Debaryomyces hansenii Is a Real Tool to Improve a Diversity of Characteristics in Sausages and Dry-Meat Products
Abstract
:1. Introduction
2. Debaryomyces hansenii as a Non-Conventional Yeast of Biotechnological Importance
3. Debaryomyces hansenii Is One of the Most Abundant Yeasts in Sausages and Dry-Meat Products
4. Debaryomyces hansenii as a Starter Culture: Effects on the Final Characteristics of Meat Products
4.1. Lipolysis
4.2. Volatile Compounds
4.3. Other Physicochemical and Sensory Characteristics Affected by Debaryomyces hansenii
4.3.1. pH
4.3.2. Water Activity and Moisture
4.3.3. Sodium Content
4.3.4. Colour
4.4. Sensory Properties Affected by Debaryomyces hansenii
4.4.1. Mixed Starters
4.4.2. Pure Yeast Starters
5. Other Debaryomyces hansenii Functions Beyond Just Improving Overall Characteristics of Sausages and Dry-Meat Products
5.1. Counteracting the Negative Impact of Preservatives
5.2. Biocontrol of Toxigenic Moulds
6. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ordóñez, J.A.; Hierro, E.M.; Bruna, J.M.; De La Hoz, L. Changes in the Components of Dry-Fermented Sausages during Ripening. Crit. Rev. Food Sci. Nutr. 1999, 39, 329–367. [Google Scholar] [CrossRef]
- Fadda, S.; López, C.; Vignolo, G. Role of lactic acid bacteria during meat conditioning and fermentation: Peptides generated as sensorial and hygienic biomarkers. Meat Sci. 2010, 86, 66–79. [Google Scholar] [CrossRef]
- Ravyts, F.; De Vuyst, L.; Leroy, F. Bacterial diversity and functionalities in food fermentations. Eng. Life Sci. 2012, 12, 356–367. [Google Scholar] [CrossRef]
- Pasini, F.; Soglia, F.; Petracci, M.; Caboni, M.F.; Marziali, S.; Montanari, C.; Gardini, F.; Grazia, L.; Tabanelli, G. Effect of Fermentation with Different Lactic Acid Bacteria Starter Cultures on Biogenic Amine Content and Ripening Patterns in Dry Fermented Sausages. Nutrients 2018, 10, 1497. [Google Scholar] [CrossRef] [Green Version]
- Juárez-Castelán, C.; García-Cano, I.; Escobar-Zepeda, A.; Azaola-Espinosa, A.; Alvarez-Cisneros, Y.M.; Ponce-Alquicira, E. Evaluation of the bacterial diversity of Spanish-type chorizo during the ripening process using high-throughput sequencing and physicochemical characterization. Meat Sci. 2019, 150, 7–13. [Google Scholar] [CrossRef]
- Dalton, H.K.; Board, R.G.; Davenport, R.R. The yeasts of British fresh sausage and minced beef. Antonie van Leeuwenhoek 1984, 50, 227–248. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, B.; Dykes, G.; Callís, M.; Von Holy, A. Yeasts associated with Vienna sausage packaging. Int. J. Food Microbiol. 1993, 18, 53–62. [Google Scholar] [CrossRef]
- Gardini, F.; Suzzi, G.; Lombardi, A.; Galgano, F.; Crudele, M.A.; Andrighetto, C.; Schirone, M.; Tofalo, R. A survey of yeasts in traditional sausages of southern Italy. FEMS Yeast Res. 2001, 1, 161–167. [Google Scholar] [CrossRef]
- Cocolin, L.; Urso, R.; Rantsiou, K.; Cantoni, C.; Comi, G. Dynamics and characterization of yeasts during natural fermentation of Italian sausages. FEMS Yeast Res. 2006, 6, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, Z.; Ji, L.; Zhang, J.; Zhao, Z.; Zhang, R.; Bai, T.; Hou, B.; Wang, W. Flavor Composition and Microbial Community Structure of Mianning Ham. Front. Microbiol. 2021, 11, 623775. [Google Scholar] [CrossRef]
- Dura, M. Effect of growth phase and dry-cured sausage processing conditions on Debaryomyces spp. generation of volatile compounds from branched-chain amino acids. Food Chem. 2004, 86, 391–399. [Google Scholar] [CrossRef]
- Coppola, S.; Mauriello, G.; Aponte, M.; Moschetti, G.; Villani, F. Microbial succession during ripening of Naples-type salami, a southern Italian fermented sausage. Meat Sci. 2000, 56, 321–329. [Google Scholar] [CrossRef]
- Encinas, J.-P.; López-Díaz, T.-M.; García-López, M.-L.; Otero, A.; Moreno, B. Yeast populations on Spanish fermented sausages. Meat Sci. 2000, 54, 203–208. [Google Scholar] [CrossRef]
- Aquilanti, L.; Santarelli, S.; Silvestri, G.; Osimani, A.; Petruzzelli, A.; Clementi, F. The microbial ecology of a typical Italian salami during its natural fermentation. Int. J. Food Microbiol. 2007, 120, 136–145. [Google Scholar] [CrossRef]
- Mendonça, R.C.; Gouvêa, D.M.; Hungaro, H.M.; Sodré, A.D.F.; Querol, A. Dynamics of the yeast flora in artisanal country style and industrial dry cured sausage (yeast in fermented sausage). Food Control. 2013, 29, 143–148. [Google Scholar] [CrossRef] [Green Version]
- García-Béjar, B.; Sánchez-Carabias, D.; Alarcon, M.; Arévalo-Villena, M.; Briones, A. Autochthonous Yeast from Pork and Game Meat Fermented Sausages for Application in Meat Protection and Aroma Developing. Animals 2020, 10, 2340. [Google Scholar] [CrossRef] [PubMed]
- Prista, C.; Michan, C.; Miranda, I.M.; Ramos, J. The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 2016, 33, 523–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breuer, U.; Harms, H. Debaryomyces hansenii—An extremophilic yeast with biotechnological potential. Yeast 2006, 23, 415–437. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, N.S.; Calahorra, M.; González-Hernández, J.C.; Peña, A. Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae. Yeast 2006, 23, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Hernandez, J.C.; Jiménez-Estrada, M.; Pena, A. Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress. Extremophiles 2005, 9, 7–16. [Google Scholar] [CrossRef]
- Navarrete, C.; Frost, A.T.; Ramos-Moreno, L.; Krum, M.R.; Martínez, J.L. A physiological characterization in controlled bioreactors reveals a novel survival strategy for Debaryomyces hansenii at high salinity. Yeast 2021, 38, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Carvalheiro, F.; Duarte, L.C.; Lopes, S.; Parajó, J.C.; Pereira, H.; Gírio, F.M. Supplementation requirements of brewery’s spent grain hydrolysate for biomass and xylitol production by Debaryomyces hansenii CCMI 941. J. Ind. Microbiol. Biotechnol. 2006, 33, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Axelson-Fisk, M.; Sunnerhagen, P. Comparative genomics and gene finding in fungi. In Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2006; Volume 15, pp. 1–28. [Google Scholar]
- Corredor, M.; Davila, A.-M.; Casarégola, S.; Gaillardin, C. Chromosomal polymorphism in the yeast species Debaryomyces hansenii. Antonie van Leeuwenhoek 2003, 84, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Quirós, M.; Wrent, P.; Valderrama, M.-J.; De Silóniz, M.-I.; Peinado, J.M. A β-Glucuronidase–Based Agar Medium for the Differential Detection of the Yeast Debaryomyces hansenii from Foods. J. Food Prot. 2005, 68, 808–814. [Google Scholar] [CrossRef]
- Martorell, P.; Fernández-Espinar, M.T.; Querol, A. Sequence-based identification of species belonging to the genus Debaryomyces. FEMS Yeast Res. 2005, 5, 1157–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, M.J.; Rodriguez, M.; Sanchez, B.; Aranda, E.; Córdoba, J. DNA typing methods for differentiation of yeasts related to dry-cured meat products. Int. J. Food Microbiol. 2006, 107, 48–58. [Google Scholar] [CrossRef]
- Romano, P.; Capece, A.; Jespersen, L. Taxonomic and Ecological Diversity of Food and Beverage Yeasts; Springer: Berlin/Heidelberg, Germany, 2006; pp. 13–53. [Google Scholar]
- Ramos, J.; Melero, Y.; Ramos-Moreno, L.; Michán, C.; Cabezas, L. Debaryomyces hansenii Strains from Valle De Los Pedroches Iberian Dry Meat Products: Isolation, Identification, Characterization, and Selection for Starter Cultures. J. Microbiol. Biotechnol. 2017, 27, 1576–1585. [Google Scholar] [CrossRef] [Green Version]
- Desnos-Ollivier, M.; Ragon, M.; Robert, V.; Raoux, D.; Gantier, J.-C.; Dromer, F. Debaryomyces hansenii (Candida famata), a Rare Human Fungal Pathogen Often Misidentified as Pichia guilliermondii (Candida guilliermondii). J. Clin. Microbiol. 2008, 46, 3237–3242. [Google Scholar] [CrossRef] [Green Version]
- Cornet, M.; Sendid, B.; Fradin, C.; Gaillardin, C.; Poulain, D.; Nguyen, H.-V. Molecular Identification of Closely Related Candida Species Using Two Ribosomal Intergenic Spacer Fingerprinting Methods. J. Mol. Diagn. 2011, 13, 12–22. [Google Scholar] [CrossRef]
- Castanheira, M.; Woosley, L.; Diekema, D.; Jones, R.N.; Pfaller, M. Candida guilliermondii and Other Species of Candida Misidentified as Candida famata: Assessment by Vitek 2, DNA Sequencing Analysis, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry in Two Global Antifungal Surveillance Programs. J. Clin. Microbiol. 2012, 51, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Jacques, N.; Mallet, S.; Casaregola, S. Delimitation of the species of the Debaryomyces hansenii complex by intron sequence analysis. Int. J. Syst. Evol. Microbiol. 2009, 59, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Gomes, A.C.; Santos, M.C.; Carreto, L.C.; Moura, G. The genetic code of the fungal CTG clade. Comptes Rendus Biol. 2011, 334, 607–611. [Google Scholar] [CrossRef]
- Cappriotti, A. Indagini Microbiologiche Sulle Carni Insaccate. Nota I: I Lieviti. Arch. Vet. Ital. 1954, 5, 113–117. [Google Scholar]
- Samelis, J.; Maurogenakis, F.; Metaxopoulos, J. Characterisation of lactic acid bacteria isolated from naturally fermented Greek dry salami. Int. J. Food Microbiol. 1994, 23, 179–196. [Google Scholar] [CrossRef]
- Núñez, F.; Rodríguez, M.; Córdoba, J.J.; Bermúdez, E.; Asensio, M.A. Yeast population during ripening of dry-cured Iberian ham. Int. J. Food Microbiol. 1996, 29, 271–280. [Google Scholar] [CrossRef]
- Baruzzi, F.; Matarante, A.; Caputo, L.; Morea, M. Molecular and physiological characterization of natural microbial communities isolated from a traditional Southern Italian processed sausage. Meat Sci. 2006, 72, 261–269. [Google Scholar] [CrossRef]
- Ozturk, I.; Sagdic, O. Biodiversity of Yeast Mycobiota in “Sucuk,” a Traditional Turkish Fermented Dry Sausage: Phenotypic and Genotypic Identification, Functional and Technological Properties. J. Food Sci. 2014, 79, M2315–M2322. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Onandi, N.; Sánchez, C.; Nuñez, M.; Picon, A. Microbiota of Iberian dry-cured ham as influenced by chemical composition, high pressure processing and prolonged refrigerated storage. Food Microbiol. 2019, 80, 62–69. [Google Scholar] [CrossRef]
- Belleggia, L.; Milanović, V.; Ferrocino, I.; Cocolin, L.; Haouet, M.N.; Scuota, S.; Maoloni, A.; Garofalo, C.; Cardinali, F.; Aquilanti, L.; et al. Is there any still undisclosed biodiversity in Ciauscolo salami? A new glance into the microbiota of an artisan production as revealed by high-throughput sequencing. Meat Sci. 2020, 165, 108128. [Google Scholar] [CrossRef] [Green Version]
- Olesen, P.T.; Stahnke, L.H. The influence of Debaryomyces hansenii and Candida utilis on the aroma formation in garlic spiced fermented sausages and model minces. Meat Sci. 2000, 56, 357–368. [Google Scholar] [CrossRef]
- Asefa, D.T.; Møretrø, T.; Gjerde, R.O.; Langsrud, S.; Kure, C.F.; Sidhu, M.S.; Nesbakken, T.; Skaar, I. Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products. Int. J. Food Microbiol. 2009, 133, 135–140. [Google Scholar] [CrossRef]
- Belleggia, L.; Ferrocino, I.; Reale, A.; Boscaino, F.; Di Renzo, T.; Corvaglia, M.R.; Cocolin, L.; Milanović, V.; Cardinali, F.; Garofalo, C.; et al. Portuguese cacholeira blood sausage: A first taste of its microbiota and volatile organic compounds. Food Res. Int. 2020, 136, 109567. [Google Scholar] [CrossRef]
- Mendoza, L.M.; Padilla, B.; Belloch, C.; Vignolo, G. Diversity and enzymatic profile of yeasts isolated from traditional llama meat sausages from north-western Andean region of Argentina. Food Res. Int. 2014, 62, 572–579. [Google Scholar] [CrossRef]
- Lin, F.; Cai, F.; Luo, B.; Gu, R.; Ahmed, S.; Long, C. Variation of Microbiological and Biochemical Profiles of Laowo Dry-Cured Ham, an Indigenous Fermented Food, during Ripening by GC-TOF-MS and UPLC-QTOF-MS. J. Agric. Food Chem. 2020, 68, 8925–8935. [Google Scholar] [CrossRef]
- Mu, Y.; Su, W.; Mu, Y.; Jiang, L. Combined Application of High-Throughput Sequencing and Metabolomics Reveals Metabolically Active Microorganisms During Panxian Ham Processing. Front. Microbiol. 2020, 10, 3012. [Google Scholar] [CrossRef] [Green Version]
- Martín, A.; Córdoba, J.J.; Aranda, E.; Cordoba, M.D.G.; A Asensio, M. Contribution of a selected fungal population to the volatile compounds on dry-cured ham. Int. J. Food Microbiol. 2006, 110, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Purriños, L.; Carballo, J.; Lorenzo, J.M. The Influence of Debaryomyces hansenii, Candida deformans and Candida zeylanoides on the aroma formation of dry-cured “lacón. ” Meat Sci. 2013, 93, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.J.; Córdoba, J.J.; Casado, E.M.; Cordoba, M.D.G.; Rodríguez, M. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage “salchichón”. Meat Sci. 2010, 85, 256–264. [Google Scholar] [CrossRef]
- Murgia, M.A.; Marongiu, A.; Aponte, M.; Blaiotta, G.; Deiana, P.; Mangia, N.P. Impact of a selected Debaryomyces hansenii strain’s inoculation on the quality of Sardinian fermented sausages. Food Res. Int. 2019, 121, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Villani, F.; Casaburi, A.; Pennacchia, C.; Filosa, L.; Russo, F.; Ercolini, D. Microbial Ecology of the Soppressata of Vallo di Diano, a Traditional Dry Fermented Sausage from Southern Italy, and In Vitro and In Situ Selection of Autochthonous Starter Cultures. Appl. Environ. Microbiol. 2007, 73, 5453–5463. [Google Scholar] [CrossRef] [Green Version]
- Simoncini, N.; Virgili, R.; Spadola, G.; Battilani, P. Autochthonous yeasts as potential biocontrol agents in dry-cured meat products. Food Control. 2014, 46, 160–167. [Google Scholar] [CrossRef]
- Cano-García, L.; Belloch, C.; Flores, M. Impact of Debaryomyces hansenii strains inoculation on the quality of slow dry-cured fermented sausages. Meat Sci. 2014, 96, 1469–1477. [Google Scholar] [CrossRef] [Green Version]
- Cano-García, L.; Rivera-Jiménez, S.; Belloch, C.; Flores, M. Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains. Food Chem. 2014, 151, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.; Asensio, M.A.; Bermúdez, E.; Cordoba, M.D.G.; Aranda, E.; Córdoba, J.J. Proteolytic activity of Penicillium chrysogenum and Debaryomyces hansenii during controlled ripening of pork loins. Meat Sci. 2002, 62, 129–137. [Google Scholar] [CrossRef]
- Martín, A.; Córdoba, J.J.; Benito, M.J.; Aranda, E.; Asensio, M.A. Effect of Penicillium chrysogenum and Debaryomyces hansenii on the volatile compounds during controlled ripening of pork loins. Int. J. Food Microbiol. 2003, 84, 327–338. [Google Scholar] [CrossRef]
- Ramos-Moreno, L.; Castilla, F.J.R.; Bravo, C.; Martínez, E.; Menéndez, M.; Dios-Palomares, R.; Ramos, J. Inoculation with a terroir selected Debaryomyces hansenii strain changes physico-chemical characteristics of Iberian cured pork loin. Meat Sci. 2019, 157, 107875. [Google Scholar] [CrossRef] [PubMed]
- Metaxopoulos, J.; Stavropoulos, S.; Kakouri, A.; Samelis, J. Yeasts Isolated from Traditional Greek Dry Salami. Ital. J. Food Sci. 1996, 8, 25–32. [Google Scholar]
- Samelis, J. Stability and safety of traditional Greek salami—A microbiological ecology study. Int. J. Food Microbiol. 1998, 44, 69–82. [Google Scholar] [CrossRef]
- Lücke, F.-K. Fermented sausages. In Microbiology of Fermented Foods; Springer: Berlin/Heidelberg, Germany, 1998; pp. 441–483. [Google Scholar]
- Leistner, L. Allgemeines Über Rohwurst. Fleischwirtschaft 1986, 66, 290–300. [Google Scholar]
- Flores, M.; Corral, S.; Cano-García, L.; Salvador, A.; Belloch, C. Yeast strains as potential aroma enhancers in dry fermented sausages. Int. J. Food Microbiol. 2015, 212, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Corral, S.; Salvador, A.; Flores, M. Salt reduction in slow fermented sausages affects the generation of aroma active compounds. Meat Sci. 2013, 93, 776–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corral, S.; Belloch, C.; López-Díez, J.J.; Salvador, A.; Flores, M. Yeast inoculation as a strategy to improve the physico-chemical and sensory properties of reduced salt fermented sausages produced with entire male fat. Meat Sci. 2017, 123, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corral, S.; Belloch, C.; López-Díez, J.J.; Flores, M. Lipolysis and aroma generation as mechanisms involved in masking boar taint in sodium reduced fermented sausages inoculated with Debaryomyces hansenii yeast. J. Sci. Food Agric. 2017, 98, 2121–2130. [Google Scholar] [CrossRef]
- Iucci, L.; Patrignani, F.; Belletti, N.; Ndagijimana, M.; Guerzoni, M.E.; Gardini, F.; Lanciotti, R. Role of surface-inoculated Debaryomyces hansenii and Yarrowia lipolytica strains in dried fermented sausage manufacture. Part 2: Evaluation of their effects on sensory quality and biogenic amine content. Meat Sci. 2007, 75, 669–675. [Google Scholar] [CrossRef]
- Patrignani, F.; Iucci, L.; Vallicelli, M.; Guerzoni, M.E.; Gardini, F.; Lanciotti, R. Role of surface-inoculated Debaryomyces hansenii and Yarrowia lipolytica strains in dried fermented sausage manufacture. Part 1: Evaluation of their effects on microbial evolution, lipolytic and proteolytic patterns. Meat Sci. 2007, 75, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, B.B. The combined effects of temperature, pH and NaCl on growth of Debaryomyces hansenii analyzed by flow cytometry and predictive microbiology. Int. J. Food Microbiol. 1997, 34, 209–220. [Google Scholar] [CrossRef]
- Cano-García, L.; Flores, M.; Belloch, C. Molecular characterization and aromatic potential of Debaryomyces hansenii strains isolated from naturally fermented sausages. Food Res. Int. 2013, 52, 42–49. [Google Scholar] [CrossRef]
- Perea-Sanz, L.; Peris, D.; Belloch, C.; Flores, M. Debaryomyces hansenii Metabolism of Sulfur Amino Acids As Precursors of Volatile Sulfur Compounds of Interest in Meat Products. J. Agric. Food Chem. 2019, 67, 9335–9343. [Google Scholar] [CrossRef]
- Flores, M.; Durá, M.-A.; Marco, A.; Toldrá, F. Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Sci. 2004, 68, 439–446. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Gómez, M.; Purriños, L.; Fonseca, S.; Rodriguez, J.M.L. Effect of commercial starter cultures on volatile compound profile and sensory characteristics of dry-cured foal sausage. J. Sci. Food Agric. 2015, 96, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Gómez, M.; Fonseca, S. Effect of commercial starter cultures on physicochemical characteristics, microbial counts and free fatty acid composition of dry-cured foal sausage. Food Control. 2014, 46, 382–389. [Google Scholar] [CrossRef]
- Prista, C.; Almagro, A.; Loureiro-Dias, M.C.; Ramos, J. Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl. Environ. Microbiol. 1997, 63, 4005–4009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, J.L.; Sychrova, H.; Ramos, J. Monovalent cations regulate expression and activity of the Hak1 potassium transporter in Debaryomyces hansenii. Fungal Genet. Biol. 2011, 48, 177–184. [Google Scholar] [CrossRef]
- Herrera, R.; Salazar, A.; Ramos-Moreno, L.; Ruiz-Roldan, C.; Ramos, J. Vacuolar control of subcellular cation distribution is a key parameter in the adaptation of Debaryomyces hansenii to high salt concentrations. Fungal Genet. Biol. 2017, 100, 52–60. [Google Scholar] [CrossRef]
- Selgas, M.D.; Ros, J.; García, M.L. Effect of selected yeast strains on the sensory properties of dry fermented sausages. Eur. Food Res. Technol. 2003, 217, 475–480. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, S.Y.; Kang, H.J.; Joo, S.-T.; Hur, S.J. Effects of Six Different Starter Cultures on Mutagenicity and Biogenic Amine Concentrations in Fermented Sausages Treated with Vitamins C and E. Food Sci. Anim. Resour. 2019, 39, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Laranjo, M.; Potes, M.E.; Elias, M. Role of Starter Cultures on the Safety of Fermented Meat Products. Front. Microbiol. 2019, 10, 853. [Google Scholar] [CrossRef] [Green Version]
- Alía, A.; Córdoba, J.J.; Rodríguez, A.; García, C.; Andrade, M.J. Evaluation of the efficacy of Debaryomyces hansenii as protective culture for controlling Listeria monocytogenes in sliced dry-cured ham. LWT 2020, 119, 108886. [Google Scholar] [CrossRef]
- Honikel, K.-O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Sindelar, J.; Milkowski, A. Sodium Nitrite in Processed Meat and Poultry Meats: A Review of Curin and Examining the Risk and Benefit of Its Use. White Pap. Ser. No 2011, 3, 1–14. [Google Scholar]
- De Maere, H.; Fraeye, I.; De Mey, E.; Dewulf, L.; Michiels, C.; Paelinck, H.; Chollet, S. Formation of naturally occurring pigments during the production of nitrite-free dry fermented sausages. Meat Sci. 2016, 114, 1–7. [Google Scholar] [CrossRef] [PubMed]
- De Mey, E.; De Maere, H.; Paelinck, H.; Fraeye, I. VolatileN-nitrosamines in meat products: Potential precursors, influence of processing, and mitigation strategies. Crit. Rev. Food Sci. Nutr. 2017, 57, 2909–2923. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Moncunill, D.; Montero, R.; López-Díez, J.J.; Belloch, C. Screening of Debaryomyces hansenii Strains for Flavor Production under a Reduced Concentration of Nitrifying Preservatives Used in Meat Products. J. Agric. Food Chem. 2017, 65, 3900–3909. [Google Scholar] [CrossRef] [PubMed]
- Perea-Sanz, L.; López-Díez, J.J.; Belloch, C.; Flores, M. Counteracting the effect of reducing nitrate/nitrite levels on dry fermented sausage aroma by Debaryomyces hansenii inoculation. Meat Sci. 2020, 164, 108103. [Google Scholar] [CrossRef] [PubMed]
- Ben Taheur, F.; Kouidhi, B.; Al Qurashi, Y.M.A.; Ben Salah-Abbès, J.; Chaieb, K. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019, 160, 12–22. [Google Scholar] [CrossRef]
- Droby, S.; Chalutz, E.; Wilson, C.L.; Wisniewski, M. Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can. J. Microbiol. 1989, 35, 794–800. [Google Scholar] [CrossRef]
- Virgili, R.; Simoncini, N.; Toscani, T.; Leggieri, M.C.; Formenti, S.; Battilani, P. Biocontrol of Penicillium nordicum Growth and Ochratoxin A Production by Native Yeasts of Dry Cured Ham. Toxins 2012, 4, 68–82. [Google Scholar] [CrossRef]
- Andrade, M.J.; Thorsen, L.; Rodriguez, A.; Córdoba, J.J.; Jespersen, L. Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products. Int. J. Food Microbiol. 2014, 170, 70–77. [Google Scholar] [CrossRef]
- Taczman-Brückner, A.; Mohácsi-Farkas, C.; Balla, C.; Kiskó, G. Comparison of biocontrol activity ofKluyveromyces lactiswith other yeast strains againstPenicillium expansum. Acta Aliment. 2005, 34, 71–80. [Google Scholar] [CrossRef]
- Taczman-Brückner, A.; Mohácsi-Farkas, C.; Balla, C.; Kiskó, G. Mode of action of Kluyveromyces lactis in biocontrol of Penicillium expansum. Acta Aliment. 2005, 34, 153–160. [Google Scholar] [CrossRef]
- Masoud, W.; Poll, L.; Jakobsen, M. Influence of volatile compounds produced by yeasts predominant during processing ofCoffea arabica in East Africa on growth and ochratoxin A (OTA) production byAspergillus ochraceus. Yeast 2005, 22, 1133–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez, F.; Lara, M.S.; Peromingo, B.; Delgado, J.; Sánchez-Montero, L.; Andrade, M.J. Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages. Food Microbiol. 2015, 46, 114–120. [Google Scholar] [CrossRef]
- Hernández, A.; Martín, A.; Cordoba, M.D.G.; Benito, M.J.; Aranda, E.; Pérez-Nevado, F. Determination of killer activity in yeasts isolated from the elaboration of seasoned green table olives. Int. J. Food Microbiol. 2008, 121, 178–188. [Google Scholar] [CrossRef]
- Coelho, A.R.; Tachi, M.; Pagnocca, F.C.; Nobrega, G.M.A.; Hoffmann, F.L.; Harada, K.-I.; Hirooka, E.Y. Purification of Candida guilliermondii and Pichia ohmerikiller toxin as an active agent against Penicillium expansum. Food Addit. Contam. Part A 2009, 26, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Tay, S.-T.; Lim, S.-L.; Tan, H.-W. Growth inhibition of Candida species by Wickerhamomyces anomalus mycocin and a lactone compound of Aureobasidium pullulans. BMC Complement. Altern. Med. 2014, 14, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez, M.M.; Núñez, F.; Delgado, J.; Andrade, M.J.; Rodríguez, M.; Rodríguez, A. Competitiveness of three biocontrol candidates against ochratoxigenic Penicillium nordicum under dry-cured meat environmental and nutritional conditions. Fungal Biol. 2021, 125, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Peromingo, B.; Núñez, F.; Rodriguez, A.; Alía, A.; Andrade, M.J. Potential of yeasts isolated from dry-cured ham to control ochratoxin A production in meat models. Int. J. Food Microbiol. 2018, 268, 73–80. [Google Scholar] [CrossRef]
- Iacumin, L.; Arnoldi, M.; Comi, G. Effect of a Debaryomyces hansenii and Lactobacillus buchneri Starter Culture on Aspergillus westerdijkiae Ochratoxin A Production and Growth during the Manufacture of Short Seasoned Dry-Cured Ham. Microorganisms 2020, 8, 1623. [Google Scholar] [CrossRef]
- Meftah, S.; Abid, S.; Dias, T.; Rodrigues, P. Effect of dry-sausage starter culture and endogenous yeasts on Aspergillus westerdijkiae and Penicillium nordicum growth and OTA production. LWT 2018, 87, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Delgado, J.; Rodríguez, A.; Garcia-Sanchez, A.; Núñez, F.; Asensio, M.A. Inhibitory Effect of PgAFP and Protective Cultures on Aspergillus parasiticus Growth and Aflatoxins Production on Dry-Fermented Sausage and Cheese. Microorganisms 2018, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Peromingo, B.; Andrade, M.J.; Delgado, J.; Sánchez-Montero, L.; Núñez, F. Biocontrol of aflatoxigenic Aspergillus parasiticus by native Debaryomyces hansenii in dry-cured meat products. Food Microbiol. 2019, 82, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Gil-Serna, J.; Patiño, B.; Cortes, L.; González-Jaén, M.T.; Vázquez, C. Mechanisms involved in reduction of ochratoxin A produced by Aspergillus westerdijkiae using Debaryomyces hansenii CYC 1244. Int. J. Food Microbiol. 2011, 151, 113–118. [Google Scholar] [CrossRef]
- Cebrián, E.; Rodríguez, M.; Peromingo, B.; Bermúdez, E.; Núñez, F. Efficacy of the Combined Protective Cultures of Penicillium chrysogenum and Debaryomyces hansenii for the Control of Ochratoxin A Hazard in Dry-Cured Ham. Toxins 2019, 11, 710. [Google Scholar] [CrossRef] [Green Version]
- Almagro, A.; Prista, C.; Castro, S.; Quintas, C.; Madeira-Lopes, A.; Ramos, J.; Loureiro-Dias, M.C. Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. Int. J. Food Microbiol. 2000, 56, 191–197. [Google Scholar] [CrossRef]
- Michan, C.; Martínez, J.L.; Alvarez, M.C.; Turk, M.; Sychrova, H.; Ramos, J. Salt and oxidative stress tolerance inDebaryomyces hanseniiandDebaryomyces fabryi. FEMS Yeast Res. 2012, 13, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Al-Qaysi, S.A.S.; H, H.A.-H.; Thabit, Z.A.; Al-Kubaisy, W.H.A.A.-R.; Ibrahim, J.A.A.-R. Production, Characterization, and Antimicrobial Activity of Mycocin Produced byDebaryomyces hanseniiDSMZ70238. Int. J. Microbiol. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prpich, N.Z.P.; Camprubí, G.E.; Cayré, M.E.; Castro, M.P. Indigenous Microbiota to Leverage Traditional Dry Sausage Production. Int. J. Food Sci. 2021, 2021, 1–15. [Google Scholar] [CrossRef] [PubMed]
Product | Origin | Brief Description | References |
---|---|---|---|
“Cacholeira” | Portugal | Traditional Portuguese sausage with delicate flavour obtained from the offal and fat of the pig. | [44] |
“Chorizo” | Spain | Traditional Spanish cured meat product made from coarsely chopped pork and pork fat seasoned with garlic, “pimentón”, and salt. | [5] |
“Jamón ibérico” | Spain | High-quality variety of “jamón” produced in Spain and Portugal. | [37,40] |
“Jamón” | Spain | Meat product from pork typical of Spanish cuisine | [48] |
“Lacón” | Spain | Cured meat product obtained from the shoulders or front legs of the pig. | [49] |
“Salame di senise” | Italy | Traditional dry sausage from the Sinni Valley in the Basilicata region. | [38] |
“Salchichón” | Spain | Traditional Spanish cured meat generally made of pig, although other meats can be used. | [29,50] |
“Salsicca sarda” | Italy | Traditional fermented dry-cured sausage produced exclusively in Sardinia. | [51] |
“Soppressata of Vallo di Diano” | Italy | Traditional Southern Italian dry-fermented sausage. | [52] |
“Sucuck” | Turkey | Semi-dry, spicy Middle Eastern sausage with a high fat content traditionally prepared with ground beef and spices. | [39] |
Dry-cured Parma ham | Italy | Famous variety of “prosciutto” from the Parma region in Italy. | [53] |
Fermented sausage | Norway; Denmark; Italy; United Kingdom; Spain | Diverse kind of fermented meat. | [8,13,42,54,55] |
Greek dry salami | Greece | Traditional Greek dry-cured meat. | [36] |
Laowo dry-cured ham | China | Traditional Chinese dry-cured ham obtained from the hind leg of the pig. | [46] |
Llama meat sausage | Argentina | Traditional products consumed in the Andrea region of South America. | [45] |
Mianning ham | China | Traditional fermented meat product in Meanning, characterized by the use of plump muscle and small legs. | [10] |
Panxian ham | China | Famous dry-cured ham in China characterized by strong taste, flavour, aroma, and texture. | [47] |
Pork loin | Spain | Cured meat product prepared by removing fat from pork followed by seasoning for six months. | [56,57,58] |
Vienna sausage | Austria | Thin, parboiled sausage traditionally made of pork and beef in a casing of sheep’s intestine. | [7] |
Factor | Comment |
---|---|
Strain | Very heterogeneous behaviour |
Cell amount inoculated | The concentration of ufc/g of product greatly varies in the literature |
Form of application | Spread on the surface or mixed with the rest of components of the product |
Presence of additional microbial starters | Presence of bacterial and/or fungal starters |
Meat product | Acutely diverse meat products |
Manufacturing conditions | Time and temperature of ripening, presence of spices, etc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Moreno, L.; Ruiz-Pérez, F.; Rodríguez-Castro, E.; Ramos, J. Debaryomyces hansenii Is a Real Tool to Improve a Diversity of Characteristics in Sausages and Dry-Meat Products. Microorganisms 2021, 9, 1512. https://doi.org/10.3390/microorganisms9071512
Ramos-Moreno L, Ruiz-Pérez F, Rodríguez-Castro E, Ramos J. Debaryomyces hansenii Is a Real Tool to Improve a Diversity of Characteristics in Sausages and Dry-Meat Products. Microorganisms. 2021; 9(7):1512. https://doi.org/10.3390/microorganisms9071512
Chicago/Turabian StyleRamos-Moreno, Laura, Francisco Ruiz-Pérez, Elisa Rodríguez-Castro, and José Ramos. 2021. "Debaryomyces hansenii Is a Real Tool to Improve a Diversity of Characteristics in Sausages and Dry-Meat Products" Microorganisms 9, no. 7: 1512. https://doi.org/10.3390/microorganisms9071512
APA StyleRamos-Moreno, L., Ruiz-Pérez, F., Rodríguez-Castro, E., & Ramos, J. (2021). Debaryomyces hansenii Is a Real Tool to Improve a Diversity of Characteristics in Sausages and Dry-Meat Products. Microorganisms, 9(7), 1512. https://doi.org/10.3390/microorganisms9071512