Future Risk of Bovine Tuberculosis (Mycobacterium bovis) Breakdown in Cattle Herds 2013–2018: A Dominance Analysis Approach
Abstract
:1. Introduction
- The epidemiologic situation has changed in recent years, with the study period representing an historic low incidence in TB in Ireland (2013–2018; [9]).
- There was a significant change in the structure of Irish farming post lifting of milk quotas in 2015, with significant shift towards dairy farming, associated with increasing milk production and increasing herd-size. For example, from 2008 to 2013, an average dairy herd from a representative sample increased the herd-size by 12%; higher performing (top quartile) herds increased the herd size by 37% [30]. It was unknown whether such change might impact risk factor analyses for recurrent breakdowns.
- Importantly, we apply for the first time a technique (dominance analysis) to rank factors in terms of the importance to affecting future risk. Dominance analysis seeks to explore the variance explained by regression models (variance decomposition; see Grömping [31] for a discussion) and ranks predictors in terms of their importance to the global model [32]. The application of dominance analysis allowed us to partition the variation explained by our model to inform our understanding of which factors may be the most useful to target for policies aimed at reducing future recrudescence.
2. Materials and Methods
- Breakdown size (number of reactors) during the index test case;
- Post-mortem confirmation (visible lesion in reactors at slaughter);
- Breakdown length (days);
- Herd history (breakdown during the previous 5 years);
- Herd-size at derestriction;
- Herd-type (beef (rearing/finishing), dairy, suckler (non-dairy breeding herd), and other), as designated on the Animal Health Computer System (AHCS; DAFM);
- County.
2.1. Model Building and Assessment
2.2. Dominance Analysis
3. Results
3.1. Univariable Associations
3.2. Multivariable Model Results
3.3. Dominance Modelling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Reilly, L.M.; Daborn, C.J. The epidemiology of Mycobacterium bovis infections in animals and man: A review. Tuber. Lung Dis. 1995, 76, 1–46. [Google Scholar] [CrossRef]
- Cosivi, O.; Grange, J.M.; Daborn, C.J.; Raviglione, M.C.; Fujikura, T.; Cousins, D.; Robinson, R.A.; Huchzermeyer, H.F.A.K.; de Kantor, I.; Meslin, F.X. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg. Infect. Dis. 1998, 4, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Thoen, C.O.; Steele, J.H.; Gilsdorf, M.J. (Eds.) Mycobacterium Bovis Infection in Animals and Humans; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- World Health Organization. Roadmap for Zoonotic Tuberculosis. 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/259229/9789241513043-eng.pdf (accessed on 5 May 2021).
- Olea-Popelka, F.; Fujiwara, P.I. Building a multi-institutional and interdisciplinary team to develop a zoonotic tuberculosis roadmap. Front. Pub. Health 2018, 6, 167. [Google Scholar] [CrossRef] [PubMed]
- Gortazar, C.; Vicente, J.; Boadella, M.; Ballesteros, C.; Galindo, R.C.; Garrido, J.; Aranaz, A.; de La Fuente, J. Progress in the control of bovine tuberculosis in Spanish wildlife. Vet. Microbiol. 2011, 151, 170–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, A.R.; Skuce, R.A.; Byrne, A.W. Bovine tuberculosis in Britain and Ireland—A perfect storm? The confluence of potential ecological and epidemiological impediments to controlling a chronic infectious disease. Front. Vet. Sci. 2018, 5, 109. [Google Scholar] [CrossRef] [PubMed]
- Broughan, J.M.; Judge, J.; Ely, E.; Delahay, R.J.; Wilson, G.; Clifton-Hadley, R.S.; Goodchild, A.V.; Bishop, H.; Parry, J.E.; Downs, S.H. A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland. Epidemiol. Infect. 2016, 144, 2899–2926. [Google Scholar] [CrossRef] [Green Version]
- More, S.J. Can bovine TB be eradicated from the Republic of Ireland? Could this be achieved by 2030? Ir. Vet. J. 2019, 72, 3. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, P.G.; Hancox, N.; Nugent, G.; De Lisle, G.W. Toward eradication: The effect of Mycobacterium bovis infection in wildlife on the evolution and future direction of bovine tuberculosis management in New Zealand. N. Z. Vet. J. 2015, 63, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Clarke, A.; Maher, J.; Byrne, A.W.; More, S.J.; Horan, M.; Barrett, D. Development and application of a prioritisation tool for animal health surveillance activities in Ireland. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Good, M. Bovine tuberculosis eradication in Ireland. Ir. Vet. J. 2006, 59, 154. [Google Scholar]
- Richomme, C.; Boadella, M.; Courcoul, A.; Durand, B.; Drapeau, A.; Corde, Y.; Hars, J.; Payne, A.; Fediaevsky, A.; Boschiroli, M.L. Exposure of wild boar to Mycobacterium tuberculosis complex in France since 2000 is consistent with the distribution of bovine tuberculosis outbreaks in cattle. PLoS ONE 2013, 8, e77842. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, D.M.; Berke, O.; Kelton, D.F.; White, P.W.; More, S.J.; O’Keeffe, J.; Martin, S.W. From explanation to prediction: A model for recurrent bovine tuberculosis in Irish cattle herds. Prev. Vet. Med. 2010, 94, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Clegg, T.A.; Good, M.; More, S.J. Future risk of bovine tuberculosis recurrence among higher risk herds in Ireland. Prev. Vet. Med. 2015, 118, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Milne, G.M.; Graham, J.; Allen, A.; Lahuerta-Marin, A.; McCormick, C.; Presho, E.; Skuce, R.; Byrne, A.W. Spatiotemporal analysis of prolonged and recurrent bovine tuberculosis breakdowns in Northern Irish cattle herds reveals a new infection hotspot. Spat. Spatio Temporal Epidemiol. 2019, 28, 33–42. [Google Scholar] [CrossRef]
- Milne, G.; Allen, A.; Graham, J.; Lahuerta-Marin, A.; McCormick, C.; Presho, E.; Reid, N.; Skuce, R.; Byrne, A.W. Bovine tuberculosis breakdown duration in cattle herds: An investigation of herd, host, pathogen and wildlife risk factors. PeerJ 2020, 8, e8319. [Google Scholar] [CrossRef] [PubMed]
- Karolemeas, K.; McKinley, T.J.; Clifton-Hadley, R.S.; Goodchild, A.V.; Mitchell, A.; Johnston, W.T.; Conlan, A.J.K.; Donnelly, C.A.; Wood, J.L.N. Recurrence of bovine tuberculosis breakdowns in Great Britain: Risk factors and prediction. Prev. Vet. Med. 2011, 102, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.P.; Courcier, E.A.; Gordon, A.W.; O’Hagan, M.J.H.; Menzies, F.D. Bovine tuberculosis in Northern Ireland: Risk factors associated with duration and recurrence of chronic herd breakdowns. Prev. Vet. Med. 2016, 131, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dawson, K.L.; Stevenson, M.A.; Sinclair, J.A.; Bosson, M.A. Recurrent bovine tuberculosis in New Zealand cattle and deer herds, 2006–2010. Epidem. Infect. 2014, 142, 2065–2074. [Google Scholar] [CrossRef] [Green Version]
- Guta, S.; Casal, J.; Napp, S.; Saez, J.L.; Garcia-Saenz, A.; De Val, B.P.; Allepuz, A. Epidemiological investigation of bovine tuberculosis herd breakdowns in Spain 2009/2011. PLoS ONE 2014, 9, e104383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Cruz, M.L.; Pérez, A.; Bezos, J.; Pages, E.; Casal, C.; Carpintero, J.; Romero, B.; Dominguez, L.; Barker, C.M.; Díaz, R.; et al. Spatial dynamics of bovine tuberculosis in the autonomous community of Madrid, Spain (2010–2012). PLoS ONE 2014, 9, e115632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okafor, C.C.; Grooms, D.L.; Bruning-Fann, C.S.; Averill, J.J.; Kaneene, J.B. Descriptive epidemiology of bovine tuberculosis in Michigan (1975–2010): Lessons learned. Vet. Med. Internat. 2011, 2011, 1–13. [Google Scholar] [CrossRef]
- Conlan, A.J.; McKinley, T.J.; Karolemeas, K.; Pollock, E.B.; Goodchild, A.V.; Mitchell, A.P.; Birch, C.P.; Clifton-Hadley, R.S.; Wood, J.L. Estimating the hidden burden of bovine tuberculosis in Great Britain. PLoS Comp. Biol. 2012, 8, e1002730. [Google Scholar] [CrossRef] [PubMed]
- Clegg, T.A.; Duignan, A.; Whelan, C.; Gormley, E.; Good, M.; Clarke, J.; Toft, N.; More, S.J. Using latent class analysis to estimate the test characteristics of the γ-interferon test, the single intradermal comparative tuberculin test and a multiplex immunoassay under Irish conditions. Vet. Microbiol. 2011, 151, 68–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahuerta-Marin, A.; Milne, G.; McNair, J.; Skuce, R.; McBride, S.; Menzies, F.; McDowell, S.; Byrne, A.; Handel, I.; Bronsvoort, B.D.C. Bayesian latent class estimation of sensitivity and specificity parameters of diagnostic tests for bovine tuberculosis in chronically infected herds in Northern Ireland. Vet. J. 2018, 238, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Nuñez-García, J.; Downs, S.H.; Parry, J.E.; Abernethy, D.A.; Broughan, J.M.; Cameron, A.R.; Cook, A.J.; de la Rua-Domenech, R.; Goodchild, A.V.; Gunn, J.; et al. Meta-analyses of the sensitivity and specificity of ante-mortem and post-mortem diagnostic tests for bovine tuberculosis in the UK and Ireland. Prev. Vet. Med. 2017, 153, 94–107. [Google Scholar] [CrossRef]
- Clegg, T.A.; Doyle, M.; Ryan, E.; More, S.J.; Gormley, E. Characteristics of Mycobacterium bovis infected herds tested with the interferon-gamma assay. Prev. Vet. Med. 2019, 168, 52–59. [Google Scholar] [CrossRef] [PubMed]
- More, S.J. Perspectives from the science-policy interface in animal health and welfare. Front. Vet. Sci. 2019, 6, 382. [Google Scholar] [CrossRef]
- Läpple, D.; Sirr, G. Dairy intensification and quota abolition: A comparative study of production in Ireland and the Netherlands. EuroChoices 2019, 18, 26–32. [Google Scholar] [CrossRef]
- Grömping, U. Estimators of relative importance in linear regression based on variance decomposition. Am. Stat. 2007, 61, 139–147. [Google Scholar] [CrossRef]
- Budescu, D.V. Dominance Analysis: A New Approach to the Problem of Relative Importance of Predictors in Multiple Regression. Psychol. Bull. 1993, 114, 542–551. [Google Scholar] [CrossRef]
- Byrne, A.W.; Barrett, D.; Breslin, P.; Madden, J.M.; O’Keeffe, J.; Ryan, E. Post-mortem surveillance of bovine tuberculosis in Ireland: Herd-level variation in the probability of herds disclosed with lesions at routine slaughter to have skin test reactors at follow-up test. Vet. Res. Commun. 2020, 1–6. [Google Scholar] [CrossRef]
- Skuce, R.A.; Allen, A.R.; McDowell, S.W. Herd-level risk factors for bovine tuberculosis: A literature review. Vet. Med. Int. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Dohoo, I.R.; Martin, W.; Stryhn, H.E. Veterinary Epidemiologic Research; VER Inc.: Charlottetown, PE, Canada, 2003. [Google Scholar]
- Azen, R.; Traxel, N. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression. J. Educ. Behav. Stat. 2009, 34, 319–347. [Google Scholar] [CrossRef]
- Luchman, J.N. Relative importance analysis with multicategory dependent variables: An extension and review of best practices. Organ. Res. Meth. 2014, 17, 452–471. [Google Scholar] [CrossRef]
- Azen, R.; Budescu, D.V. The dominance analysis approach for comparing predictors in multiple regression. Psychol. Methods 2003, 8, 129–148. [Google Scholar] [CrossRef] [PubMed]
- Luchman, J.N. Domin: Stata Module to Conduct Dominance Analysis; Boston College Department of Economics: Boston, MA, USA, 2005; Available online: https://ideas.repec.org/c/boc/bocode/s457629.html (accessed on 5 May 2021).
- Murray, K.; Conner, M.M. Methods to quantify variable importance: Implications for the analysis of noisy ecological data. Ecology 2009, 90, 348–355. [Google Scholar] [CrossRef] [Green Version]
- White, P.W.; Martin, S.W.; De Jong, M.C.; O’Keeffe, J.; More, S.J.; Frankena, K. The importance of “neighbourhood” in the persistence of bovine tuberculosis in Irish cattle herds. Prev. Vet. Med. 2013, 110, 346–355. [Google Scholar] [CrossRef]
- Gallagher, M.J.; Higgins, I.M.; Clegg, T.A.; Williams, D.H.; More, S.J. Comparison of bovine tuberculosis recurrence in Irish herds between 1998 and 2008. Prev. Vet. Med. 2013, 111, 237–244. [Google Scholar] [CrossRef]
- Olea-Popelka, F.J.; White, P.W.; Collins, J.D.; O’Keeffe, J.; Kelton, D.F.; Martin, S.W. Breakdown severity during a bovine tuberculosis episode as a predictor of future herd breakdowns in Ireland. Prev. Vet. Med. 2004, 63, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Stański, K.; Lycett, S.; Porphyre, T.; Bronsvoort, B.D.C. Using machine learning improves predictions of herd-level bovine tuberculosis breakdowns in Great Britain. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Humblet, M.F.; Boschiroli, M.L.; Saegerman, C. Classification of worldwide bovine tuberculosis risk factors in cattle: A stratified approach. Vet. Res. 2009, 40, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.; Marshall, A.H.; Mitchell, H.J.; Byrne, A.W. Cattle movements in Northern Ireland form a robust network: Implications for disease management. Prev. Vet. Med. 2019, 170, 104740. [Google Scholar] [CrossRef] [PubMed]
- Durr, P.A.; Froggatt, A.E.A. How best to geo-reference farms? A case study from Cornwall, England. Prev. Vet. Med. 2002, 56, 51–62. [Google Scholar] [CrossRef]
- Mill, A.C.; Rushton, S.P.; Shirley, M.D.F.; Murray, A.W.A.; Smith, G.C.; Delahay, R.J.; McDonald, R.A. Farm-scale risk factors for bovine tuberculosis incidence in cattle herds during the Randomized Badger Culling Trial. Epidemiol. Infect. 2012, 140, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, A.W.; Barrett, D.; Breslin, P.; Madden, J.M.; O’Keeffe, J.; Ryan, E. Bovine Tuberculosis (Mycobacterium bovis) Outbreak Duration in Cattle Herds in Ireland: A Retrospective Observational Study. Pathogens 2020, 9, 815. [Google Scholar] [CrossRef]
- Byrne, A.W.; White, P.W.; McGrath, G.; James, O.; Martin, S.W. Risk of tuberculosis cattle herd breakdowns in Ireland: Effects of badger culling effort, density and historic large-scale interventions. Vet. Res. 2014, 45, 109. [Google Scholar] [CrossRef] [PubMed]
- Wint, G.W.; Robinson, T.P.; Bourn, D.M.; Durr, P.A.; Hay, S.I.; Randolph, S.E.; Rogers, D.J. Mapping bovine tuberculosis in Great Britain using environmental data. Trends Microbiol. 2002, 10, 441–444. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, J.; Pérez, A.M.; Bezos, J.; Casal, C.; Romero, B.; Rodríguez-Campos, S.; Domínguez, L. Eradication of bovine tuberculosis at a herd-level in Madrid, Spain: Study of within-herd transmission dynamics over a 12 year period. BMC Vet. Res. 2012, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Brooks-Pollock, E.; Conlan, A.J.; Mitchell, A.P.; Blackwell, R.; McKinley, T.J.; Wood, J.L. Age-dependent patterns of bovine tuberculosis in cattle. Vet. Res. 2013, 44, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skuce, R.A.; Allen, A.R.; McDowell, S.W. Bovine tuberculosis (TB): A Review of Cattle-to-Cattle Transmission, Risk Factors and Susceptibility; Bacteriology Branch Veterinary Sciences Division Agrifood and Biosciences Institute: Belfast, UK, 2011; Volume 1, pp. 115–167. [Google Scholar]
- Milne, M.G.; Graham, J.; Allen, A.; McCormick, C.; Presho, E.; Skuce, R.; Byrne, A.W. Variation in Mycobacterium bovis genetic richness suggests that inwards cattle movements are a more important source of infection in beef herds than in dairy herds. BMC Microbiol. 2019, 19, 154. [Google Scholar] [CrossRef]
- Tratalos, J.A.; Madden, J.M.; McGrath, G.; Graham, D.A.; Collins, Á.B.; More, S.J. Spatial and network characteristics of Irish cattle movements. Prev. Vet. Med. 2020, 183, 105095. [Google Scholar] [CrossRef] [PubMed]
Predictor | Odds Ratio | Std. Err. | z | P > |z| | Lower 95%CI | Upper 95%CI |
---|---|---|---|---|---|---|
Cat. Index BD lesion | ||||||
no lesion | 1.000 | |||||
Lesion reported | 1.008 | 0.091 | 0.080 | 0.933 | 0.844 | 1.202 |
Cat. Index BD reactors | ||||||
0 1 | 1.224 | 0.115 | 2.150 | 0.031 | 1.018 | 1.471 |
1 | 1.000 | |||||
2 | 1.176 | 0.127 | 1.500 | 0.133 | 0.952 | 1.452 |
3 | 1.272 | 0.183 | 1.670 | 0.095 | 0.959 | 1.686 |
4 | 1.214 | 0.236 | 0.990 | 0.320 | 0.829 | 1.777 |
5+ | 1.161 | 0.159 | 1.090 | 0.274 | 0.888 | 1.518 |
Cat. Index BD length (days) | ||||||
(17–129) | 1.000 | |||||
(130–143) | 1.097 | 0.126 | 0.810 | 0.420 | 0.876 | 1.374 |
(144–159) | 1.216 | 0.142 | 1.680 | 0.093 | 0.968 | 1.528 |
(160–229) | 1.059 | 0.121 | 0.500 | 0.616 | 0.847 | 1.324 |
(230–2918) | 1.489 | 0.173 | 3.440 | 0.001 | 1.187 | 1.869 |
Cat. Prev. bd | ||||||
No prev. BD (<5 years) | 1.000 | |||||
Prev. BD | 1.200 | 0.094 | 2.340 | 0.020 | 1.030 | 1.399 |
log(herd-size) | 1.487 | 0.059 | 10.030 | <0.001 | 1.376 | 1.607 |
Herd-type | ||||||
Beef | 1.000 | |||||
Dairy | 0.874 | 0.095 | −1.240 | 0.215 | 0.707 | 1.081 |
Other | 0.550 | 0.098 | −3.340 | 0.001 | 0.387 | 0.781 |
Suckler | 0.758 | 0.070 | −3.000 | 0.003 | 0.633 | 0.909 |
County | ||||||
Carlow | 1.000 | |||||
Cavan | 1.565 | 0.558 | 1.260 | 0.209 | 0.778 | 3.146 |
Clare | 1.322 | 0.460 | 0.800 | 0.423 | 0.668 | 2.615 |
Cork | 1.217 | 0.404 | 0.590 | 0.555 | 0.634 | 2.334 |
Donegal | 1.014 | 0.361 | 0.040 | 0.969 | 0.505 | 2.036 |
Dublin | 3.209 | 1.635 | 2.290 | 0.022 | 1.182 | 8.710 |
Galway | 0.967 | 0.340 | -0.100 | 0.924 | 0.485 | 1.927 |
Kerry | 1.172 | 0.427 | 0.440 | 0.663 | 0.574 | 2.393 |
Kildare | 1.678 | 0.689 | 1.260 | 0.208 | 0.750 | 3.751 |
Kilkenny | 1.477 | 0.523 | 1.100 | 0.271 | 0.738 | 2.955 |
Laois | 1.194 | 0.457 | 0.460 | 0.643 | 0.564 | 2.529 |
Leitrim | 1.269 | 0.563 | 0.540 | 0.591 | 0.532 | 3.029 |
Limerick | 1.432 | 0.515 | 1.000 | 0.319 | 0.707 | 2.898 |
Longford | 0.430 | 0.204 | −1.780 | 0.075 | 0.170 | 1.090 |
Louth | 1.465 | 0.626 | 0.900 | 0.371 | 0.635 | 3.384 |
Mayo | 0.941 | 0.354 | −0.160 | 0.871 | 0.451 | 1.965 |
Meath | 1.334 | 0.468 | 0.820 | 0.412 | 0.670 | 2.655 |
Monaghan | 1.184 | 0.460 | 0.440 | 0.663 | 0.553 | 2.536 |
Offaly | 1.330 | 0.496 | 0.770 | 0.444 | 0.641 | 2.762 |
Roscommon | 1.530 | 0.542 | 1.200 | 0.230 | 0.764 | 3.063 |
Sligo | 1.346 | 0.514 | 0.780 | 0.436 | 0.637 | 2.843 |
Tipperary | 1.199 | 0.417 | 0.520 | 0.602 | 0.606 | 2.372 |
Waterford | 0.638 | 0.270 | −1.060 | 0.288 | 0.279 | 1.461 |
Wicklow | 2.677 | 0.970 | 2.720 | 0.007 | 1.317 | 5.445 |
Constant | 0.075 | 0.028 | −6.920 | <0.001 | 0.036 | 0.156 |
Outcome: Future Risk | Dominance Statistic | Standardized Domin. Stat. | Ranking |
---|---|---|---|
log_hs | 0.0285 | 0.4628 | 1 |
County | 0.0153 | 0.2482 | 2 |
Herd-type | 0.0078 | 0.1265 | 3 |
Cat. Index BD length (days) | 0.0047 | 0.0762 | 4 |
Cat. Index BD reactors | 0.0027 | 0.0445 | 5 |
Cat. Prev. bd | 0.0025 | 0.0402 | 6 |
Cat. Index BD lesion | 0.0001 | 0.0015 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrne, A.W.; Barrett, D.; Breslin, P.; Madden, J.M.; O’Keeffe, J.; Ryan, E. Future Risk of Bovine Tuberculosis (Mycobacterium bovis) Breakdown in Cattle Herds 2013–2018: A Dominance Analysis Approach. Microorganisms 2021, 9, 1004. https://doi.org/10.3390/microorganisms9051004
Byrne AW, Barrett D, Breslin P, Madden JM, O’Keeffe J, Ryan E. Future Risk of Bovine Tuberculosis (Mycobacterium bovis) Breakdown in Cattle Herds 2013–2018: A Dominance Analysis Approach. Microorganisms. 2021; 9(5):1004. https://doi.org/10.3390/microorganisms9051004
Chicago/Turabian StyleByrne, Andrew W., Damien Barrett, Philip Breslin, Jamie M. Madden, James O’Keeffe, and Eoin Ryan. 2021. "Future Risk of Bovine Tuberculosis (Mycobacterium bovis) Breakdown in Cattle Herds 2013–2018: A Dominance Analysis Approach" Microorganisms 9, no. 5: 1004. https://doi.org/10.3390/microorganisms9051004
APA StyleByrne, A. W., Barrett, D., Breslin, P., Madden, J. M., O’Keeffe, J., & Ryan, E. (2021). Future Risk of Bovine Tuberculosis (Mycobacterium bovis) Breakdown in Cattle Herds 2013–2018: A Dominance Analysis Approach. Microorganisms, 9(5), 1004. https://doi.org/10.3390/microorganisms9051004