Taxogenomic and Metabolic Insights into Marinobacterium ramblicola sp. nov., a New Slightly Halophilic Bacterium Isolated from Rambla Salada, Murcia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. DNA Extraction, Purification and Sequencing
2.3. Phylogenetic Analysis Based on 16S rRNA Gene Sequence Comparison
2.4. Genomic Analyses
2.5. Phylogenomic Reconstruction
2.6. Phenotypic Characterization
2.7. Chemotaxonomic Characterization
3. Results and Discussion
3.1. Phylogenetic Analysis
3.2. Genomic Characteristics
3.3. Phylogenomic Analysis
3.4. Average Nucleotide Identity (ANI) and In Silico DNA–DNA Hybridization (DDH)
3.5. Chemotaxonomic Characterization
3.6. Phenotypic Characterization
3.7. Metabolism of Strain D7T
4. Conclusions
Description of Marinobacterium ramblicola sp. nov.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- González, J.M.; Mayer, F.; Moran, M.A.; Hodson, R.E.; Whitman, W.B. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int. J. Syst. Evol. Microbiol. 1997, 47, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Tindall, B.J. Marinobacterium iners (Iizuka and Komagata 1964) comb. nov. arising from the synonymy of Marinobacterium georgiense González et al. 1997 and Pseudomonas iners Iizuka and Komagata 1964 (Approved Lists 1980). Curr. Microbiol. 2019, 76, 1128–1129. [Google Scholar] [CrossRef]
- González, J.M.; Buchan, A. Marinobacterium. In Bergey’s Manual of Systematics of Archaea and Bacteria; Wiley: Hoboken, NJ, USA, 2021; pp. 1–20. [Google Scholar]
- Park, S.; Jung, Y.T.; Kim, S.; Yoon, J.H. Marinobacterium aestuariivivens sp. nov., isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 2016, 66, 1718–1723. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.W.; Nam, Y.D.; Kwon, H.Y.; Park, J.R.; Lee, J.S.; Yoon, J.H.; An, K.G.; Bae, J.W. Marinobacterium halophilum sp. nov., a marine bacterium isolated from the Yellow Sea. Int. J. Syst. Evol. Microbiol. 2007, 57, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; Lee, S.H.; Jung, J.Y.; Jeon, C.O. Marinobacterium lutimaris sp. nov., isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 2010, 60, 1828–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Park, S.J.; Yoon, D.N.; Park, B.J.; Choi, B.R.; Lee, D.H.; Roh, Y.; Rhee, S.K. Marinobacterium maritimum sp. nov., a marine bacterium isolated from Arctic sediment. Int. J. Syst. Evol. Microbiol. 2009, 59, 3030–3034. [Google Scholar] [CrossRef]
- Huo, Y.Y.; Xu, X.W.; Cao, Y.; Wang, C.S.; Zhu, X.F.; Oren, A.; Wu, M. Marinobacterium nitratireducens sp. nov. and Marinobacterium sediminicola sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 2009, 59, 1173–1178. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.Y.; Yoon, S.J.; Lee, I.; Baek, K.; Lee, Y.M.; Yoo, K.C.; Yoon, H.I.; Lee, H.K. Marinobacterium profundum sp. nov., a marine bacterium from deep-sea sediment. Int. J. Syst. Evol. Microbiol. 2016, 66, 1561–1566. [Google Scholar] [CrossRef] [Green Version]
- Baumann, P.; Bowditch, R.D.; Baumann, L.; Beaman, B. Taxonomy of marine Pseudomonas species: P. stanieri sp. nov., P. perfectomarina sp. nov., nom. rev.; P. nautica; and P. doudoroffii. Int. J. Syst. Evol. Microbiol. 1983, 33, 857–865. [Google Scholar] [CrossRef] [Green Version]
- Bowditch, R.D.; Baumann, L.; Baumann, P. Description of Oceanospirillum kriegii sp. nov. and O. jannaschii sp. nov. and assignment of two species of Alteromonas to this genus as O. commune comb. nov. and O. vagum comb. nov. Curr. Microbiol. 1984, 10, 221–229. [Google Scholar] [CrossRef]
- Kang, J.Y.; Kim, M.J.; Chun, J.; Son, K.P.; Jahng, K.Y. Marinobacterium boryeongense sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 2019, 69, 493–497. [Google Scholar] [CrossRef]
- Kim, H.; Choo, Y.J.; Song, J.; Lee, J.S.; Lee, K.C.; Cho, J.C. Marinobacterium litorale sp. nov. in the order Oceanospirillales. Int. J. Syst. Evol. Microbiol. 2007, 57, 1659–1662. [Google Scholar] [CrossRef]
- Kim, H.; Oh, H.M.; Yang, S.J.; Lee, J.S.; Hong, J.S.; Cho, J.C. Marinobacterium marisflavi sp. nov., isolated from a costal seawater. Curr. Microbiol. 2009, 58, 511–515. [Google Scholar] [CrossRef]
- Han, S.B.; Wang, R.J.; Yu, X.Y.; Su, Y.; Sun, C.; Fu, G.Y.; Zhang, C.Y.; Zhu, X.F.; Wu, M. Marinobacterium zhoushanense sp. nov., isolated from surface seawater. Int. J. Syst. Evol. Microbiol. 2016, 66, 3437–3442. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.S.; Jung, J.; Chung, D.; Baek, K. Marinobacterium aestuarii sp. nov., a benzene-degrading marine bacterium isolated from estuary sediment. Int. J. Syst. Evol. Microbiol. 2018, 68, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Chimetto, L.A.; Cleenwerck, I.; Brocchi, M.; Willems, A.; De Vos, P.; Thompson, F.L. Marinobacterium coralli sp. nov., isolated from mucus of coral (Mussismilia hispida). Int. J. Syst. Evol. Microbiol. 2011, 61, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Jin, Y.A.; Hwang, C.Y.; Cho, B.C. Marinobacterium rhizophilum sp. nov., isolated the rhizosphere of the coastal tidal-flat plant Suaeda japonica. Int. J. Syst. Evol. Microbiol. 2008, 58, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Alfaro-Espinoza, G.; Ullrich, M.S. Marinobacterium mangrovicola sp. nov., a marine nitrogen-fixing bacterium isolated from mangrove roots of Rhizophora mangle. Int. J. Syst. Evol. Microbiol. 2014, 64, 3988–3993. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chi, Z.; Li, J.; Wu, H.; Yan, B. Bacterial community structure and function in soils from tidal freshwater wetlands in a chinese delta: Potential impacts of salinity and nutrient. Sci. Total Environ. 2019, 696, 134029. [Google Scholar] [CrossRef]
- Chen, W.C.; Tseng, W.N.; Hsieh, J.L.; Wang, Y.S.; Wang, S.L. Biodegradation and microbial community changes upon shrimp shell wastes amended in mangrove river sediment. J. Environ. Sci. Health Part B 2010, 45, 473–477. [Google Scholar] [CrossRef]
- Keuter, S.; Rinkevich, B. Spatial homogeneity of bacterial and archaeal communities in the deep eastern Mediterranean sea surface sediments. Int. Microbiol. 2016, 19, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Thajudeen, J.; Yousuf, J.; Veetil, V.P.; Varghese, S.; Singh, A.; Abdulla, M.H. Nitrogen fixing bacterial diversity in a tropical estuarine sediments. World J. Microbiol. Biotechnol. 2017, 33, 41. [Google Scholar] [CrossRef]
- Nimnoi, P.; Pongsilp, N. Marine bacterial communities in the upper gulf of Thailand assessed by Illumina next-generation sequencing platform. BMC Microbiol. 2020, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Chen, X.; Zhou, J.; Li, H.; Mai, W. Treatment of real sodium saccharin wastewater using multistage contact oxidation reactor and microbial community analysis. Bioresour. Technol. 2019, 289, 121714. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Tian, H.; Li, G.; Sun, H.; Ma, T. Microbial diversity and abundance in the Xinjiang Luliang long-term water-flooding petroleum reservoir. Microbiologyopen 2015, 4, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Garcia, I.N.; Dellagnezze, B.M.; Santos, V.P.; Capilla, R.; Neto, E.V.S.; Gray, N.; Oliveira, V.M. Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales. Extremophiles 2017, 21, 211–229. [Google Scholar] [CrossRef]
- Sierra-Garcia, I.N.; Belgini, D.R.B.; Torres-Ballesteros, A.; Paez-Espino, D.; Capilla, R.; Santos Neto, E.V.; Gray, N.; de Oliveira, V.M. In depth metagenomic analysis in contrasting oil wells reveals syntrophic bacterial and archaeal associations for oil biodegradation in petroleum reservoirs. Sci. Total Environ. 2020, 715, 136646. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Midgley, D.J.; Ross, J.P.; Oytam, Y.; Abell, G.C.J.; Volk, H.; Daud, W.A.W.; Hendry, P. Microbial biodiversity in a malaysian oil weld and a systematic comparison with oil reservoirs worldwide. Arch. Microbiol. 2012, 194, 513–523. [Google Scholar] [CrossRef]
- Oueriaghli, N.; Castro, D.J.; Llamas, I.; Béjar, V.; Martínez-Checa, F. Study of bacterial community composition and correlation of environmental variables in Rambla Salada, a hypersaline environment in south-eastern Spain. Front. Microbiol. 2018, 9, 1377. [Google Scholar] [CrossRef]
- Luque, R.; González-Domenech, C.M.; Llamas, I.; Quesada, E.; Béjar, V. Diversity of culturable halophilic archaea isolated from Rambla Salada, Murcia (Spain). Extremophiles 2012, 16, 205–213. [Google Scholar] [CrossRef]
- Luque, R.; Béjar, V.; Quesada, E.; Llamas, I. Diversity of halophilic bacteria isolated from Rambla Salada, Murcia (Spain). Can. J. Microbiol. 2014, 60, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Oueriaghli, N.; González-Domenech, C.M.; Martínez-Checa, F.; Muyzer, G.; Ventosa, A.; Quesada, E.; Béjar, V. Diversity and distribution of Halomonas in Rambla Salada, a hypersaline environment in the southeast of Spain. FEMS Microbiol. Ecol. 2014, 87, 460–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Cánovas, M.J.; Béjar, V.; Martínez-Checa, F.; Páez, R.; Quesada, E. Idiomarina fontislapidosi sp. nov. and Idiomarina ramblicola sp. nov., isolated from inland hypersaline habitats in Spain. Int. J. Syst. Evol. Microbiol. 2004, 54, 1793–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Domenech, C.M.; Martínez-Checa, F.; Quesada, E.; Béjar, V. Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 2008, 58, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Luque, R.; Béjar, V.; Quesada, E.; Martínez-Checa, F.; Llamas, I. Halomonas ramblicola sp. nov., a moderately halophilic bacterium from Rambla Salada, a mediterranean hypersaline rambla. Int. J. Syst. Evol. Microbiol. 2012, 62, 2903–2909. [Google Scholar] [CrossRef]
- Castro, D.J.; Llamas, I.; Béjar, V.; Martínez-Checa, F. Blastomonas quesadae sp. nov., isolated from a saline soil by dilution-to-extinction cultivation. Int. J. Syst. Evol. Microbiol. 2017, 67, 2001–2007. [Google Scholar] [CrossRef]
- Castro, D.J.; Cerezo, I.; Sampedro, I.; Martínez-Checa, F. Roseovarius ramblicola sp. nov., a moderately halophilic bacterium isolated from saline soil in Spain. Int. J. Syst. Evol. Microbiol. 2018, 1851–1856. [Google Scholar] [CrossRef]
- Castro, D.J.; Gomez-Altuve, A.; Reina, J.C.; Rodríguez, M.; Sampedro, I.; Llamas, I.; Martínez-Checa, F. Roseovarius bejariae sp. nov., a moderately halophilic bacterium isolated from a hypersaline steep-sided river bed. Int. J. Syst. Evol. Microbiol. 2020, 70, 3194–3201. [Google Scholar] [CrossRef]
- Sait, M.; Davis, K.E.R.; Janssen, P.H. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl. Environ. Microbiol. 2006, 72, 1852–1857. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Valera, F.; Ruiz-Berraquero, F.; Ramos-Cormenzana, A. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb. Ecol. 1981, 7, 235–243. [Google Scholar] [CrossRef]
- Bruns, A.; Hoffelner, H.; Overmann, J. A novel approach for high throughput cultivation assays and the isolation of planktonic bacteria. FEMS Microbiol. Ecol. 2003, 45, 161–171. [Google Scholar] [CrossRef]
- Button, D.K.; Schut, F.; Quang, P.; Martin, R.; Robertson, B.R. Viability and isolation of marine bacteria by dilution culture: Theory, procedures, and initial results. Appl. Environ. Microbiol. 1993, 59, 881–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connon, S.A.; Giovannoni, S.J. High-Throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 2002, 68, 3878–3885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reasoner, D.J.; Geldreich, E.E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 1985, 49, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Brosius, J.; Palmer, M.L.; Kennedy, P.J.; Noller, H.F. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 1978, 75, 4801–4805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Checa, F.; Quesada, E.; Martínez-Canovas, M.J.; Llamas, I.; Béjar, V. Palleronia marisminoris gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium belonging to the ’Alphaproteobacteria’, isolated from a saline soil. Int. J. Syst. Evol. Microbiol. 2005, 55, 2525–2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Jukes, T.H.; Cantor, C.R. Evolution of protein molecules. In Mammalian Protein Metabolism; Elsevier: Amsterdam, The Netherlands, 1969; pp. 21–132. [Google Scholar]
- Bushnell, B. BBMap Project. 2016. Available online: Sourceforge.net/projects/bbmap/ (accessed on 29 July 2021).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.H.; Ha, S.M.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Leeuwenhoek. 2017, 110, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [Green Version]
- Auch, A.F.; von Jan, M.; Klenk, H.-P.; Göker, M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 2010, 2, 117–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.Y.; Lin, H.P.; Li, L.; Brown, R.; Goodfellow, M.; Deng, Z.; Hong, K. Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie Leeuwenhoek. 2012, 102, 1–7. [Google Scholar] [CrossRef]
- Komagata, K. Bacteria—The aerobic bacteria. In Classification and Identification of 259 Microorganisms, 2nd ed.; Hasegawa, T., Ed.; Gakkai Shuppan: Tokyo, Japan, 1985; pp. 99–161. [Google Scholar]
- Mata, J.A.; Martínez-Cánovas, M.J.; Quesada, E.; Béjar, V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst. Appl. Microbiol. 2002, 25, 360–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacs, N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956, 178, 703. [Google Scholar] [CrossRef]
- Sasser, M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl. 1990, 20, 16. [Google Scholar]
- MIDI. Sherlock Microbial Identification System Operating Manual, version 6.1; MIDI Inc.: Newark, DE, USA, 2008. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Tindall, B.J.; Sikorski, J.; Smibert, R.M.; Krieg, N.R. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd ed.; Reddy, C.A., Beveridge, T.J., Breznak, J.A., Marzluf, G., Schmidt, T.M., Eds.; L. R. Snyder ASM Press: Washington, DC, USA, 2007; pp. 330–393. [Google Scholar]
- Tindall, B.J. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 1990, 13, 128–130. [Google Scholar] [CrossRef]
- Tindall, B.J. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 1990, 66, 199–202. [Google Scholar] [CrossRef]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Klappenbach, J.A.; Goris, J.; Vandamme, P.; Coenye, T.; Konstantinidis, K.T.; Tiedje, J.M. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [Green Version]
- Gunde-Cimerman, N.; Oren, A.; Plemenitaš, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 2018, 42, 353–375. [Google Scholar] [CrossRef]
- Zhang, B.; Bowman, C.; Hackmann, T. A new pathway for forming acetate and synthesizing ATP during fermentation in bacteria. Appl. Environ. Microbiol. 2020, 87. [Google Scholar] [CrossRef] [Green Version]
Feature | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Size (bp) | 4,897,523 | 4,734,355 | 5,191,608 | 3,925,261 | 3,653,655 | 5,174,280 | 4,378,172 | 5,568,333 | 4,979,947 | 5,546,883 | 5,637,742 | 5,360,582 | 4,680,330 |
Contigs | 69 | 29 | 1 | 51 | 47 | 47 | 68 | 21 | 15 | 39 | 226 | 68 | 24 |
G+C (mol%) | 59.2 | 58.4 | 58.8 | 54.9 | 56.0 | 55.2 | 56.4 | 57.5 | 57.1 | 62.1 | 57.2 | 58.5 | 55.6 |
N50 (bp) | 150,886 | 548,647 | 5,191,608 | 167,945 | 130,350 | 201,845 | 137,897 | 869,882 | 922,765 | 457,680 | 61,011 | 143,318 | 388,460 |
Total genes | 4522 | 4408 | 4614 | 3742 | 3442 | 4705 | 4252 | 5136 | 4517 | 4778 | 5051 | 4768 | 4380 |
Protein coding genes | 4427 | 4285 | 4461 | 3625 | 3326 | 4569 | 4114 | 5024 | 4414 | 4635 | 4863 | 4604 | 4259 |
rRNA | 3 | 7 | 18 | 8 | 3 | 8 | 9 | 3 | ND | 3 | 5 | 6 | 6 |
tRNA | 59 | 73 | 83 | 56 | 71 | 62 | 57 | 69 | 68 | 70 | 82 | 66 | 73 |
Accession number | JAHREP000000000 | BMIJ00000000 | CP015839 | FNRJ00000000 | PYGI00000000 | JHVJ00000000 | AUAZ00000000 | FNVQ00000000 | SMFU00000000 | BMLT00000000 | BCNS00000000 | ARJM00000000 | FTMN00000000 |
Fatty Acids | 1 | 2 a | 3 a |
---|---|---|---|
Saturated: | |||
C10:0 | 0.7 | - | - |
C12:0 | 5.9 | 5.3 | 3.2 |
C14:0 | 0.8 | - | - |
C16:0 | 28.7 | 22.0 | 22.8 |
C18:0 | 0.3 | TR | 1.3 |
Hydroxy: | |||
C10:0 3-OH | 6.7 | 5.8 | 6.4 |
C12:0 2-OH | - | - | 1.7 |
C16:0 3-OH | 0.3 | - | - |
Cyclo: | |||
C17:0 cyclo | 4.9 | 3.1 | TR |
Summed features: | |||
3 (C16:1 ω7c/C16:1 ω6c) | 26.6 | 29.5 | 16.9 |
8 (C18:1 ω7c/C18:1 ω6c) | 25.2 | 31.8 | 45.0 |
Characteristic | 1 | 2 |
---|---|---|
Cell size (µm) | 0.5–0.6 × 1.0–1.8 | 0.4–0.6 × 1.0–2.0 a |
Temperature range for growth (optimum) (°C) | 15–40 (37) | 15–43 (37–40) a |
pH range for growth (optimum) | 5–9 (7) | 5.5–9.5 (6.5–7.5) a |
NaCl range concentration for growth (optimum) (%, w/v) | 0–7.5 (3) | 0.25–9 (1–1.5) a |
Nitrate reduction | + | - |
Citrate utilization | - | + |
Carbon source utilization in Biolog GEN III: | ||
D-Cellobiose | + | - |
Gentiobiose | + | - |
D-Serine | - | + |
D-Mannitol | - | + |
D-Arabitol | - | + |
D-Aspartic Acid | + | - |
D-Glucuronic Acid | - | + |
Mucic Acid | - | + |
D-Saccharid Acid | - | + |
Citric Acid | + | - |
Sodium Butyrate | + | - |
Enzymatic activities in API ZYM: | ||
α-Glucosidase | - | + |
Acid production in API 50CH: | ||
D-Maltose | + | - |
D-Sucrose | - | + |
D-Trehalose | - | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Viseras, A.; Castro, D.J.; Reina, J.C.; Béjar, V.; Martínez-Checa, F. Taxogenomic and Metabolic Insights into Marinobacterium ramblicola sp. nov., a New Slightly Halophilic Bacterium Isolated from Rambla Salada, Murcia. Microorganisms 2021, 9, 1654. https://doi.org/10.3390/microorganisms9081654
Durán-Viseras A, Castro DJ, Reina JC, Béjar V, Martínez-Checa F. Taxogenomic and Metabolic Insights into Marinobacterium ramblicola sp. nov., a New Slightly Halophilic Bacterium Isolated from Rambla Salada, Murcia. Microorganisms. 2021; 9(8):1654. https://doi.org/10.3390/microorganisms9081654
Chicago/Turabian StyleDurán-Viseras, Ana, David J. Castro, José Carlos Reina, Victoria Béjar, and Fernando Martínez-Checa. 2021. "Taxogenomic and Metabolic Insights into Marinobacterium ramblicola sp. nov., a New Slightly Halophilic Bacterium Isolated from Rambla Salada, Murcia" Microorganisms 9, no. 8: 1654. https://doi.org/10.3390/microorganisms9081654