Chronic Intestinal Pseudo-Obstruction: Is There a Connection with Gut Microbiota?
Abstract
:1. Introduction
2. Chronic Intestinal Pseudo-Obstruction (CIPO)
2.1. CIPO Etiology and Classification
2.2. CIPO Clinical Manifestations
2.3. CIPO Treatments
3. Gastrointestinal (GI) Motility, Enteric Nervous System (ENS) and Intestinal Endocrine System (IES)
3.1. GI Motility
3.2. ENS, IES and Neurotransmitters
4. The 5-Hydroxytryptamine (5-HT), Serotonin
5. Gut Microbiota Interplay with CIPO Patients
6. Gut Microbiota Interplay with Gastrointestinal Motility
6.1. Bacteria’s Influence on Serotonin
6.2. Bacteria’s Influence on GABA
6.3. Bacteria’s Influence on Norepinephrine or Dopamine
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Asano, Y.; Hiramoto, T.; Nishino, R.; Aiba, Y.; Kimura, T.; Yoshihara, K.; Koga, Y.; Sudo, N. Critical Role of Gut Microbiota in the Production of Biologically Active, Free Catecholamines in the Gut Lumen of Mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G1288–G1295. [Google Scholar] [CrossRef] [Green Version]
- Dey, N.; Wagner, V.E.; Blanton, L.V.; Cheng, J.; Fontana, L.; Haque, R.; Ahmed, T.; Gordon, J.I. Regulators of Gut Motility Revealed by a Gnotobiotic Model of Diet-Microbiome Interactions Related to Travel. Cell 2015, 163, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues-dos-Santos, Í.; Melo, M.F.; de Castro, L.; Hasslocher-Moreno, A.M.; do Brasil, P.E.A.A.; Silvestre de Sousa, A.; Britto, C.; Moreira, O.C. Exploring the Parasite Load and Molecular Diversity of Trypanosoma Cruzi in Patients with Chronic Chagas Disease from Different Regions of Brazil. PLoS Negl. Trop. Dis. 2018, 12, e0006939. [Google Scholar] [CrossRef]
- Kelly, C.R.; Kahn, S.; Kashyap, P.; Laine, L.; Rubin, D.; Atreja, A.; Moore, T.; Wu, G. Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook. Gastroenterology 2015, 149, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Giuffrè, M.; Campigotto, M.; Campisciano, G.; Comar, M.; Crocè, L.S. A Story of Liver and Gut Microbes: How Does the Intestinal Flora Affect Liver Disease? A Review of the Literature. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G889–G906. [Google Scholar] [CrossRef]
- Giuffrè, M.; Moretti, R.; Campisciano, G.; da Silveira, A.B.M.; Monda, V.M.; Comar, M.; Di Bella, S.; Antonello, R.M.; Luzzati, R.; Crocè, L.S. You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. J. Clin. Med. 2020, 9, 3705. [Google Scholar] [CrossRef]
- Downes, T.J.; Cheruvu, M.S.; Karunaratne, T.B.; De Giorgio, R.; Farmer, A.D. Pathophysiology, Diagnosis, and Management of Chronic Intestinal Pseudo-Obstruction. J. Clin. Gastroenterol. 2018, 52, 477–489. [Google Scholar] [CrossRef]
- De Giorgio, R.; Cogliandro, R.F.; Barbara, G.; Corinaldesi, R.; Stanghellini, V. Chronic Intestinal Pseudo-Obstruction: Clinical Features, Diagnosis, and Therapy. Gastroenterol. Clin. N. Am. 2011, 40, 787–807. [Google Scholar] [CrossRef]
- Yeung, A.K.; Di Lorenzo, C. Primary Gastrointestinal Motility Disorders in Childhood. Minerva Pediatr. 2012, 64, 567–584. [Google Scholar]
- Pingault, V.; Girard, M.; Bondurand, N.; Dorkins, H.; Van Maldergem, L.; Mowat, D.; Shimotake, T.; Verma, I.; Baumann, C.; Goossens, M. SOX10 Mutations in Chronic Intestinal Pseudo-Obstruction Suggest a Complex Physiopathological Mechanism. Hum. Genet. 2002, 111, 198–206. [Google Scholar] [CrossRef]
- Gauthier, J.; Ouled Amar Bencheikh, B.; Hamdan, F.F.; Harrison, S.M.; Baker, L.A.; Couture, F.; Thiffault, I.; Ouazzani, R.; Samuels, M.E.; Mitchell, G.A.; et al. A Homozygous Loss-of-Function Variant in MYH11 in a Case with Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome. Eur. J. Hum. Genet. 2015, 23, 1266–1268. [Google Scholar] [CrossRef] [Green Version]
- Milunsky, A.; Baldwin, C.; Zhang, X.; Primack, D.; Curnow, A.; Milunsky, J. Diagnosis of Chronic Intestinal Pseudo-Obstruction and Megacystis by Sequencing the ACTG2 Gene. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 384–387. [Google Scholar] [CrossRef]
- Halim, D.; Wilson, M.P.; Oliver, D.; Brosens, E.; Verheij, J.B.G.M.; Han, Y.; Nanda, V.; Lyu, Q.; Doukas, M.; Stoop, H.; et al. Loss of LMOD1 Impairs Smooth Muscle Cytocontractility and Causes Megacystis Microcolon Intestinal Hypoperistalsis Syndrome in Humans and Mice. Proc. Natl. Acad. Sci. USA 2017, 114, E2739–E2747. [Google Scholar] [CrossRef] [Green Version]
- De Giorgio, R.; Sarnelli, G.; Corinaldesi, R.; Stanghellini, V. Advances in Our Understanding of the Pathology of Chronic Intestinal Pseudo-Obstruction. Gut 2004, 53, 1549–1552. [Google Scholar] [CrossRef]
- Stanghellini, V.; Camilleri, M.; Malagelada, J.R. Chronic Idiopathic Intestinal Pseudo-Obstruction: Clinical and Intestinal Manometric Findings. Gut 1987, 28, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Stanghellini, V.; Cogliandro, R.F.; De Giorgio, R.; Barbara, G.; Morselli-Labate, A.M.; Cogliandro, L.; Corinaldesi, R. Natural History of Chronic Idiopathic Intestinal Pseudo-Obstruction in Adults: A Single Center Study. Clin. Gastroenterol. Hepatol. 2005, 3, 449–458. [Google Scholar] [CrossRef]
- Stanghellini, V.; Cogliandro, R.F.; de Giorgio, R.; Barbara, G.; Salvioli, B.; Corinaldesi, R. Chronic Intestinal Pseudo-Obstruction: Manifestations, Natural History and Management. Neurogastroenterol. Motil. 2007, 19, 440–452. [Google Scholar] [CrossRef]
- Vargas, J.H.; Sachs, P.; Ament, M.E. Chronic Intestinal Pseudo-Obstruction Syndrome in Pediatrics. Results of a National Survey by Members of the North American Society of Pediatric Gastroenterology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 1988, 7, 323–332. [Google Scholar] [CrossRef]
- Heneyke, S.; Smith, V.V.; Spitz, L.; Milla, P.J. Chronic Intestinal Pseudo-Obstruction: Treatment and Long Term Follow up of 44 Patients. Arch. Dis. Child. 1999, 81, 21–27. [Google Scholar] [CrossRef]
- Muto, M.; Matsufuji, H.; Tomomasa, T.; Nakajima, A.; Kawahara, H.; Ida, S.; Ushijima, K.; Kubota, A.; Mushiake, S.; Taguchi, T. Pediatric Chronic Intestinal Pseudo-Obstruction Is a Rare, Serious, and Intractable Disease: A Report of a Nationwide Survey in Japan. J. Pediatr. Surg. 2014, 49, 1799–1803. [Google Scholar] [CrossRef]
- Faure, C.; Goulet, O.; Ategbo, S.; Breton, A.; Tounian, P.; Ginies, J.L.; Roquelaure, B.; Despres, C.; Scaillon, M.; Maurage, C.; et al. Chronic Intestinal Pseudoobstruction Syndrome: Clinical Analysis, Outcome, and Prognosis in 105 Children. French-Speaking Group of Pediatric Gastroenterology. Dig. Dis. Sci. 1999, 44, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Mousa, H.; Hyman, P.E.; Cocjin, J.; Flores, A.F.; Di Lorenzo, C. Long-Term Outcome of Congenital Intestinal Pseudoobstruction. Dig. Dis. Sci. 2002, 47, 2298–2305. [Google Scholar] [CrossRef]
- Mann, S.D.; Debinski, H.S.; Kamm, M.A. Clinical Characteristics of Chronic Idiopathic Intestinal Pseudo-Obstruction in Adults. Gut 1997, 41, 675–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thapar, N.; Saliakellis, E.; Benninga, M.A.; Borrelli, O.; Curry, J.; Faure, C.; De Giorgio, R.; Gupte, G.; Knowles, C.H.; Staiano, A.; et al. Paediatric Intestinal Pseudo-Obstruction: Evidence and Consensus-Based Recommendations From an ESPGHAN-Led Expert Group. J. Pediatric. Gastroenterol. Nutr. 2018, 66, 991–1019. [Google Scholar] [CrossRef]
- Di Nardo, G.; Di Lorenzo, C.; Lauro, A.; Stanghellini, V.; Thapar, N.; Karunaratne, T.B.; Volta, U.; De Giorgio, R. Chronic Intestinal Pseudo-Obstruction in Children and Adults: Diagnosis and Therapeutic Options. Neurogastroenterol. Motil. 2017, 29, e12945. [Google Scholar] [CrossRef]
- Lindberg, G.; Iwarzon, M.; Tornblom, H. Clinical Features and Long-Term Survival in Chronic Intestinal Pseudo-Obstruction and Enteric Dysmotility. Scand. J. Gastroenterol. 2009, 44, 692–699. [Google Scholar] [CrossRef]
- Cogliandro, R.F.; Antonucci, A.; De Giorgio, R.; Barbara, G.; Cremon, C.; Cogliandro, L.; Frisoni, C.; Pezzilli, R.; Morselli-Labate, A.M.; Corinaldesi, R.; et al. Patient-Reported Outcomes and Gut Dysmotility in Functional Gastrointestinal Disorders. Neurogastroenterol. Motil. 2011, 23, 1084–1091. [Google Scholar] [CrossRef]
- Zenzeri, L.; Tambucci, R.; Quitadamo, P.; Giorgio, V.; De Giorgio, R.; Di Nardo, G. Update on Chronic Intestinal Pseudo-Obstruction. Curr. Opin. Gastroenterol. 2020, 36, 230–237. [Google Scholar] [CrossRef]
- Billiauws, L.; Corcos, O.; Joly, F. Dysmotility Disorders: A Nutritional Approach. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 483–488. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Lucanto, C.; Flores, A.F.; Idries, S.; Hyman, P.E. Effect of Sequential Erythromycin and Octreotide on Antroduodenal Manometry. J. Pediatr. Gastroenterol. Nutr. 1999, 29, 293–296. [Google Scholar] [CrossRef]
- Venkatasubramani, N.; Rudolph, C.D.; Sood, M.R. Erythromycin Lacks Colon Prokinetic Effect in Children with Functional Gastrointestinal Disorders: A Retrospective Study. BMC Gastroenterol. 2008, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Di Lorenzo, C.; Reddy, S.N.; Villanueva-Meyer, J.; Mena, I.; Martin, S.; Hyman, P.E. Cisapride in Children with Chronic Intestinal Pseudoobstruction. An Acute, Double-Blind, Crossover, Placebo-Controlled Trial. Gastroenterology 1991, 101, 1564–1570. [Google Scholar] [CrossRef]
- Hyman, P.E.; Di Lorenzo, C.; McAdams, L.; Flores, A.F.; Tomomasa, T.; Garvey, T.Q. Predicting the Clinical Response to Cisapride in Children with Chronic Intestinal Pseudo-Obstruction. Am. J. Gastroenterol. 1993, 88, 832–836. [Google Scholar]
- Amiot, A.; Joly, F.; Alves, A.; Panis, Y.; Bouhnik, Y.; Messing, B. Long-Term Outcome of Chronic Intestinal Pseudo-Obstruction Adult Patients Requiring Home Parenteral Nutrition. Am. J. Gastroenterol. 2009, 104, 1262–1270. [Google Scholar] [CrossRef]
- Chaudhary, N.A.; Truelove, S.C. Human Colonic Motility: A Comparative Study of Normal Subjects, Patients with Ulcerative Colitis, and Patients with the Irritable Colon Syndrome. II. The Effect of Prostigmin. Gastroenterology 1961, 40, 18–26. [Google Scholar] [CrossRef]
- Law, N.M.; Bharucha, A.E.; Undale, A.S.; Zinsmeister, A.R. Cholinergic Stimulation Enhances Colonic Motor Activity, Transit, and Sensation in Humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G1228–G1237. [Google Scholar] [CrossRef]
- O’Dea, C.J.; Brookes, J.H.; Wattchow, D.A. The Efficacy of Treatment of Patients with Severe Constipation or Recurrent Pseudo-Obstruction with Pyridostigmine. Colorectal Dis. 2010, 12, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, G.; Viscogliosi, F.; Esposito, F.; Stanghellini, V.; Villa, M.P.; Parisi, P.; Morlando, A.; Caló, G.; De Giorgio, R. Pyridostigmine in Pediatric Intestinal Pseudo-Obstruction: Case Report of a 2-Year Old Girl and Literature Review. J. Neurogastroenterol. Motil. 2019, 25, 508–514. [Google Scholar] [CrossRef]
- Kirby, D.F.; Raheem, S.A.; Corrigan, M.L. Nutritional Interventions in Chronic Intestinal Pseudoobstruction. Gastroenterol. Clin. N. Am. 2018, 47, 209–218. [Google Scholar] [CrossRef]
- Koo, H.L.; DuPont, H.L. Rifaximin: A Unique Gastrointestinal-Selective Antibiotic for Enteric Diseases. Curr. Opin. Gastroenterol. 2010, 26, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabenstein, T.; Fromm, M.F.; Zolk, O. Rifaximin--a non-resorbable antibiotic with many indications in gastroenterology. Z. Gastroenterol. 2011, 49, 211–224. [Google Scholar] [CrossRef]
- Menees, S.B.; Maneerattannaporn, M.; Kim, H.M.; Chey, W.D. The Efficacy and Safety of Rifaximin for the Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2012, 107, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Saadi, M.; McCallum, R.W. Rifaximin in Irritable Bowel Syndrome: Rationale, Evidence and Clinical Use. Ther. Adv. Chronic Dis. 2013, 4, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Ding, C.; Tian, H.; Yang, B.; Zhang, X.; Hua, Y.; Zhu, Y.; Gong, J.; Zhu, W.; Li, J.; et al. Serial Frozen Fecal Microbiota Transplantation in the Treatment of Chronic Intestinal Pseudo-Obstruction: A Preliminary Study. J. Neurogastroenterol. Motil. 2017, 23, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.-J. The Enteric Nervous System and Gastrointestinal Innervation: Integrated Local and Central Control. Adv. Exp. Med. Biol. 2014, 817, 39–71. [Google Scholar] [CrossRef]
- Forsythe, P.; Bienenstock, J.; Kunze, W.A. Vagal Pathways for Microbiome-Brain-Gut Axis Communication. Adv. Exp. Med. Biol. 2014, 817, 115–133. [Google Scholar] [CrossRef]
- Vialli, M.; Erspamer, V. Ricerche sul secreto delle cellule enterocromaffini. Z. Zellforsch. Mikr. Anatomie 1937, 27, 81–99. [Google Scholar] [CrossRef]
- Borodovitsyna, O.; Flamini, M.; Chandler, D. Noradrenergic Modulation of Cognition in Health and Disease. Neural Plast. 2017, 2017, 6031478. [Google Scholar] [CrossRef] [Green Version]
- Gershon, M.D.; Tack, J. The Serotonin Signaling System: From Basic Understanding to Drug Development for Functional GI Disorders. Gastroenterology 2007, 132, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Gray, J.A.; Roth, B.L. The Expanded Biology of Serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulbring, E.; Crema, A. Observations Concerning the Action of 5-Hydroxytryptamine on the Peristaltic Reflex. Br. J. Pharmacol. Chemother. 1958, 13, 444–457. [Google Scholar] [CrossRef] [Green Version]
- Bulbring, E.; Lin, R.C. The Effect of Intraluminal Application of 5-Hydroxytryptamine and 5-Hydroxytryptophan on Peristalsis; the Local Production of 5-HT and Its Release in Relation to Intraluminal Pressure and Propulsive Activity. J. Physiol. 1958, 140, 381–407. [Google Scholar] [PubMed]
- Bulbring, E.; Crema, A. The Release of 5-Hydroxytryptamine in Relation to Pressure Exerted on the Intestinal Mucosa. J. Physiol. 1959, 146, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Grider, J.R.; Kuemmerle, J.F.; Jin, J.G. 5-HT Released by Mucosal Stimuli Initiates Peristalsis by Activating 5-HT4/5-HT1p Receptors on Sensory CGRP Neurons. Am. J. Physiol. 1996, 270, G778–G782. [Google Scholar] [CrossRef] [PubMed]
- Keating, D.J.; Spencer, N.J. Release of 5-Hydroxytryptamine from the Mucosa Is Not Required for the Generation or Propagation of Colonic Migrating Motor Complexes. Gastroenterology 2010, 138, 659–670. [Google Scholar] [CrossRef]
- Spencer, N.J.; Nicholas, S.J.; Robinson, L.; Kyloh, M.; Flack, N.; Brookes, S.J.; Zagorodnyuk, V.P.; Keating, D.J. Mechanisms Underlying Distension-Evoked Peristalsis in Guinea Pig Distal Colon: Is There a Role for Enterochromaffin Cells? Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G519–G527. [Google Scholar] [CrossRef] [Green Version]
- Erspamer, V. Pharmacology of Indole-Alkylamines. Pharmacol. Rev. 1954, 6, 425–487. [Google Scholar]
- Côté, F.; Thévenot, E.; Fligny, C.; Fromes, Y.; Darmon, M.; Ripoche, M.-A.; Bayard, E.; Hanoun, N.; Saurini, F.; Lechat, P.; et al. Disruption of the Nonneuronal Tph1 Gene Demonstrates the Importance of Peripheral Serotonin in Cardiac Function. Proc. Natl. Acad. Sci. USA 2003, 100, 13525–13530. [Google Scholar] [CrossRef] [Green Version]
- Walther, D.J.; Peter, J.-U.; Bashammakh, S.; Hörtnagl, H.; Voits, M.; Fink, H.; Bader, M. Synthesis of Serotonin by a Second Tryptophan Hydroxylase Isoform. Science 2003, 299, 76. [Google Scholar] [CrossRef]
- Zelkas, L.; Raghupathi, R.; Lumsden, A.L.; Martin, A.M.; Sun, E.; Spencer, N.J.; Young, R.L.; Keating, D.J. Serotonin-Secreting Enteroendocrine Cells Respond via Diverse Mechanisms to Acute and Chronic Changes in Glucose Availability. Nutr. Metab. 2015, 12, 55. [Google Scholar] [CrossRef] [Green Version]
- Reigstad, C.S.; Salmonson, C.E.; Rainey, J.F.; Szurszewski, J.H.; Linden, D.R.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Gut Microbes Promote Colonic Serotonin Production through an Effect of Short-Chain Fatty Acids on Enterochromaffin Cells. FASEB J. 2015, 29, 1395–1403. [Google Scholar] [CrossRef] [Green Version]
- Pissios, P.; Maratos-Flier, E. More than Satiety: Central Serotonin Signaling and Glucose Homeostasis. Cell Metab. 2007, 6, 345–347. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chalazonitis, A.; Huang, Y.-Y.; Mann, J.J.; Margolis, K.G.; Yang, Q.M.; Kim, D.O.; Côté, F.; Mallet, J.; Gershon, M.D. Essential Roles of Enteric Neuronal Serotonin in Gastrointestinal Motility and the Development/Survival of Enteric Dopaminergic Neurons. J. Neurosci. 2011, 31, 8998–9009. [Google Scholar] [CrossRef]
- Keating, D.J.; Peiris, H.; Kyloh, M.; Brookes, S.J.H.; Spencer, N.J. The Presence of 5-HT in Myenteric Varicosities Is Not Due to Uptake of 5-HT Released from the Mucosa during Dissection: Use of a Novel Method for Quantifying 5-HT Immunoreactivity in Myenteric Ganglia. Neurogastroenterol. Motil. 2013, 25, 849–853. [Google Scholar] [CrossRef] [Green Version]
- Haahr, M.E.; Hansen, D.L.; Fisher, P.M.; Svarer, C.; Stenbæk, D.S.; Madsen, K.; Madsen, J.; Holst, J.J.; Baaré, W.F.C.; Hojgaard, L.; et al. Central 5-HT Neurotransmission Modulates Weight Loss Following Gastric Bypass Surgery in Obese Individuals. J. Neurosci. 2015, 35, 5884–5889. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, D.; Hannon, J.P.; Martin, G.R. Molecular, Pharmacological and Functional Diversity of 5-HT Receptors. Pharmacol. Biochem. Behav. 2002, 71, 533–554. [Google Scholar] [CrossRef]
- Fuller, R.W.; Wong, D.T. Serotonin Uptake and Serotonin Uptake Inhibition. Ann. N. Y. Acad. Sci. 1990, 600, 68–78. [Google Scholar] [CrossRef]
- Chen, J.J.; Li, Z.; Pan, H.; Murphy, D.L.; Tamir, H.; Koepsell, H.; Gershon, M.D. Maintenance of Serotonin in the Intestinal Mucosa and Ganglia of Mice That Lack the High-Affinity Serotonin Transporter: Abnormal Intestinal Motility and the Expression of Cation Transporters. J. Neurosci. 2001, 21, 6348–6361. [Google Scholar] [CrossRef]
- Coates, M.D.; Mahoney, C.R.; Linden, D.R.; Sampson, J.E.; Chen, J.; Blaszyk, H.; Crowell, M.D.; Sharkey, K.A.; Gershon, M.D.; Mawe, G.M.; et al. Molecular Defects in Mucosal Serotonin Content and Decreased Serotonin Reuptake Transporter in Ulcerative Colitis and Irritable Bowel Syndrome. Gastroenterology 2004, 126, 1657–1664. [Google Scholar] [CrossRef]
- Li, Y.; Owyang, C. Peptone Stimulates CCK-Releasing Peptide Secretion by Activating Intestinal Submucosal Cholinergic Neurons. J. Clin. Investig. 1996, 97, 1463–1470. [Google Scholar] [CrossRef]
- Martin, A.M.; Young, R.L.; Leong, L.; Rogers, G.B.; Spencer, N.J.; Jessup, C.F.; Keating, D.J. The Diverse Metabolic Roles of Peripheral Serotonin. Endocrinology 2017, 158, 1049–1063. [Google Scholar] [CrossRef]
- Iversen, L. Neurotransmitter Transporters: Fruitful Targets for CNS Drug Discovery. Mol. Psychiatry 2000, 5, 357–362. [Google Scholar] [CrossRef]
- Hoffman, B.J.; Mezey, E.; Brownstein, M.J. Cloning of a Serotonin Transporter Affected by Antidepressants. Science 1991, 254, 579–580. [Google Scholar] [CrossRef]
- Ramamoorthy, S.; Bauman, A.L.; Moore, K.R.; Han, H.; Yang-Feng, T.; Chang, A.S.; Ganapathy, V.; Blakely, R.D. Antidepressant- and Cocaine-Sensitive Human Serotonin Transporter: Molecular Cloning, Expression, and Chromosomal Localization. Proc. Natl. Acad. Sci. USA 1993, 90, 2542–2546. [Google Scholar] [CrossRef] [Green Version]
- Wade, P.R.; Chen, J.; Jaffe, B.; Kassem, I.S.; Blakely, R.D.; Gershon, M.D. Localization and Function of a 5-HT Transporter in Crypt Epithelia of the Gastrointestinal Tract. J. Neurosci. 1996, 16, 2352–2364. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.X.; Pan, H.; Rothman, T.P.; Wade, P.R.; Gershon, M.D. Guinea Pig 5-HT Transporter: Cloning, Expression, Distribution, and Function in Intestinal Sensory Reception. Am. J. Physiol. 1998, 275, G433–G448. [Google Scholar] [CrossRef]
- Blakely, R.D.; Berson, H.E.; Fremeau, R.T.; Caron, M.G.; Peek, M.M.; Prince, H.K.; Bradley, C.C. Cloning and Expression of a Functional Serotonin Transporter from Rat Brain. Nature 1991, 354, 66–70. [Google Scholar] [CrossRef]
- Bearcroft, C.P.; Perrett, D.; Farthing, M.J. Postprandial Plasma 5-Hydroxytryptamine in Diarrhoea Predominant Irritable Bowel Syndrome: A Pilot Study. Gut 1998, 42, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Kerckhoffs, A.P.M.; Ter Linde, J.J.M.; Akkermans, L.M.A.; Samsom, M. Trypsinogen IV, Serotonin Transporter Transcript Levels and Serotonin Content Are Increased in Small Intestine of Irritable Bowel Syndrome Patients. Neurogastroenterol. Motil. 2008, 20, 900–907. [Google Scholar] [CrossRef]
- Gagliardi, A.; Totino, V.; Cacciotti, F.; Iebba, V.; Neroni, B.; Bonfiglio, G.; Trancassini, M.; Passariello, C.; Pantanella, F.; Schippa, S. Rebuilding the Gut Microbiota Ecosystem. Int. J. Environ. Res. Public Health 2018, 15, 1679. [Google Scholar] [CrossRef] [Green Version]
- Mazmanian, S.K.; Liu, C.H.; Tzianabos, A.O.; Kasper, D.L. An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell 2005, 122, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishna, B.S. Role of the Gut Microbiota in Human Nutrition and Metabolism. J. Gastroenterol. Hepatol. 2013, 28 (Suppl. 4), 9–17. [Google Scholar] [CrossRef]
- Schippa, S.; Conte, M.P. Dysbiotic Events in Gut Microbiota: Impact on Human Health. Nutrients 2014, 6, 5786–5805. [Google Scholar] [CrossRef]
- Schippa, S.; Iebba, V.; Barbato, M.; Di Nardo, G.; Totino, V.; Checchi, M.P.; Longhi, C.; Maiella, G.; Cucchiara, S.; Conte, M.P. A Distinctive “microbial Signature” in Celiac Pediatric Patients. BMC Microbiol. 2010, 10, 175. [Google Scholar] [CrossRef]
- Conte, M.P.; Schippa, S.; Zamboni, I.; Penta, M.; Chiarini, F.; Seganti, L.; Osborn, J.; Falconieri, P.; Borrelli, O.; Cucchiara, S. Gut-Associated Bacterial Microbiota in Paediatric Patients with Inflammatory Bowel Disease. Gut 2006, 55, 1760–1767. [Google Scholar] [CrossRef] [Green Version]
- Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front. Microbiol. 2018, 9, 2013. [Google Scholar] [CrossRef] [Green Version]
- Mathew, S.; Smatti, M.K.; Al Ansari, K.; Nasrallah, G.K.; Al Thani, A.A.; Yassine, H.M. Mixed Viral-Bacterial Infections and Their Effects on Gut Microbiota and Clinical Illnesses in Children. Sci. Rep. 2019, 9, 865. [Google Scholar] [CrossRef] [Green Version]
- Strandwitz, P. Neurotransmitter Modulation by the Gut Microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- De Vadder, F.; Grasset, E.; Mannerås Holm, L.; Karsenty, G.; Macpherson, A.J.; Olofsson, L.E.; Bäckhed, F. Gut Microbiota Regulates Maturation of the Adult Enteric Nervous System via Enteric Serotonin Networks. Proc. Natl. Acad. Sci. USA 2018, 115, 6458–6463. [Google Scholar] [CrossRef] [Green Version]
- Singhal, M.; Turturice, B.A.; Manzella, C.R.; Ranjan, R.; Metwally, A.A.; Theorell, J.; Huang, Y.; Alrefai, W.A.; Dudeja, P.K.; Finn, P.W.; et al. Serotonin Transporter Deficiency Is Associated with Dysbiosis and Changes in Metabolic Function of the Mouse Intestinal Microbiome. Sci. Rep. 2019, 9, 2138. [Google Scholar] [CrossRef]
- Kidd, M.; Modlin, I.M.; Gustafsson, B.I.; Drozdov, I.; Hauso, O.; Pfragner, R. Luminal Regulation of Normal and Neoplastic Human EC Cell Serotonin Release Is Mediated by Bile Salts, Amines, Tastants, and Olfactants. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G260–G272. [Google Scholar] [CrossRef] [Green Version]
- Raghupathi, R.; Duffield, M.D.; Zelkas, L.; Meedeniya, A.; Brookes, S.J.H.; Sia, T.C.; Wattchow, D.A.; Spencer, N.J.; Keating, D.J. Identification of Unique Release Kinetics of Serotonin from Guinea-Pig and Human Enterochromaffin Cells. J. Physiol. 2013, 591, 5959–5975. [Google Scholar] [CrossRef] [Green Version]
- France, M.T.; Mendes-Soares, H.; Forney, L.J. Genomic Comparisons of Lactobacillus Crispatus and Lactobacillus Iners Reveal Potential Ecological Drivers of Community Composition in the Vagina. Appl. Environ. Microbiol. 2016, 82, 7063–7073. [Google Scholar] [CrossRef] [Green Version]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics Analysis Reveals Large Effects of Gut Microflora on Mammalian Blood Metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.G.T.; Bottiglieri, T.; Snead, O.C. GABA, Gamma-Hydroxybutyric Acid, and Neurological Disease. Ann. Neurol. 2003, 54 (Suppl. 6), S3–S12. [Google Scholar] [CrossRef]
- Hyland, N.P.; Cryan, J.F. A Gut Feeling about GABA: Focus on GABA(B) Receptors. Front. Pharmacol. 2010, 1, 124. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Kibe, R.; Ooga, T.; Aiba, Y.; Sawaki, E.; Koga, Y.; Benno, Y. Cerebral Low-Molecular Metabolites Influenced by Intestinal Microbiota: A Pilot Study. Front. Syst. Neurosci. 2013, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [Green Version]
- Freestone, P.P.; Williams, P.H.; Haigh, R.D.; Maggs, A.F.; Neal, C.P.; Lyte, M. Growth Stimulation of Intestinal Commensal Escherichia Coli by Catecholamines: A Possible Contributory Factor in Trauma-Induced Sepsis. Shock 2002, 18, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Bansal, T.; Englert, D.; Lee, J.; Hegde, M.; Wood, T.K.; Jayaraman, A. Differential Effects of Epinephrine, Norepinephrine, and Indole on Escherichia Coli O157:H7 Chemotaxis, Colonization, and Gene Expression. Infect. Immun. 2007, 75, 4597–4607. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, P.M.; Aviles, H.; Lyte, M.; Sonnenfeld, G. Enhancement of in Vitro Growth of Pathogenic Bacteria by Norepinephrine: Importance of Inoculum Density and Role of Transferrin. Appl. Environ. Microbiol. 2006, 72, 5097–5099. [Google Scholar] [CrossRef] [Green Version]
- Tsavkelova, E.A.; Botvinko, I.V.; Kudrin, V.S.; Oleskin, A.V. Detection of Neurotransmitter Amines in Microorganisms with the Use of High-Performance Liquid Chromatography. Dokl. Biochem. 2000, 372, 115–117. [Google Scholar]
- Sperandio, V.; Torres, A.G.; Jarvis, B.; Nataro, J.P.; Kaper, J.B. Bacteria-Host Communication: The Language of Hormones. Proc. Natl. Acad. Sci. USA 2003, 100, 8951–8956. [Google Scholar] [CrossRef] [Green Version]
- Kiraly, D.D.; Walker, D.M.; Calipari, E.S.; Labonte, B.; Issler, O.; Pena, C.J.; Ribeiro, E.A.; Russo, S.J.; Nestler, E.J. Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine. Sci. Rep. 2016, 6, 35455. [Google Scholar] [CrossRef]
Author of the Study and Year of Publication | Results | Reference |
---|---|---|
Stanghellini et al., 2005 | Intestinal dilation and slow transit contribute to SIBO | [17] |
Gu et al., 2017 | FMT treatment improves symptoms of pain and bloating | [45] |
Stanghellini et al., 2005 | An altered gut microbiota leads to intestinal epithelial barrier dysfunction and immune dysregulation, representing a risk factor that triggers a severe gut dysmotility | [17] |
Karl et al., 2018 | CIPO exacerbations can be triggered by viral or bacterial infections | [87] |
Rodriguez dos Santos et al., 2018 | The protozoan Trypanosoma cruzi causes Chagas’ disease in secondary CIPO | [4] |
Author of the Study and Year of Publication | Results | Reference |
---|---|---|
Asano et al., 2012 | Bacteria are able to produce neurotransmitters | [1] |
Strandwitz et al., 2018 | In human and mouse models, interventions centered on microbiota composition modify the levels of neurotransmitters | [89] |
Dey et al., 2015; Yano et al., 2015 | Germ-free animals show alterations in different ENS- and CNS-related functions | [2,3] |
Gershon et al., 2007; Berger et al., 2009 | Serotonin regulates several physiological processes, e.g., peristalsis | [50,51] |
De Vadder et al., 2018 | Gut microbiota modulates the functionality and anatomy of the ENS through the serotonin release | [90] |
Reigstad et al., 2015 | Serotonin biosynthesis is modulated, among other factors, by luminal SCFAs derived from bacteria | [62] |
Yano et al., 2015; Reigstad et al., 2015 | Specific metabolites of gut microbiota provide signals to host mucosal EC cells, stimulating Tph-1 expression | [3,62] |
Yano et al., 2015; Wikoff et al., 2009 | In germ-free animals, serotonin levels decrease in blood and colon districts | [3,95] |
Hyland et al., 2010 | GABA levels interfere with ENS functions, such as intestinal motility | [97] |
Matsumoto et al., 2013 | Germ-free animals show a reduction in serum and luminal levels of GABA (not cerebral) | [98] |
Bravo et al., 2011 | Specific microorganisms produce GABA | [99] |
Strandwitz et al., 2018 | Microbiota can modulate norepinephrine or dopamine in vivo | [89] |
Asano et al., 2012 | Germ-free mice have decreased levels of norepinephrine in cecal lumen, which could be reestablished via microbiota colonization | [1] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radocchia, G.; Neroni, B.; Marazzato, M.; Capuzzo, E.; Zuccari, S.; Pantanella, F.; Zenzeri, L.; Evangelisti, M.; Vassallo, F.; Parisi, P.; et al. Chronic Intestinal Pseudo-Obstruction: Is There a Connection with Gut Microbiota? Microorganisms 2021, 9, 2549. https://doi.org/10.3390/microorganisms9122549
Radocchia G, Neroni B, Marazzato M, Capuzzo E, Zuccari S, Pantanella F, Zenzeri L, Evangelisti M, Vassallo F, Parisi P, et al. Chronic Intestinal Pseudo-Obstruction: Is There a Connection with Gut Microbiota? Microorganisms. 2021; 9(12):2549. https://doi.org/10.3390/microorganisms9122549
Chicago/Turabian StyleRadocchia, Giulia, Bruna Neroni, Massimiliano Marazzato, Elena Capuzzo, Simone Zuccari, Fabrizio Pantanella, Letizia Zenzeri, Melania Evangelisti, Francesca Vassallo, Pasquale Parisi, and et al. 2021. "Chronic Intestinal Pseudo-Obstruction: Is There a Connection with Gut Microbiota?" Microorganisms 9, no. 12: 2549. https://doi.org/10.3390/microorganisms9122549
APA StyleRadocchia, G., Neroni, B., Marazzato, M., Capuzzo, E., Zuccari, S., Pantanella, F., Zenzeri, L., Evangelisti, M., Vassallo, F., Parisi, P., Di Nardo, G., & Schippa, S. (2021). Chronic Intestinal Pseudo-Obstruction: Is There a Connection with Gut Microbiota? Microorganisms, 9(12), 2549. https://doi.org/10.3390/microorganisms9122549