In Vitro Activity of 22 Antibiotics against Achromobacter Isolates from People with Cystic Fibrosis. Are There New Therapeutic Options?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Isolates Characteristics
2.2. Antibiotic Susceptibility Testing
2.3. Comparison of Different Susceptibility Testing Methods
3. Results
3.1. Patients and Isolates Characteristics
3.2. Antibiotic Susceptibility Testing
3.2.1. Percentage of Susceptibility According to EUCAST Breakpoints
3.2.2. Percentage of Susceptibility According to CLSI Breakpoints
3.3. Comparison of Different Susceptibility Testing Methods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Registre Français de la Mucoviscidose Bilan Des Données. 2018. Available online: https://www.vaincrelamuco.org/sites/default/files/registre_2019_vf.pdf (accessed on 7 September 2021).
- Marsac, C.; Berdah, L.; Thouvenin, G.; Sermet-Gaudelus, I.; Corvol, H. Achromobacter xylosoxidans airway infection is associated with lung disease severity in children with cystic fibrosis. ERJ Open Res. 2021, 7, 00076–02021. [Google Scholar] [CrossRef]
- De Baets, F.; Schelstraete, P.; Van Daele, S.; Haerynck, F.; Vaneechoutte, M. Achromobacter xylosoxidans in Cystic Fibrosis: Prevalence and clinical relevance. J. Cyst. Fibros. 2007, 6, 75–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recio, R.; Brañas, P.; Martínez, M.T.; Chaves, F.; Orellana, M.A. Effect of Respiratory Achromobacter spp. infection on pulmonary function in patients with cystic fibrosis. J. Med. Microbiol. 2018, 67, 952–956. [Google Scholar] [CrossRef]
- Tetart, M.; Wallet, F.; Kyheng, M.; Leroy, S.; Perez, T.; Le Rouzic, O.; Wallaert, B.; Prevotat, A. Impact of Achromobacter xylosoxidans isolation on the respiratory function of adult patients with cystic fibrosis. ERJ Open Res. 2019, 5, 00051–02019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somayaji, R.; Stanojevic, S.; Tullis, D.E.; Stephenson, A.L.; Ratjen, F.; Waters, V. Clinical outcomes associated with Achromobacter species infection in patients with cystic fibrosis. Ann. Am. Thorac. Soc. 2017, 14, 1412–1418. [Google Scholar] [CrossRef]
- Hauser, A.R.; Jain, M.; Bar-Meir, M.; McColley, S.A. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin. Microbiol. Rev. 2011, 24, 29–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menetrey, Q.; Sorlin, P.; Jumas-Bilak, E.; Chiron, R.; Dupont, C.; Marchandin, H. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: Emerging pathogens well-armed for life in the cystic fibrosis patients’ lung. Genes 2021, 12, 610. [Google Scholar] [CrossRef]
- Isler, B.; Kidd, T.J.; Stewart, A.G.; Harris, P.; Paterson, D.L. Achromobacter infections and treatment options. Antimicrob. Agents Chemother. 2020, 64, e01025-20. [Google Scholar] [CrossRef]
- EUCAST: Consultations. Available online: https://www.eucast.org/publications_and_documents/consultations/ (accessed on 7 September 2021).
- Pereira, R.H.V.; Leão, R.S.; Carvalho-Assef, A.P.; Albano, R.M.; Rodrigues, E.R.A.; Firmida, M.C.; Folescu, T.W.; Plotkowski, M.C.; Bernardo, V.G.; Marques, E.A. Patterns of virulence factor expression and antimicrobial resistance in Achromobacter xylosoxidans and Achromobacter ruhlandii isolates from patients with cystic fibrosis. Epidemiol. Infect. 2017, 145, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Société Française de Microbiologie. Rémic—Référentiel en Microbiologie Médicale, 6th ed.; Société Française de Microbiologie: Paris, France, 2018; pp. 213–220. [Google Scholar]
- Spilker, T.; Vandamme, P.; Lipuma, J.J. Identification and distribution of Achromobacter species in cystic fibrosis. J. Cyst. Fibros. 2013, 12, 298–301. [Google Scholar] [CrossRef] [Green Version]
- EUCAST: Clinical Breakpoints. Available online: http://www.eucast.org/clinical_breakpoints/ (accessed on 29 October 2018).
- EUCAST: Disk Diffusion Methodology. Available online: https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/ (accessed on 7 September 2021).
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31st Edition. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 8 September 2021).
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Glupczynski, Y.; Hansen, W.; Freney, J.; Yourassowsky, E. In vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 24 antimicrobial agents. Antimicrob. Agents Chemother. 1988, 32, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Amoureux, L.; Sauge, J.; Sarret, B.; Lhoumeau, M.; Bajard, A.; Tetu, J.; Bador, J.; Neuwirth, C.; MucoMicrobes group. Study of 109 Achromobacter spp. isolates from 9 French CF centres reveals the circulation of a multiresistant clone of A. xylosoxidans belonging to ST 137. J. Cyst. Fibros. 2019, 18, 804–807. [Google Scholar] [CrossRef]
- Coward, A.; Kenna, D.T.D.; Woodford, N.; Turton, J.F.; members of the UK CF Surveillance Working Group. The UK CF Surveillance Working Group comprised. Structured surveillance of Achromobacter, Pandoraea and Ralstonia species from patients in England with cystic fibrosis. J. Cyst. Fibros. 2020, 19, 388–393. [Google Scholar] [CrossRef]
- Caverly, L.J.; Spilker, T.; Kalikin, L.M.; Stillwell, T.; Young, C.; Huang, D.B.; LiPuma, J.J. In vitro activities of β-Lactam-β-Lactamase inhibitor antimicrobial agents against cystic fibrosis respiratory pathogens. Antimicrob. Agents Chemother. 2019, 64, e01595-19. [Google Scholar] [CrossRef]
- Saiman, L.; Chen, Y.; Tabibi, S.; Gabriel, P.S.; Zhou, J.; Liu, Z.; Lai, L.; Whittier, S. Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. J. Clin. Microbiol. 2001, 39, 3942–3945. [Google Scholar] [CrossRef] [Green Version]
- Amoureux, L.; Bador, J.; Siebor, E.; Taillefumier, N.; Fanton, A.; Neuwirth, C. Epidemiology and resistance of Achromobacter xylosoxidans from cystic fibrosis patients in Dijon, Burgundy: First French Data. J. Cyst. Fibros. 2013, 12, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Simner, P.J.; Patel, R. Cefiderocol antimicrobial susceptibility testing considerations: The Achilles’ heel of the trojan horse? J. Clin. Microbiol. 2020, 59, e00951-20. [Google Scholar] [CrossRef] [PubMed]
- Rolston, K.V.I.; Gerges, B.; Shelburne, S.; Aitken, S.L.; Raad, I.; Prince, R.A. Activity of cefiderocol and comparators against isolates from cancer patients. Antimicrob. Agents Chemother. 2020, 64, e01955-19. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. June, 2017 AST Agenda Summary Minutes; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Warner, N.C.; Bartelt, L.A.; Lachiewicz, A.M.; Tompkins, K.M.; Miller, M.B.; Alby, K.; Jones, M.B.; Carr, A.L.; Alexander, J.; Gainey, A.B.; et al. Cefiderocol for the treatment of adult and pediatric patients with cystic fibrosis and Achromobacter xylosoxidans infections. Clin. Infect. Dis. 2021, 73, e1754–e1757. [Google Scholar] [CrossRef]
- Food and Drug Administration FDA Antimicrobial Drugs Advisory Committee. Cefiderocol Briefing Document; NDA 2094445; Shionogi, Inc.: Florham Park, NJ, USA, 2019. Available online: https://www.fda.gov/media/131705/download (accessed on 29 November 2021).
- Morrissey, I.; Olesky, M.; Hawser, S.; Lob, S.H.; Karlowsky, J.A.; Corey, G.R.; Bassetti, M.; Fyfe, C. In vitro activity of eravacycline against Gram-negative bacilli isolated in clinical laboratories worldwide from 2013 to 2017. Antimicrob. Agents Chemother. 2020, 64, e01699-19. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.L.; Burns, J.L.; Ramsey, B.W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2003, 168, 918–951. [Google Scholar] [CrossRef]
- Caillon, J.; Lemabecque, V.; Carrere, J.; Pelletier, M.; Batard, E.; Jacqueline, C. In vitro activity of meropenem (MEM), colistin (CS) and tigecycline (TGC) against Achromobacter xylosoxidans (AX) isolated from cystic fibrosis (CF) patients. In Proceedings of the Forty-Ninth Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Francisco, CA, USA, 12–15 September 2009. [Google Scholar]
- Shortridge, D.; Arends, S.J.R.; Streit, J.M.; Castanheira, M. Minocycline activity against unusual clinically significant Gram-negative pathogens. Antimicrob. Agents Chemother. 2021, 65, e01264-21. [Google Scholar] [CrossRef] [PubMed]
- Massip, C.; Coullaud-Gamel, M.; Gaudru, C.; Amoureux, L.; Doleans-Jordheim, A.; Hery-Arnaud, G.; Marchandin, H.; Oswald, E.; Segonds, C.; Guet-Revillet, H. In vitro activity of 20 antibiotics against Cupriavidus clinical strains. J. Antimicrob. Chemother. 2020, 75, 1654–1658. [Google Scholar] [CrossRef]
- Massip, C.; Mathieu, C.; Gaudru, C.; Miaut, V.; Floch, P.; Oswald, E.; Segonds, C.; Guet-Revillet, H. In vitro activity of seven β-lactams including ceftolozane/tazobactam and ceftazidime/avibactam against Burkholderia cepacia complex, Burkholderia gladioli and other non-fermentative Gram-negative bacilli isolated from cystic fibrosis patients. J. Antimicrob. Chemother. 2019, 74, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Capaldo, C.; Beauruelle, C.; Saliou, P.; Rault, G.; Ramel, S.; Héry-Arnaud, G. Investigation of Stenotrophomonas Maltophilia Epidemiology in a French Cystic Fibrosis Center. Respir. Med. Res. 2020, 78, 100757. [Google Scholar] [CrossRef]
- Gajdács, M.; Urbán, E. Prevalence and antibiotic resistance of Stenotrophomonas maltophilia in respiratory tract samples: A 10-year epidemiological snapshot. Health Serv. Res. Manag. Epidemiol. 2019, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Naas, T.; Lina, G.; Santerre Henriksen, A.; Longshaw, C.; Jehl, F. In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014-2018 Studies in France. JAC Antimicrob. Resist. 2021, 3, dlab081. [Google Scholar] [CrossRef]
- Gavioli, E.M.; Guardado, N.; Haniff, F.; Deiab, N.; Vider, E. Does cefiderocol have a potential role in cystic fibrosis pulmonary exacerbation management? Microb. Drug Resist. 2021. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Gant, V.; Hussain, A.; Bain, M.; Longshaw, C.; Henriksen, A.S. In vitro activity of cefiderocol and comparators against gram-negative bacterial isolates from a series of surveillance studies in England: 2014–2018. J. Glob. Antimicrob. Resist. 2021, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- EUCAST: Warnings! Available online: https://www.eucast.org/ast_of_bacteria/warnings/ (accessed on 10 September 2021).
MIC (mg/L) | Percentage of Susceptibility According to the Following Breakpoints | |||||
---|---|---|---|---|---|---|
50%/90% | EUCAST c | CLSI d | ||||
Antimicrobial agent | Merlin a | Sensititre b | Merlin a | Sensititre b | Merlin a | Sensititre b |
Piperacillin | ≤4/>32 | - | 57 | - | 61 | - |
Piperacillin—tazobactam | 4/>128 | ≤4/>32 | 57 | 57 | 65 | 65 |
Aztreonam | >16/>16 | >32/>32 | 0 | 0 | 0 | 0 |
Cefepime | >8/>8 | >16/>16 | 4 | 9 | 13 | 22 |
Ceftazidime | >32/>32 | - | 17 | - | 30 | - |
Ceftazidime—avibactam | >8/>8 | 16/>16 | 26 | 39 | 26 | 39 |
Ceftolozane—tazobactam | >8/>8 | >8/>8 | 0 | 9 | 0 | 9 |
Cefiderocol | - | 0.25/1 | - | 91 | - | 91 |
Imipenem | ≤1/>8 | ≤1/2 | 70 | 91 | 70 | 91 |
Imipenem—relebactam | - | 1/2 | - | 91 | - | 91 |
Meropenem | 2/>16 | 2/>16 | 48 | 43 | 70 | 57 |
Meropenem—vaborbactam | - | 1/16 | - | 87 | - | NA |
Ciprofloxacin | 4/8 | - | 0 | - | 4 | - |
Levofloxacin | 4/8 | - | 4 | - | 48 | - |
Colistin | 8/>8 | 16/>16 | 39 | 30 | 39 | 30 |
Fosfomycin | >128/>128 | >64/>64 | 0 | 0 | NA | NA |
Gentamicin | >32/>32 | - | 0 | - | 9 | - |
Amikacin | >32/>32 | >32/>32 | 0 | 0 | 22 | 13 |
Tobramycin | 32/>32 | >4/>4 | 0 | 0 | 9 | 13 |
SXT e | ≤1/>8 | - | 65 | - | 65 | - |
Tigecycline | - | ≤0.5/1 | - | 52 | - | NA |
Eravacycline | - | 0.5/>0.5 | - | 65 | - | NA |
Antimicrobial Agent | κ | Perfect Match | 1 Dilution | 2 Dilutions | >2 Dilutions |
---|---|---|---|---|---|
Piperacillin—tazobactam | 1 | 23 | |||
Aztreonam | 1 | 23 | |||
Cefepime | 0.65 | 20 | 3 | ||
Ceftazidime—avibactam | 0.71 | 20 | 3 | ||
Ceftolozane—tazobactam | 1 | 21 | 2 | ||
Imipenem | 0.36 | 19 | 5 | ||
Meropenem | 0.91 | 20 | 1 | 2 | |
Colistin | 0.62 | 19 | 3 | 1 | |
Fosfomycin | 1 | 23 | |||
Amikacin | 1 | 22 | 1 | ||
Tobramycin | 1 | 23 |
Bacteria | Antimicrobial Agent (% Susceptibility) | ||||||
---|---|---|---|---|---|---|---|
Ceftazidime | Ceftazidime- Avibactam | Ceftolozane- Tazobactam | Meropenem | Meropenem- Vaborbactam ** | Cefiderocol | References | |
Achromobacter spp. | 30–71% | 26–78% | 1–10% | 43–72% | 65–86% | 91–97% | [23,36,40,41]; Present study |
Burkholderia spp. | 20–91% * | 24–97%* | 12–89% * | 90–100% | 97–100% | 75–94% | [23,36,40,41] |
S. malotphilia | 34% | 27–48% | 25–27% | 0–11% | 0–12% | 100% | [23,36,40,41] |
Pandorae spp. | 0% | 0% | 0% | 0% | 0% | - | [23,36,40,41] |
Cupriavidus spp. | 23–27% | 69–73% | 73–90% | 8–18% | - | - | [35,36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beauruelle, C.; Lamoureux, C.; Mashi, A.; Ramel, S.; Le Bihan, J.; Ropars, T.; Dirou, A.; Banerjee, A.; Tandé, D.; Le Bars, H.; et al. In Vitro Activity of 22 Antibiotics against Achromobacter Isolates from People with Cystic Fibrosis. Are There New Therapeutic Options? Microorganisms 2021, 9, 2473. https://doi.org/10.3390/microorganisms9122473
Beauruelle C, Lamoureux C, Mashi A, Ramel S, Le Bihan J, Ropars T, Dirou A, Banerjee A, Tandé D, Le Bars H, et al. In Vitro Activity of 22 Antibiotics against Achromobacter Isolates from People with Cystic Fibrosis. Are There New Therapeutic Options? Microorganisms. 2021; 9(12):2473. https://doi.org/10.3390/microorganisms9122473
Chicago/Turabian StyleBeauruelle, Clémence, Claudie Lamoureux, Arsid Mashi, Sophie Ramel, Jean Le Bihan, Thomas Ropars, Anne Dirou, Anandadev Banerjee, Didier Tandé, Hervé Le Bars, and et al. 2021. "In Vitro Activity of 22 Antibiotics against Achromobacter Isolates from People with Cystic Fibrosis. Are There New Therapeutic Options?" Microorganisms 9, no. 12: 2473. https://doi.org/10.3390/microorganisms9122473
APA StyleBeauruelle, C., Lamoureux, C., Mashi, A., Ramel, S., Le Bihan, J., Ropars, T., Dirou, A., Banerjee, A., Tandé, D., Le Bars, H., & Héry-Arnaud, G. (2021). In Vitro Activity of 22 Antibiotics against Achromobacter Isolates from People with Cystic Fibrosis. Are There New Therapeutic Options? Microorganisms, 9(12), 2473. https://doi.org/10.3390/microorganisms9122473