. [Google Scholar] [CrossRef] [PubMed]
- Sohal, S.; Rodriguez-Nava, G.; Khabbaz, R.; Chaudry, S.; Musurakis, C.; Chitrakar, S.; Chundi, V.V.; Friedman, H.J. SARS-CoV2 and Co-Infections: A Review of Two Cases. Case Rep. Infect. Dis. 2020, 2020, 8882348. [Google Scholar] [CrossRef] [PubMed]
- Goto, H.; Ihira, H.; Morishita, K.; Tsuchiya, M.; Ohta, K.; Yumine, N.; Tsurudome, M.; Nishio, M. Enhanced growth of influenza A virus by coinfection with human parainfluenza virus type 2. Med. Microbiol. Immunol. 2015, 205, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.D.; Sordillo, E.M.; Gitman, M.R.; Mondolfi, A.E.P. Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J. Med. Virol. 2020, 92, 1699–1700. [Google Scholar] [CrossRef] [PubMed]
(A) Binding constant | ||||
Name | Kd (nM) | Kb (×109 M−1) | ΔbG (kJ/mol) | Reference |
Adenovirus | 20 to 25 | 0.040 to 0.050 | −45.1 to −45.7 | [44] |
HIV-1 | 0.83 to 11.6 | 0.0862 to 1.2 | −53.9 to −47.1 | [42] |
HIV-2 | 48.5 | 0.0206 | −43.4 | [42] |
Human cytomegalovirus | 1.1 | 0.91 | −53.2 | [42] |
Influenza (3SLN) | 3200 | 3.1×10−4 | −32.6 | [42] |
Influenza (6SLN) | 2100 | 4.8×10−4 | −33.7 | [42] |
Parainfluenza virus 1 | (20.6 to 90.5) × 103 | (1.10 to 4.85) × 10−5 | −24.0 to −27.8 | [45] |
Parainfluenza virus 2 | (7.7 to 218.2) × 103 | (4.58 to 130) × 10−6 | −21.7 to −30.4 | [45] |
Parainfluenza virus 3 | (33.7 to 124.7) × 103 | (8.02 to 29.7) × 10−6 | −23.2 to −26.6 | [45] |
Poliovirus | 0.21 | 4.8 | −57.5 | [42] |
Reovirus | 0.5 | 2 | −55.2 | [42] |
Vesicular stomatitis virus | 0.15 | 6.7 | −58.3 | [42] |
(B) Enthalpy and entropy | ||||
Name | ΔbH (kJ/mol) | ΔbS (J/mol K) | ΔbG (kJ/mol) | Reference |
HIV at 37°C | −263.59 | −691.04 | −49.26 | [40] |
HIV at 25°C | −198.2 | −472.9 | −57.2 | [40] |
HIV at 4 °C | −97.9 | −126.01 | −63.0 | [40] |
Arboviruses | −56.545 | −125 | −18 | [46] |
(C) Reported in the literature | ||||
Name | ΔbG (kJ/mol) | Reference | ||
SARS-CoV-2 | −42.2 to −51.4 | [10,26,47,48,49] | ||
Rhinovirus | −28 to −39 | [27] |
Name | nH | nO | nN | nP | nS | Composition Reference | ΔrG0 (kJ/C-mol) | |
---|---|---|---|---|---|---|---|---|
Adenovirus | 1.5386 | 0.3354 | 0.2814 | 0.00997 | 0.00551 | [50] | −144 ± 43 | |
Adenovirus | 1.5386 | 0.3354 | 0.2814 | 0.00997 | 0.00551 | [51] | −144 ± 43 | |
Coliphages T2, T4, T6 | 1.4391 | 0.4708 | 0.3105 | 0.04868 | 0.00292 | [51] | −230 ± 43 | |
Enterovirus | 1.4950 | 0.4080 | 0.2985 | 0.02308 | 0.00477 | [50] | −197 ± 43 | |
Equine encephalomyelitis | 1.5493 | 0.3352 | 0.2782 | 0.00619 | 0.00575 | [51] | −137 ± 43 | |
Fowl plague | 1.5852 | 0.3521 | 0.2592 | 0.00189 | 0.00568 | [51] | −93 ± 43 | |
Herpes simplex | 1.5506 | 0.3462 | 0.2748 | 0.00887 | 0.00546 | [51] | −129 ± 43 | |
Influenza | 1.5934 | 0.3540 | 0.2550 | 0.00071 | 0.00569 | [50] | −83 ± 43 | |
Influenza | 1.5903 | 0.3490 | 0.2570 | 0.00071 | 0.00574 | [51] | −87 ± 43 | |
Orthomyxoviruses | 1.5912 | 0.3521 | 0.2563 | 0.00088 | 0.00571 | [50] | −86 ± 43 | |
Paramyxoviruses | 1.5912 | 0.3521 | 0.2563 | 0.00088 | 0.00571 | [50] | −86 ± 43 | |
Picornaviruses | 1.4950 | 0.4080 | 0.2985 | 0.02308 | 0.00477 | [50] | −197 ± 43 | |
Poliovirus | 1.4950 | 0.4080 | 0.2985 | 0.02308 | 0.00477 | [50] | −197 ± 43 | |
Poxviruses | 1.5618 | 0.3150 | 0.2734 | 0.00241 | 0.00596 | [50] | −122 ± 43 | |
Reoviruses, Rotaviruses, and Caliciviruses | 1.5341 | 0.3555 | 0.2839 | 0.01091 | 0.00547 | [50] | −154 ± 43 | |
Rhabdoviruses | 1.5704 | 0.3467 | 0.2669 | 0.00384 | 0.00569 | [50] | −111 ± 43 | |
Rhinovirus | 1.4950 | 0.4080 | 0.2985 | 0.02308 | 0.00477 | [50] | −197 ± 43 | |
SARS-CoV-2 | 1.5658 | 0.3279 | 0.2901 | 0.00381 | 0.00484 | [10] | −165 ± 43 | |
Simian virus 5 | 1.5912 | 0.3521 | 0.2563 | 0.00088 | 0.00571 | [51] | −86 ± 43 |
Equation Number | Name | Reference |
---|---|---|
(5) | Combustion electrons | [55,56] |
(6) | Patel–Erickson equation | [55,56] |
(7) | Hess’ law | [9,10] |
(8) | Battley equation | [60] |
(9) | Battley formation equation | [60] |
(10) | Gibbs equation | [57,58] |
(11) | Growth reaction | [9,10] |
(12) | Gibbs energy of growth | [57,58] |
(13) | Enthalpy uncertainty | [54] |
(14) | Entropy uncertainty | [60] |
Virus 1 | Virus 2 | Outcome | ΔbG (Virus 1) | ΔbG (Virus 2) | ΔrG (Virus 1) | ΔrG (Virus 2) |
---|---|---|---|---|---|---|
Rhinovirus | SARS-CoV-2 | Co-infection | −28 to −39 | −42.2 to −51.4 | −197 | −165 |
Influenza | SARS-CoV-2 | Interference | −32.6 to −33.7 | −42.2 to −51.4 | −83 to −87 | −165 |
Adenovirus | SARS-CoV-2 | Asymmetrical co-infection | −45.1 to −45.7 | −42.2 to −51.4 | −144 | −165 |
Parainfluenza | SARS-CoV-2 | Interference | −24.0 to −27.8 | −42.2 to −51.4 | −86 | −165 |
Influenza | Adenovirus | Interference | −32.6 to −33.7 | −45.1 to −45.7 | −83 to −87 | −165 |
Influenza | Parainfluenza | Asymmetrical co-infection | −32.6 to −33.7 | −24.0 to −27.8 | −83 to −87 | −86 |
Parainfluenza 1 | Parainfluenza 2 | Co-infection | −24.0 to −27.8 | −21.7 to −30.4 | −86 | −86 |
Influenza | Rhinovirus | Interference | −32.6 to −33.7 | −28 to −39 | −83 to −87 | −197 |
Rhinovirus | Parainfluenza | Interference | −28 to −39 | −24.0 to −27.8 | −197 | −86 |
Binding | Growth | Outcome | Examples |
---|---|---|---|
ΔbG1 ≈ ΔbG2 | ΔrG1 ≈ ΔrG2 | Co-infection | Parainfluenza-1/Parainfluenza-2 |
ΔbG1< ΔbG2 | ΔrG1 ≈ ΔrG2 | Asymmetrical co-infection | Influenza/Parainfluenza |
ΔbG1 ≈ ΔbG2 | ΔrG1< ΔrG2 | Asymmetrical co-infection | Adenovirus/SARS-CoV-2 |
Influenza/Rhinovirus | |||
ΔbG1< ΔbG2 | ΔrG1> ΔrG2 | Co-infection | Rhinovirus/SARS-CoV-2 |
ΔbG1< ΔbG2 | ΔrG1< ΔrG2 | Interference | Influenza/SARS-CoV-2 |
Parainfluenza/SARS-CoV-2 | |||
Influenza/AdenovirusRhinovirus/Parainfluenza |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popovic, M.; Minceva, M. Coinfection and Interference Phenomena Are the Results of Multiple Thermodynamic Competitive Interactions. Microorganisms 2021, 9, 2060. https://doi.org/10.3390/microorganisms9102060
Popovic M, Minceva M. Coinfection and Interference Phenomena Are the Results of Multiple Thermodynamic Competitive Interactions. Microorganisms. 2021; 9(10):2060. https://doi.org/10.3390/microorganisms9102060
Chicago/Turabian StylePopovic, Marko, and Mirjana Minceva. 2021. "Coinfection and Interference Phenomena Are the Results of Multiple Thermodynamic Competitive Interactions" Microorganisms 9, no. 10: 2060. https://doi.org/10.3390/microorganisms9102060
APA StylePopovic, M., & Minceva, M. (2021). Coinfection and Interference Phenomena Are the Results of Multiple Thermodynamic Competitive Interactions. Microorganisms, 9(10), 2060. https://doi.org/10.3390/microorganisms9102060