Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems
Abstract
:1. Introduction
2. Interaction of Viral Agents with Other Organisms
2.1. Plant Viruses Infecting Tree/Shrub Hosts and Cryptoviruses
2.2. Mycoviruses Occurring in Plant Pathogenic Fungi
2.3. Mycoviruses Occurring in Mutualistic Fungi and Saprotrophs
3. Virome of Specific Plant Hosts
3.1. Acer spp.
3.2. Betula spp.
3.3. Castanea Sativa
3.4. Fraxinus spp.
3.5. Picea spp.
3.6. Pinus spp.
3.7. Populus spp.
3.8. Quercus spp.
3.9. Sambucus spp.
3.10. Sorbus spp.
3.11. Ulmus spp.
3.12. Other Tree Species
- Prunus spp.: Prunus trees may suffer from infections by Chondrostereum purpureum, which causes silver leaf disease and has been developed as a biocontrol tool for the prevention of sprouting. The fungus hosts an alphapartitivirus called Chondrostereum cryptic virus 1 [210]. This tree genus may also be attacked by the notorious white root rot fungus Rosellinia necatrix that has a very broad host range, including both tropical and temperate fruit and forest trees.
- Aesculus spp.: Some plant pathogenic viruses have been reported in Aesculus (apple chlorotic leaf spot virus, apple mosaic virus, cherry leaf roll virus and strawberry latent ringspot virus) (Table 1). Cryphonectria hypovirus 1, most commonly affecting Cryphonectria parasitica in chestnut, is also present in Aesculus hippocastanum (Table 2).
- Fagus spp.: Earlier reports exist on the occurrence of cherry leaf roll virus and tobacco necrosis virus in beech. A recent RNA-Seq investigation revealed a novel carlavirus related to leaf symptoms in trees in Germany [62].
- Robinia spp.: Strawberry latent ringspot virus and peanut stunt virus (Iran) (Table 1) have been reported.
- Salix spp.: A few generalist viruses may occur in Salix, such as brome mosaic virus, tomato mosaic virus and tobacco necrosis virus.
- Cedrus libani: The ectomycorrhizal ascomycete Geopora sumneriana is associated with Lebanon cedar. Recently, Geopora sumneriana mitovirus 1 was identified in this fungal species [156].
- Abies spp.: No plant pathogen has been reported. Several partitivirus have been reported in Heterobasidion basidiomycetes infecting diverse Abies species: Heterobasidion partitivirus 1 in A. cephalonica; Heterobasidion partitivirus 10 in A. concolor; and Heterobasidion RNA virus 6 (an orthocurvulavirus) in A. alba, A. sibirica, A. cephalonica, A. cilicica, A. equi-trojani and A. concolor (Table 2).
- Pseudotsuga menziesii: Aphaendornaviruses infect members of Phytophthora ramorum and Phytophthora taxon douglasfir [152].
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
aa | amino acid |
BLRD | birch leaf-roll disease |
DOP-PCR | degenerate oligonucleotide-primed PCR |
dsRNA | double-stranded RNA |
ECM | ectomycorrhizal fungi |
EID | emerging infectious disease |
EVE | endogenous viral element |
GPP | glycoprotein precursor |
HTS | high-throughput sequencing |
ICTV | International committee on taxonomy of viruses |
ISID | International Society for Infectious Diseases |
IUCN | International Union for Conservation of Nature |
(−)RNA | negative sense RNA |
N | nucleocapsid protein |
NCLDV | nucleocytoplasmic large DNA viruses |
ORF | open reading frame |
(+)RNA | positive sense RNA |
ProMED | Program for Monitoring Emerging Diseases |
RdRP | RNA-dependent RNA polymerase |
RCRE | rolling-circle replication endonucleases |
RT | reverse transcriptase |
RT virus | reverse-transcribing virus |
ssDNA | single-stranded DNA |
SSC | Species survival commission |
TSA | Transcriptome Shotgun Assembly |
unclassified | unclass. |
References
- Forest Europe. The State of Europe’s Forests 2020; Köhl, M., Linser, S., Prins, K., Eds.; Forest Europe Liaison Unit: Bratislava, Slovakia, 2020. [Google Scholar]
- Lier, M.; Köhl, M.; Korhonen, K.T.; Linser, S.; Prins, K. Forest relevant targets in EU policy instruments—Can progress be measured by the pan-European criteria and indicators for sustainable forest management? For. Policy Econ. 2021, 128, 102481. [Google Scholar] [CrossRef]
- Dolja, V.; Krupovic, M.; Koonin, E. Deep Roots and Splendid Boughs of the Global Plant Virome. Annu. Rev. Phytopathol. 2020, 58, 23–53. [Google Scholar] [CrossRef] [PubMed]
- Ghabrial, S.A.; Castón, J.R.; Jiang, D.; Nibert, M.L.; Suzuki, N. 50-plus years of fungal viruses. Virology 2015, 479, 356–368. [Google Scholar] [CrossRef] [Green Version]
- Büttner, C.; Nienhaus, F. Virus contamination of soils in forest ecosystems of the Federal Republic of Germany. Eur. J. For. Pathol. 1989, 19, 47–53. [Google Scholar] [CrossRef]
- Büttner, C.; von Bargen, S.; Bandte, M.; Mühlbach, H.-P. Forest diseases caused by viruses. In Infectious Forest Diseases; Gonthier, P., Nicolotti, G., Eds.; CABI: Wallingford, UK, 2013; pp. 50–75. [Google Scholar]
- Bebber, D.P. Range-Expanding Pests and Pathogens in a Warming World. Ann. Rev. Phytopathol. Ann. Rev. 2015, 53, 335–356. [Google Scholar] [CrossRef]
- Roossinck, M.J.; Martin, D.P.; Roumagnac, P. Plant virus metagenomics: Advances in virus discovery. Phytopathology 2015, 105, 716–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vainio, E.J.; Jurvansuu, J.; Streng, J.; Rajamäki, M.L.; Hantula, J.; Valkonen, J. Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J. Gen. Virol. 2015, 96, 714–725. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Z.; Shi, M.; Holmes, E.C. Using metagenomics to characterize an expanding virosphere. Cell 2018, 172, 1168–1172. [Google Scholar] [CrossRef]
- Villamor, D.E.V.; Ho, T.; Al Rwahnih, M.; Martin, R.R.; Tzanetakis, I.E. High throughput sequencing for plant virus detection and discovery. Phytopathology 2019, 109, 716–725. [Google Scholar] [CrossRef]
- von Bargen, S.; Grubits, E.; Jalkanen, R.; Buettner, C. Cherry leaf roll virus–an emerging virus in Finland? Silva Fenn. 2009, 43, 727–738. [Google Scholar] [CrossRef] [Green Version]
- Rumbou, A.; von Bargen, S.; Demiral, R.; Langer, J.; Rott, M.; Jalkanen, R.; Büttner, C. High genetic diversity at the inter-/intra-host level of Cherry leaf roll virus population associated with the birch leaf-roll disease in Fennoscandia. Scand. J. For. Res. 2016, 31, 546–560. [Google Scholar] [CrossRef]
- Rumbou, A.; Candresse, T.; Marais, A.; Svanella-Dumas, L.; Landgraf, M.; von Bargen, S.; Büttner, C. Unravelling the virome in birch: RNA-Seq reveals a complex of known and novel viruses. PLoS ONE 2020, 15, e0221834. [Google Scholar] [CrossRef]
- Rumbou, A.; Candresse, T.; Marais, A.; Theil, S.; Langer, J.; Jalkanen, R.; Büttner, C. A novel badnavirus discovered from Betula sp. affected by birch leaf-roll disease. PLoS ONE 2018, 13, e0193888. [Google Scholar] [CrossRef]
- Mielke-Ehret, N.; Mühlbach, H.-P. Emaravirus: A novel genus of multipartite, negative strand RNA plant viruses. Viruses 2012, 4, 1515–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robel, J.; Dieckmann, L.; von Bargen, S.; Büttner, C. First detection of European mountain ash ringspot associated virus in rowan trees in Scotland. New Dis. Rep. 2013, 27, 13. [Google Scholar] [CrossRef] [Green Version]
- von Bargen, S.; Bandte, M.; Al Kubrusli, R.; Jalkanen, R.; Büttner, C. First report of European mountain ash ringspot-associated virus in Karpatiosorbus × hybrida in Finland. New Dis. Rep. 2020, 42, 1. [Google Scholar] [CrossRef]
- von Bargen, S.; Dieckmann, H.-L.; Candresse, T.; Mühlbach, H.-P.; Roßbach, J.; Büttner, C. Determination of the complete genome sequence of European mountain ash ringspot-associated emaravirus from Sorbus intermedia reveals two additional genome segments. Arch. Virol. 2019, 164, 1937–1941. [Google Scholar] [CrossRef]
- von Bargen, S.; Tischendorf, M.; Büttner, C. First report of European mountain ash ringspot-associated virus in serviceberry (Amelanchier spp.) in Germany. New Dis. Rep. 2018, 37, 19. [Google Scholar] [CrossRef] [Green Version]
- Marzano, S.-Y.L.; Nelson, B.D.; Ajayi-Oyetunde, O.; Bradley, C.A.; Hughes, T.J.; Hartman, G.L.; Eastburn, D.M.; Domier, L.L. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. J. Virol. 2016, 90, 6846–6863. [Google Scholar] [CrossRef] [Green Version]
- Roossinck, M.J. Lifestyles of plant viruses. Philosoph. Trans. Roy. Soc. B Biol. Sci. 2010, 365, 1899–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margulis, L. Symbiosis in Cell Evolution, 2nd ed.; W. H. Freeman & Co.: New York, NY, USA, 1993. [Google Scholar]
- Maliogka, V.I.; Minafra, A.; Saldarelli, P.; Ruiz-García, A.B.; Glasa, M.; Katis, N.; Olmos, A. Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies. Viruses 2018, 10, 436. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Li, S.; Massart, S. Is There a “Biological Desert” With the Discovery of New Plant Viruses? A Retrospective Analysis for New Fruit Tree Viruses. Front. Microbiol. 2020, 11, 592816. [Google Scholar] [CrossRef]
- Rosenberg, E.; Zilber-Rosenberg, I. The Hologenome Concept: Human, Animal and Plant Microbiota; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-3-319-04241-1. [Google Scholar]
- Rosenberg, E.; Zilber-Rosenberg, I. Microbes Drive Evolution of Animals and Plants: The Hologenome Concept. MBio 2016, 7, e01395. [Google Scholar] [CrossRef] [Green Version]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Sweet, J.B. Fruit tree virus infections of woody exotic and indigenous plants in Britain. Acta Phytopathol. Acad. Sci. Hung. 1980, 15, 231–238. [Google Scholar] [CrossRef]
- Bandte, M.; Von Bargen, S.; Arndt, N.; Grubits, E.; Jalkanen, R.; Büttner, C. Bedeutende Viren an Birke–Fallbeispiele aus Deutschland, Finnland und den USA. In DUJESIEFKEN, D. (Hrsg.): Jahrbuch der Baumpflege; Haymarket Media: Braunschweig, Germany, 2009; pp. 215–221. [Google Scholar]
- Polák, Z.; Zieglerová, J. Spontaneous occurrence of apple mosaic virus in some forest and ornamental woody species. In Proceedings of the Fourteenth Slovak and Czech Plant Protection Conference (Slovak Republic), 3–4 September; Cagan, L., Praslicka, J., Eds.; Slovak University of Agriculture: Nitra, Slovakia, 1997; pp. 87–88. [Google Scholar]
- Hardcastle, T.; Gotlieb, A.R. An enzyme-linked immunosorbent assay for the detection of apple mosaic virus in yellow birch. Can. J. For. Res. 1980, 10, 278–283. [Google Scholar] [CrossRef]
- Baumann, G.; Casper, R.; Converse, R.H. The occurrence of apple mosaic virus in red and black raspberry and in blackberry cultivars. Acta Hortic. 1982, 129, 13–20. [Google Scholar] [CrossRef]
- Grimová, L.; Winkowska, L.; Konrady, M.; Ryšánek, P. Apple mosaic virus. Phytopathol. Mediterran. 2016, 55, 1–19. [Google Scholar]
- Cooper, J.I.; Massalski, P.R. Viruses and virus-like diseases affecting Betula spp. Proc. R. Soc. Edinb. 1984, 85B, 183–195. [Google Scholar] [CrossRef]
- Cooper, J.I.; Sweet, J.B. The detection of viruses with nematode vectors in six woody hosts. Forestry 1976, 49, 73–78. [Google Scholar] [CrossRef]
- Cooper, J.I.; Edwards, M.L.; Arnold, M.K.; Massalski, P.R. A tobravirus that invades Fraxinus mariesii in the United Kingdom. Plant Pathol. 1983, 32, 469–472. [Google Scholar] [CrossRef]
- Nienhaus, F.; Hamacher, J. Virosen in Eschen. Allg. Forstzeitg. 1990, 16, 385–386. [Google Scholar]
- Martin, R.R.; MacFarlane, S.; Sabanadzovic, S.; Quito, D.; Poudel, B.; Tzanetakis, I.E. Viruses and Virus Diseases of Rubus. Plant Dis. Sci. Soc. 2012, 97, 168–182. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.R. Host status of some plants for Xiphinema diversicaudatum (Micol.) and their susceptibility to viruses transmitted by this species. Ann. Appl. Biol. 1970, 65, 169–178. [Google Scholar] [CrossRef]
- Erdiller, G. Acer virus diseases in Turkey. J. Turk. Phytopathol. 1986, 15, 46–59. [Google Scholar]
- von Bargen, S.; Al Kubrusli, R.; Gaskin, T.; Fürl, S.; Hüttner, F.; Blystad, D.-R.; Karlin, D.G.; Jalkanen, R.; Büttner, C. Characterisation of a novel Emaravirus identified in mosaic-diseased Eurasian aspen (Populus tremula). Ann. Appl. Biol. 2020, 176, 210–222. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Rozanov, M.N.; Hillman, B.I. Autocatalytic processing of the 223-kDa protein of blueberry scorch carlavirus by a papain-like proteinase. Virology 1995, 207, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Kalinowska, E.; Paduch-Cichal, E.; Chodorska, M. First Report of Blueberry scorch virus in Elderberry in Poland. Plant Dis. 2013, 97, 1515. [Google Scholar] [CrossRef] [PubMed]
- Kopp, R.F.; Castello, J.D.; Abrahamson, L.P. Viruses in Salix grown for bioenergy. Eur. J. For. Pathol. 1999, 29, 117–122. [Google Scholar]
- Cooper, J.I.; Atkinson, M.A. Cherry leaf roll virus causing a disease of Betula spp. in the United Kingdom. Forestry 1975, 48, 193–203. [Google Scholar] [CrossRef]
- Hamacher, J.; Quadt, A. Light- and electron microscopic studies of Cherry leaf roll virus (CLRV) on European ash (Fraxinus excelsior L.). J. Phytopathol. 1991, 131, 215–226. [Google Scholar] [CrossRef]
- Büttner, C.; von Bargen, S.; Bandte, M.; Myrta, A. Cherry leaf roll virus. In Virus and Virus-Like Diseases of Pome and Stone Fruits; Hadidi, A., Barba, M., Candresse, T., Jelkmann, W., Eds.; APS PRESS: St. Paul, MN, USA, 2011. [Google Scholar]
- Ellis, P.J.; Converse, R.H.; Stace-Smith, R. Viruses of Sambucus canadensis in North America. Acta Hortic. 1992, 308, 69–80. [Google Scholar] [CrossRef]
- Hansen, A.J.; Stace-Smith, R. Properties of virus isolated from golden elderberry, Sambucus nigra aurea. Phytopathology 1971, 61, 1222–1229. [Google Scholar] [CrossRef]
- Rebenstorf, K.; Candresse, T.; Dulucq, M.J.; Büttner, C.; Obermeier, C. Host species-dependent population structure of a pollen-borne plant virus, Cherry leaf roll virus. J. Virol. 2006, 80, 2453–2462. [Google Scholar] [CrossRef] [Green Version]
- Cherry Leaf Roll Virus. [Distribution map]. In Distribution Maps of Plant Diseases; Map 800 (Edition 2); CABI: Wallingford, UK, 2014. [Google Scholar] [CrossRef]
- von Bargen, S.; Langer, J.; Robel, J.; Rumbou, A.; Büttner, C. Complete nucleotide sequence of Cherry leaf roll virus (CLRV), a subgroup C nepovirus. Virus Res. 2012, 163, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Villamor, D.E.V.; Eastwell, K.C. Sambucus nigra subsp. caerulea and Malva spp.: Newly identified hosts of cherry rasp leaf virus. Plant Dis. Sci. Soc. 2015, 100, 867. [Google Scholar] [CrossRef]
- Marais, A.; Murolo, S.; Faure, C.; Brans, Y.; Larue, C.; Maclot, F.; Massart, S.; Chiumenti, M.; Minafra, A.; Romamazzi, G.; et al. Sixty years from the first disease description, a novel badnavirus associated with chestnut mosaic disease. Phytopathology 2020. [Google Scholar] [CrossRef] [PubMed]
- Bandte, M.; Rehanek, M.; Leder, B.; von Bargen, S.; Buettner, C. Identification of an emaravirus in a common Oak (Quercus robur L.) Conservation seed orchard in Germany: Implications for Oak health. Forests 2020, 11, 1174. [Google Scholar] [CrossRef]
- Rehanek, M.; von Bargen, S.; Bandte, M.; Karlin, D.G.; Büttner, C. A novel emaravirus comprising five RNA segments is associated with ringspot disease in oak. Arch. Virol. 2021, 166, 987–990. [Google Scholar] [CrossRef]
- Šafářová, D.; Vavroušková, K.; Candresse, T.; Navrátil, M. Molecular characterization of a novel Aureusvirus infecting elderberry (Sambucus nigra L.). PLoS ONE 2018, 13, e0200506. [Google Scholar] [CrossRef]
- Ho, T.; Tzanetakis, I.E. Development of a virus detection and discovery pipeline using next generation sequencing. Virology 2014, 471–473, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, T.; Quito-Avila, D.; Keller, K.E.; Postman, J.D.; Martin, R.R.; Tzanetakis, I.E. Evidence of sympatric speciation of elderberry carlaviruses. Virus Res. 2016, 215, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Jurke, I.; von Bargen, S.; Rumbou, A.; Büttner, C. Detection of Elm mottle virus (EMoV) and a putative novel Carlavirus in the genus Ulmus in northern Germany. In Proceedings of the 125th IUFRO Anniversary World Congress, Freiburg, Germany, 18–22 September 2017. [Google Scholar]
- Rumbou, A.; von Bargen, S.; Buettner, C. Virus discovery using NGS in trees from urban/forest ecosystems. In Proceedings of the 1st COST Action FA1407—DIVAS, Ljubljana, Slovenia, 16–18 November 2015. [Google Scholar]
- Rumbou, A.B. Sequence analysis and taxonomic determination of uncharacterized viruses identified by RNA-Seq in Betula species from Germany and Finland. In Proceedings of the 2nd COST Action FA1407—DIVAS, Thessaloniki, Greece, 11–13 April 2016. [Google Scholar]
- Jones, A.T.; Mayo, M.A. Purification and properties of elm mottle virus. Ann. Appl. Biol. 1973, 74, 211–217. [Google Scholar] [CrossRef]
- Jones, A.T. Elm Mottle Virus; CMI/AAB Descriptions of Plant Viruses No. 139; Commonwealth Mycological Institute: Kew, Surrey, UK; Association of Applied Biologists: Wellsbourne, Warwick, UK, 1974. [Google Scholar]
- Scott, S.W.; Zimmerman, M.T.; Ge, X. Viruses in subgroup 2 of the genus Ilarvirus share both serological relationships and characteristics at the molecular level. Arch. Virol. 2003, 148, 2063–2075. [Google Scholar] [CrossRef]
- Roßbach, J.; Dieckmann, H.L.; Büttner, T.; Mühlbach, H.P.; von Bargen, S.; Büttner, C. Genetic variability and phylogeny of European mountain ash ringspot-associated virus RNA3 and RNA4. Forests 2015, 6, 4072–4087. [Google Scholar] [CrossRef]
- Grimová, L.; Marek, M.; Konrady, M.; Ryšánek, P. Newly identified host range of European mountain ash ringspot-associated virus (EMARaV) and its distribution in the Czech Republic. For. Pathol. 2015, 45, 177–189. [Google Scholar] [CrossRef]
- Harju, V.; Adams, I.; Flint, L.; Jackson, L.; Fowkes, A.; Skelton, A.; Forde, S.; Fairless, N.; Field, C.; Marsden, S.; et al. A follow-up report regarding new hosts and distribution of European mountain ash ringspot-associated virus in Sorbus spp. in England. New Dis. Rep. 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- Valkonen, J.P.T.; Rännäli, M. First Report of European mountain ash ringspot-associated virus in Sorbus aucuparia from Eastern Karelia, Russia. Plant Dis. 2010, 94, 921. [Google Scholar] [CrossRef] [PubMed]
- von Bargen, S.; Arndt, N.; Robel, J.; Jalkanen, R.; Büttner, C. Detection and genetic variability of European mountain ash ringspot-associated virus (EMARaV) in Sweden. For. Pathol. 2013, 43, 429–432. [Google Scholar]
- Druciarek, T.; Lewandowski, M.; Tzanetakis, I.E. First report of European mountain ash ringspot-associated emaravirus in Sorbus aucuparia in Poland. Plant Dis. 2019, 103, 166. [Google Scholar] [CrossRef]
- von Bargen, S.; Büttner, T.; Mühlbach, H.-P.; Robel, J.; Büttner, C. First report of European mountain ash ringspot-associated virus in Sorbus aucuparia in Norway. Plant Dis. 2014, 98, 700. [Google Scholar] [CrossRef]
- Rumbou, A.; Candresse, T.; von Bargen, S.; Büttner, C. Next-generation sequencing reveals a novel emaravirus in diseased maple trees from a German urban forest. Front. Microbiol. 2021, 11, 621179. [Google Scholar] [CrossRef]
- Stefanac, Z.; Bezic, N.; Milicic, D. Some new data on Robinia mosaic cucumovirus. Acta Bot. Croat. 1988, 47, 1–5. [Google Scholar]
- Pilotti, M.; Barba, M. Robinia mosaic virus: A new cucumovirus in Italy. (Il virus del mosaico della robinia: Un nuovo cucumovirus in Italia.). Petria 1993, 3, 161–168. [Google Scholar]
- Amid-Motlagh, M.H.; Massumi, H.; Heydarnejad, J.; Mehrvar, M.; Hajimorad, M.R. Nucleotide sequence analyses of coat protein gene of peanut stunt virus isolates from alfalfa and different hosts show a new tentative subgroup from Iran. Virus Dis. 2017, 28, 295–302. [Google Scholar] [CrossRef]
- Bang, J.H.; Choi, J.K.; Lee, S.Y. Characterization of Peanut stunt virus isolated from black locust tree (Robinia pseudoacacia L.). Plant Pathol. J. 2006, 22, 125–130. [Google Scholar] [CrossRef]
- Rastrojo, A.; Núñez, A.; Moreno, D.A.; Alcamí, A. A new putative Caulimoviridae genus discovered through air metagenomics. Microbiol. Resour. Announc. 2018, 7, e00955-18. [Google Scholar] [CrossRef] [Green Version]
- Nibert, M.L.; Pyle, J.D.; Firth, A.E. A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses. Virology 2016, 498, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Veliceasa, D.; Enünlü, N.; Kós, P.B.; Köster, S.; Beuther, E.; Morgun, B.; Deshmukh, S.D.; Lukács, N. Searching for a New Putative Cryptic Virus in Pinus sylvestris L. Virus Genes 2006, 32, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; Campbell, M.M. Complete nucleotide sequence of the genomic RNA of poplar mosaic virus (Genus Carlavirus). Arch. Virol. 2004, 149, 1831–1841. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.; Mühlbach, H.-P.; Büttner, C. Detection of Poplar Mosaic Carlavirus (POPMV) by Immuno-Capture RT-PCR. In Diagnosis and Identification of Plant Pathogens; Proc. Symposium of European Foundation for Plant Pathology, Bonn, Germany; Dehne, H.-W., Adam, G., Diekmann, M., Frahm, J., Mauler-Machnik, A., van Halteren, P., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 403–405. [Google Scholar] [CrossRef]
- Smith, C.M.; Campbell, M.M. Populus genotypes differ in infection and systemic spread of poplar mosaic virus (PopMV). Plant Pathol. 2004, 53, 780–787. [Google Scholar] [CrossRef]
- Šafářová, D.; Candresse, T.; Navrátil, M. Complete genome sequence of a novel bromovirus infecting elderberry (Sambucus nigra L.) in the Czech Republic. Arch. Virol. 2018, 163, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Borodynko, N.; Hasiów, B.; Figlerowicz, M.; Pospieszny, H. Identification of the new strain of Strawberry latent ringspot virus isolated from black locust (Robinia pseudoacacia L.). J. Phytopathol. 2007, 155, 738–742. [Google Scholar] [CrossRef]
- Hentsch, T.; Fuchs, E.; Grüntzig, M. Das Strawberry latent ringspot nepovirus (SLRSV) an Aesculus hippocastanum L. [Strawberry latent ringspot nepovirus (SLRSV) on Aesculus hippocasta- num L.]. Arch. Phytopathol. Plant Protect. 1997, 31, 13–23. [Google Scholar] [CrossRef]
- Schmelzer, K.; Schmidt, H.E. Untersuchungen an Viren der Zier- und Wildgeholze 6. Mitteilung: Erganzende Befunde an Caryopteris, soirce Virosen an Philadelphus, Aristolochia, Buddleia, Lycium und Aesculus. Phytopathol. Z. 1968, 66, 105–126. [Google Scholar] [CrossRef]
- Dullemans, A.M.; Botermans, M.; de Kock, M.J.D.; de Krom, C.E.; van der Lee, T.A.J.; Roenhorst, J.W.; Stulemeijer, I.J.E.; Verbeek, M.; Westenberg, M.; van der Vlugt, R.A.A. Creation of a new genus in the family Secoviridae substantiated by sequence variation of newly identified strawberry latent ringspot virus isolates. Arch. Virol. 2020, 165, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Pospieszny, H.; Borodynko, N.; Jończyk, M. First report of Tomato black ring virus (TBRV) in the natural infection of Sambucus nigra in Poland. J. Plant Prot. Res. 2004, 44, 373–376. [Google Scholar]
- Uyemoto, J.K.; Gilmer, R.M.; Williams, E. Sap-transmissible viruses of elderberry in New York. Plant Dis. Rep. 1971, 55, 913–916. [Google Scholar]
- Polak, Z.; Prochazkova, Z.; Branisova, H. Recent findings of viruses of forest trees on the territory of the Czech Republic. Arch. Phytopathol. Pfl. 1990, 26, 389–393. [Google Scholar] [CrossRef]
- Jacobi, V.; Castello, J.D. Infection of red spruce, black spruce, and balsam fir seedlings with tomato mosaic virus. Can. J. For. Res. 1992, 22, 919–924. [Google Scholar] [CrossRef]
- Castello, J.D.; Wargo, P.M.; Jacobi, V.; Bachand, G.D.; Tobi, D.R.; Rogers, M.A.M. Tomato mosaic virus infection of red spruce on Whiteface Mountain, New York: Prevalence and potential impact. Can. J. For. Res. 1995, 25, 1340–1345. [Google Scholar] [CrossRef]
- Varney, E.H.; Moore, J.D. Strain of tomato ringspot virus from American elm. Phytopathology 1952, 42, 476–477. [Google Scholar]
- Ferris, M.A.; Castello, J.D. Detection of tomato ringspot virus in white ash and adjacent vegetation in central New York. Can. J. For. Res. 1988, 18, 813–817. [Google Scholar] [CrossRef]
- Lana, A.O.; Agrios, G.N. Properties of a strain of tobacco mosaic virus isolated from white ash trees. Phytopathology 1974, 64, 1490–1495. [Google Scholar] [CrossRef]
- Castello, J.D.; Amico, L.A.; O’Shea, M.T. Detection of tobacco mosaic and tobacco ringspot viruses in white ash trees by enzyme-linked immunosorbent assay. Plant Dis. 1984, 68, 787–790. [Google Scholar] [CrossRef]
- Shiel, P.J.; Castello, J.D. Detection of tobacco mosaic and tobacco ringspot viruses in herbaceous and woody plants near virus-infected white ash trees in central New York. Plant Dis. 1985, 69, 791–795. [Google Scholar]
- Yarwood, C.E.; Hecht-Poinar, E. A virus resembling tobacco mosaic virus in oak. Phytopathology 1970, 60, 1320. [Google Scholar]
- Amico, L.A.; O’Shea, M.T.; Castello, J.D.; Hibben, C.R. Transmission of tobacco mosaic and tobacco ringspot viruses from Moraine ash in New York. Plant Dis. 1985, 69, 542. [Google Scholar] [CrossRef]
- Nienhaus, F.; Yarwood, C.E. Transmission of virus from oak leaves fractionated with Sephadex. Phytopathology 1972, 62, 313–315. [Google Scholar] [CrossRef]
- Horvath, J.; Eke, I.; Gal, T.; Dezsery, M. Demonstration of virus-like particles in sweet chestnut and oak with leaf deformations in Hungary. Z. Pflanzenkrankh. Pflanzenschutz 1975, 82, 498–502. [Google Scholar]
- Nienhaus, F. Viruses and suspected viruses in diseased oaks (Quercus robur and Quercus sessiliflora). Z. Pflanzenkrankh. Pflanzenschutz 1975, 85, 739–749. [Google Scholar]
- Casalicchio, G. Punctation in chloro-necrotic ash. Monti Boschi 1965, 16, 39–46. [Google Scholar]
- Hibben, C.R.; Bozarth, R.F.; Reese, J. Identification of tobacco necrosis virus in deteriorating clones of aspen. For. Sci. 1979, 25, 557–567. [Google Scholar]
- Nienhaus, F. Infectious diseases in forest trees caused by viruses, mycoplasma-like organisms and primitive bacteria. Experientia 1985, 41, 597–603. [Google Scholar] [CrossRef]
- Schmelzer, K. Viruses of Populus and Sambucus. In: Studies on viruses of ornamental and wild shrubs. Phytopathol. Z. 1966, 55, 311–351. [Google Scholar]
- Hibben, C.R.; Bozarth, B.F. Identification of an ash strain of Tobacco ringspot virus. Phytopathology 1972, 62, 1023–1029. [Google Scholar] [CrossRef]
- Hibben, C.R.; Walker, J.T. Nematode transmission of the ash strain of tobacco ringspot virus. Plant Dis. Rep. 1971, 55, 475–478. [Google Scholar]
- Bertioli, D.J.; Hayle, A.; Cooper, J.I. A new virus isolated from an ash tree with dieback. J. Phytopathol. 1993, 139, 367–372. [Google Scholar] [CrossRef]
- Murant, A.F.; Jones, A.T.; Martelli, G.P.; Stace-Smith, R. Nepoviruses: General, properties, diseases and virus identification. In The Plant Viruses; Harrison, B.D., Murant, A.F., Eds.; Springer Science & Business Media: New York, NY, USA, 1996; pp. 139–186. [Google Scholar]
- Machado, J.; Lockhart, B.E.; Smith, J. White ash mosaic virus, a previously undescribed flexivirus occurring in Fraxinus spp. in North America. Phytopathology 2006, 96, S67. [Google Scholar]
- Machado-Caballero, J.E.; Lockhart, B.; Mason, S.L.; Mollov, D.; Smith, J.A. Identification, Transmission, and Partial Characterization of a Previously Undescribed Flexivirus Causing a Mosaic Disease of Ash (Fraxinus spp.) in the USA. Plant Health Prog. 2013, 14, 21. [Google Scholar] [CrossRef] [Green Version]
- Bratsch, S.A.; Lockhart, B.E.; Mollov, D.S.; Tisserat, N.A. Partial characterization of two new viruses in ash belonging to the families Partitiviridae and Caulimoviridae. Acta Hortic. 2018, 1191, 89–96. [Google Scholar] [CrossRef]
- Linnakoski, R.; Sutela, S.; Coetzee, M.; Duong, T.A.; Pavlov, I.N.; Litovka, Y.A.; Hantula, J.; Wingfield, B.D.; Vainio, E.J. Armillaria root rot fungi host single-stranded RNA viruses. Sci. Rep. 2021, 11, 7336. [Google Scholar] [CrossRef]
- Liu, J.J.; Chan, D.; Xiang, Y.; Williams, H.; Li, X.R.; Sniezko, R.A.; Sturrock, R.N. Characterization of Five Novel Mitoviruses in the White Pine Blister Rust Fungus Cronartium ribicola. PLoS ONE 2016, 11, e0154267. [Google Scholar] [CrossRef] [PubMed]
- Romon-Ochoa, P.; Gorton, C.; Lewis, A.; van der Linde, S.; Webber, J.; Pérez-Sierra, A. Hypovirulent effect of the Cryphonectria hypovirus 1 in British isolates of Cryphonectria parasitica. Pest Manag. Sci. 2020, 76, 1333–1343. [Google Scholar] [CrossRef]
- Krstin, L.; Katanić, Z.; Repar, J.; Ježić, M.; Kobaš, A.; Ćurković-Perica, M. Genetic Diversity of Cryphonectria hypovirus 1, a Biocontrol Agent of Chestnut Blight, in Croatia and Slovenia. Microb. Ecol. 2020, 79, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Diamandis, S.; Perlerou, C.; Tziros, G.; Christopoulos, V.; Topalidou, E. Establishment and dissemination of hypovirulent strains of Cryphonectria parasitica in Greece. For. Path. 2015, 45, 408–414. [Google Scholar] [CrossRef]
- Çeliker, N.M.; Onogur, E. Evaluation of hypovirulent isolates of Cryphonectria parasitica for the biological control of chestnut blight in Turkey. For. Snow Landsc. Res. 2001, 76, 378–382. [Google Scholar]
- Nuskern, L.; Ježić, M.; Liber, Z.; Mlinarec, J.; Ćurković-Perica, M. Cryphonectria hypovirus 1-Induced Epigenetic Changes in Infected Phytopathogenic Fungus Cryphonectria parasitica. Microb. Ecol. 2018, 75, 790–798. [Google Scholar] [CrossRef]
- Choi, G.H.; Nuss, D.L. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 1992, 257, 800–803. [Google Scholar] [CrossRef]
- Double, M.L.; Jarosz, A.M.; Fulbright, D.W.; Davelos Baines, A.; MacDonald, W.L. Evaluation of Two Decades of Cryphonectria parasitica Hypovirus Introduction in an American Chestnut Stand in Wisconsin. Phytopathology 2018, 108, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Forgia, M.; Isgandarli, E.; Aghayeva, D.N.; Huseynova, I.; Turina, M. Virome characterization of Cryphonectria parasitica isolates from Azerbaijan unveiled a new mymonavirus and a putative new RNA virus unrelated to described viral sequences. Virology 2021, 553, 51–61. [Google Scholar] [CrossRef]
- Polashock, J.J.; Hillman, B.I. A small mitochondrial double-stranded (ds) RNA element associated with a hypovirulent strain of the chestnut blight fungus and ancestrally related to yeast cytoplasmic T and W dsRNAs. Proc. Natl. Acad. Sci. USA 1994, 91, 8680–8684. [Google Scholar] [CrossRef] [Green Version]
- Vainio, E.J.; Hantula, J. Taxonomy, biogeography and importance of Heterobasidion viruses. Virus Res. 2016, 219, 2–10. [Google Scholar] [CrossRef]
- Vainio, E.J. Mitoviruses in the conifer root rot pathogens Heterobasidion annosum and H. parviporum. Virus Res. 2019, 271, 197681. [Google Scholar] [CrossRef] [PubMed]
- Vainio, E.J.; Hyder, R.; Aday, G.; Hansen, E.; Piri, T.; Dogmus-Lehtijärvi, T.; Lehtijärvi, A.; Korhonen, K.; Hantula, J. Population structure of a novel putative mycovirus infecting the conifer root-rot fungus Heterobasidion annosum sensu lato. Virology 2012, 422, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Hyder, R.; Pennanen, T.; Hamberg, L.; Vainio, E.J.; Piri, T.; Hantula, J. Two viruses of Heterobasidion confer beneficial, cryptic or detrimental effects to their hosts in different situations. Fungal Ecol. 2013, 6, 387–396. [Google Scholar] [CrossRef]
- Vainio, E.J.; Hakanpää, J.; Dai, Y.C.; Hansen, E.; Korhonen, K.; Hantula, J. Species of Heterobasidion host a diverse pool of partitiviruses with global distribution and interspecies transmission. Fungal Biol. 2011, 115, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Vainio, E.J.; Korhonen, K.; Tuomivirta, T.T.; Hantula, J. A novel putative partitivirus of the saprotrophic fungus Heterobasidion ecrustosum infects pathogenic species of the Heterobasidion annosum complex. Fungal Biol. 2010, 114, 955–965. [Google Scholar] [CrossRef]
- Vainio, E.J.; Piri, T.; Hantula, J. Virus community dynamics in the conifer pathogenic fungus Heterobasidion parviporum following an artificial introduction of a partitivirus. Microb. Ecol. 2013, 65, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Vainio, E.; Müller, M.; Korhonen, K.; Piri, T.; Hantula, J. Viruses accumulate in aging infection centers of a fungal forest pathogen. J. ISME 2015, 9, 497–507. [Google Scholar] [CrossRef]
- Kashif, M.; Hyder, R.; De Vega Perez, D.; Hantula, J.; Vainio, E.J. Heterobasidion wood decay fungi host diverse and globally distributed viruses related to Helicobasidium mompa partitivirus V70. Virus Res. 2015, 195, 119–123. [Google Scholar] [CrossRef]
- Vainio, E.J.; Chiba, S.; Ghabrial, S.A.; Maiss, E.; Roossinck, M.; Sabanadzovic, S.; Suzuki, N.; Xie, J.; Nibert, M. ICTV Report Consortium. ICTV Virus Taxonomy Profile: Partitiviridae. J. Gen. Virol. Microbiol. Soc. 2018, 99, 17–18. [Google Scholar] [CrossRef]
- Vainio, E.J.; Capretti, P.; Motta, E.; Hantula, J. Molecular characterization of HetRV8-ir1, a partitivirus of the invasive conifer pathogenic fungus H. irregulare. Arch. Virol. 2013, 158, 1613–1615. [Google Scholar] [CrossRef]
- Schoebel, C.N.; Zoller, S.; Rigling, D. Detection and genetic characterisation of a novel mycovirus in Hymenoscyphus fraxineus, the causal agent of ash dieback. Infect. Genet. Evolut. 2014, 28, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Álvarez, P.; Vainio, E.J.; Botella, L.; Hantula, J.; Diez, J.J. Three mitovirus strains infecting a single isolate of Fusarium circinatum are the first putative members of the family Narnaviridae detected in a fungus of the genus Fusarium. Arch. Virol. 2014, 159, 2153–2155. [Google Scholar] [CrossRef] [PubMed]
- Vainio, E.J.; Martínez-Álvarez, P.; Bezos, D.; Hantula, J.; Diez, J.J. Fusarium circinatum isolates from northern Spain are commonly infected by three distinct mitoviruses. Arch. Virol. 2015, 160, 2093–2098. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Adalia, E.J.; Diez, J.J.; Fernández, M.M.; Hantula, J.; Vainio, E.J. Characterization of small RNAs originating from mitoviruses infecting the conifer pathogen Fusarium circinatum. Arch. Virol. 2018, 163, 1009–1018. [Google Scholar] [CrossRef]
- Tuomivirta, T.; Hantula, J. Gremmeniella abietina mitochondrial RNA virus S1 is phylogenetically related to the members of the genus Mitovirus. Arch. Virol. 2003, 148, 2429–2436. [Google Scholar] [CrossRef]
- Tuomivirta, T.T.; Hantula, J. Three unrelated viruses occur in a single isolate of Gremmeniella abietina var. abietina type A. Virus Res. 2005, 110, 31–39. [Google Scholar] [CrossRef]
- Botella, L.; Vainio, E.J.; Hantula, J.; Diez, J.J.; Jankovsky, L. Description and prevalence of a putative novel mycovirus within the conifer pathogen Gremmeniella abietina. Arch. Virol. 2015, 160, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Tuomivirta, T.T.; Kaitera, J.; Hantula, J. A novel putative virus of Gremmeniella abietina type B (Ascomycota: Helotiaceae) has a composite genome with endornavirus affinities. J. Gen. Vir. 2009, 90, 2299–2305. [Google Scholar] [CrossRef]
- Botella, L.; Hantula, J. Description, Distribution, and Relevance of Viruses of the Forest Pathogen Gremmeniella abietina. Viruses 2018, 10, 654. [Google Scholar] [CrossRef] [Green Version]
- Hillman, B.I.; Annisa, A.; Suzuki, N. Viruses of Plant-Interacting Fungi. Adv. Vir. Res. 2018, 100, 99–116. [Google Scholar] [CrossRef]
- Eusebio-Cope, A.; Sun, L.; Hillman, B.I.; Suzuki, N. Mycoreovirus 1 S4-coded protein is dispensable for viral replication but necessary for efficient vertical transmission and normal symptom induction. Virology 2010, 397, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Hillman, B.I.; Supyani, S.; Kondo, H.; Suzuki, N. A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the coltivirus genus of animal pathogens. J. Virol. 2004, 78, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Doherty, M.; Coutts, R.H.A.; Brasier, C.M.; Buck, K.W. Sequence of RNA dependent RNA polymerase genes provides evidence for three more distinct mitoviruses in Ophiostoma novo-ulmi isolate Ld. Virus Genes 2006, 33, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Hintz, W.E.; Carneiro, J.S.; Kassatenko, I.; Varga, A.; James, D. Two novel mitoviruses from a Canadian isolate of the Dutch elm pathogen Ophiostoma novo-ulmi (93–1224). J. Virol. 2013, 10, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozlakidis, Z.; Brown, N.A.; Jamal, A.; Phoon, X.; Coutts, R.H. Incidence of endornaviruses in Phytophthora taxon douglasfir and Phytophthora ramorum. Virus Genes 2010, 40, 130–134. [Google Scholar] [CrossRef]
- Poimala, A.; Parikka, P.; Hantula, J.; Vainio, E.J. Viral diversity in Phytophthora cactorum population infecting strawberry. Environ. Microbiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Preisig, O.; Wingfield, B.D.; Wingfield, M.J. Coinfection of a fungal pathogen 1141 by two distinct double-stranded RNA viruses. Virology 1998, 252, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Sahin, E.; Akata, I. Full-length genome characterization of a novel alphapartitivirus detected in the ectomycorrhizal fungus Hygrophorus penarioides. Virus Genes 2021, 57, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Sahin, E.; Akata, I. Complete genome sequence of a novel mitovirus from the ectomycorrhizal fungus Geopora sumneriana. Arch. Virol. 2019, 164, 2853–2857. [Google Scholar] [CrossRef]
- Gilbert, K.B.; Holcomb, E.E.; Allscheid, R.L.; Carrington, J.C. Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS ONE 2019, 14, e0219207. [Google Scholar] [CrossRef] [Green Version]
- Sahin, E.; Keskin, E.; Akata, I. Molecular characterization of a novel partitivirus hosted by the false morel mushroom Gyromitra esculenta. Arch. Virol. 2021, 166, 1247–1251. [Google Scholar] [CrossRef]
- Sutela, S.; Vainio, E.J. Virus population structure in the ectomycorrhizal fungi Lactarius rufus and L. tabidus at two forest sites in Southern Finland. Virus Res. 2020, 285, 197993. [Google Scholar] [CrossRef] [PubMed]
- Sahin, E.; Keskin, E.; Akata, I. Novel and diverse mycoviruses co-inhabiting the hypogeous ectomycorrhizal fungus Picoa juniperi. Virology 2021, 552, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Stielow, B.; Menzel, W. Complete nucleotide sequence of TaV1, a novel totivirus isolated from a black truffle ascocarp (Tuber aestivum Vittad.). Arch. Virol. 2010, 155, 2075–2078. [Google Scholar] [CrossRef]
- Stielow, B.; Klenk, H.P.; Menzel, W. Complete genome sequence of the first endornavirus from the ascocarp of the ectomycorrhizal fungus Tuber aestivum Vittad. Arch. Virol. 2011, 156, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Stielow, B.; Klenk, H.P.; Winter, S.; Menzel, W. A novel Tuber aestivum (Vittad.) mitovirus. Arch. Virol. 2011, 156, 1107–1110. [Google Scholar] [CrossRef]
- Stielow, J.B.; Bratek, Z.; Klenk, H.P.; Winter, S.; Menzel, W. A novel mitovirus from the hypogeous ectomycorrhizal fungus Tuber excavatum. Arch. Virol. 2012, 157, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Sahin, E.; Akata, I.; Keskin, E. Novel and divergent bipartite mycoviruses associated with the ectomycorrhizal fungus Sarcosphaera coronaria. Virus Res. 2020, 286, 198071. [Google Scholar] [CrossRef] [PubMed]
- Arjona-Lopez, J.M.; Telengech, P.; Jamal, A.; Hisano, S.; Kondo, H.; Yelin, M.D.; Arjona-Girona, I.; Kanematsu, S.; Lopez-Herrera, C.J.; Suzuki, N. Novel, diverse RNA viruses from Mediterranean isolates of the phytopathogenic fungus, Rosellinia necatrix: Insights into evolutionary biology of fungal viruses. Environ. Microbiol. 2018, 20, 1464–1483. [Google Scholar] [CrossRef] [PubMed]
- Milgroom, M.G.; Cortesi, P. Biological control of chestnut blight with hypovirulence: A critical analysis. Annu. Rev. Phytopathol. 2004, 42, 311–338. [Google Scholar] [CrossRef] [Green Version]
- Rigling, D.; Prospero, S. Cryphonectria parasitica, the causal agent of chestnut blight: Invasion history, population biology and disease control. Mol. Plant Pathol. 2018, 19, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Kashif, M.; Jurvansuu, J.; Vainio, E.J.; Hantula, J. Alphapartitiviruses of Heterobasidion Wood Decay Fungi Affect Each Other’s Transmission and Host Growth. Front Cell Infect Microbiol. 2019, 9, 64. [Google Scholar] [CrossRef] [PubMed]
- Chiba, S.; Suzuki, N. Highly activated RNA silencing via strong induction of dicer by one virus can interfere with the replication of an unrelated virus. Proc. Natl. Acad. Sci. USA 2015, 112, E4911–E4918. [Google Scholar] [CrossRef] [Green Version]
- Yaegashi, H.; Yoshikawa, N.; Ito, T.; Kanematsu, S. A mycoreovirus suppresses RNA silencing in the white root rot fungus, Rosellinia necatrix. Virology 2013, 444, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Sutela, S.; Forgia, M.; Vainio, E.J.; Chiapello, M.; Daghino, S.; Vallino, M.; Martino, E.; Girlanda, M.; Perotto, S.; Turina, M. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol. 2020, 6. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Fujita, M.; Chiba, S.; Hyodo, K.; Andika, I.B.; Suzuki, N.; Kondo, H. Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shiitake mushroom (Lentinula edodes). Virology 2019, 533, 125–136. [Google Scholar] [CrossRef]
- Guo, M.; Shen, G.; Wang, J.; Liu, M.; Bian, Y.; Xu, Z. Mycoviral diversity and characteristics of a negative-stranded RNA virus LeNSRV1 in the edible mushroom Lentinula edodes. Virology 2021, 555, 89–101. [Google Scholar] [CrossRef]
- Vainio, E.J.; Sutela, S. Mixed infection by a partitivirus and a negative-sense RNA virus related to mymonaviruses in the polypore fungus Bondarzewia berkeleyi. Virus Res. 2020, 286, 198079. [Google Scholar] [CrossRef]
- Magae, Y.; Sunagawa, M. Characterization of a mycovirus associated with the brown discoloration of edible mushroom, Flammulina velutipes. J. Virol. 2010, 7, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, L.; Li, Y.; Liu, Y.; Gao, Y.; Qi, Y.; Shen, J. Particle and naked RNA mycoviruses in industrially cultivated mushroom Pleurotus ostreatus in China. Fungal Biol. 2010, 114, 507–513. [Google Scholar] [CrossRef]
- Gibbs, D.; Chen, Y. The Red List of Maples Archived 2019-05-28 at the Wayback Machine; Botanic Gardens Conservation International (BGCI): Richmond, BC, Canada, 2009. [Google Scholar]
- Binggeli, P. Sycamore lore. Plant Lore Notes News 1993, 29, 131–133. [Google Scholar]
- Atanasoff, D. Old and new virus diseases of trees and shrubs. Phytopathol. Z. 1935, 8, 197–223. [Google Scholar]
- Cooper, J.I. Virus Disease of Trees and Shrubs; Institute of Terrestrial Ecology, Natural Environment Research Council: Oxford, UK, 1979. [Google Scholar]
- Esseen, P.; Ehnström, B.; Ericson, L.; Sjöberg, K. Boreal Forests. In Ecological Bulletins 1997, 46, 16–47. [Google Scholar]
- Hynynen, J.; Niemisto, P.; Vihera-Aarnio, A.; Brunner, A.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in Northern Europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- Dubois, H.; Verkasalo, E.; Claessens, H. Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for Forestry and Forest-Based Industry Sector within the Changing Climatic and Socio-Economic Context of Western Europe. Forests 2020, 11, 336. [Google Scholar] [CrossRef] [Green Version]
- Rumbou, A.; von Bargen, S.; Jalkanen, R.; Büttner, C. Emergence of “birch-leafroll disease” in Fennoscandia correlated with significant changes in cherry leaf roll virus population. In Proceedings of the 47th Plant Virus Diseases Meet, Berlin, Germany, 16–17 March 2015; Humboldt-Universität zu Berlin: Berlin, Germany. [Google Scholar]
- Rumbou, A.; von Bargen, S.; Jalkanen, R.; Büttner, C. The birch-leafroll disease emerging in forests and urban parks in Fennoscandia-viral agents associated with the disease. In Proceedings of the 18th International Plant Protection Congress (IPPC), Berlin, Germany, 24–27 August 2015. [Google Scholar]
- Jalkanen, R.; Buettner, C.; von Bargen, S. Cherry leaf roll virus abundant on Betula pubescens in Finland. Silva Fenn. 2007, 41, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Langer, J.; Rumbou, A.; Fauter, A.; von Bargen, S.; Buettner, C. High genetic variation in a small population of Cherry leaf roll virus in Betula sp., of montane origin in Corsica. For. Pathol. 2016, 46, 595–599. [Google Scholar] [CrossRef]
- Opoku, E.B.; Landgraf, M.; Pack, K.; Bandte, M.; von Bargen, S.; Schreiner, M.; Jaekel, B.; Buettner, C. Emerging viruses in urban green- detection of the virome in birch (Betula sp.). J. Hortic. Biol. Sci. 2018, 5, 2. [Google Scholar] [CrossRef]
- Rytkönen, A.; Lilja, A.; Petäistö, R.-L.; Hantula, J. Irrigation water and Phytophthora cactorum in a forest nursery. Scand. J. For. Res. 2008, 23, 404–411. [Google Scholar] [CrossRef]
- Conedera, M.; Tinner, W.; Krebs, P.; de Rigo, D.; Caudullo, G. Castanea sativa in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, D., de Rigo, G., Caudullo, T., Houston Durrant, A., Mauri, J., Eds.; Publ. Off. EU: Luxembourg, 2016; pp. 78–79. [Google Scholar]
- Gualaccini, G. Una virosi nuova del castagno. Boll. Staz. Patol. Veg. 1958, 16, 67–75. [Google Scholar]
- Desvignes, J.C. Sweet chestnut incompatibility and mosaics caused by the chestnut mosaic virus (ChMV). Acta Hortic 1999, 494, 451–454. [Google Scholar] [CrossRef]
- Antonaroli, R.; Perna, M.R. Una fitopatia ad eziologia ancora incerta: Il giallume dl castagno in Emilia Romagna e nelle Marche. Sherwood 2000, 6, 43–46. [Google Scholar]
- Suzuki, N.; Cornejo, C.; Aulia, A.; Shahi, S.; Hillman, B.I.; Rigling, D. In-Tree Behavior of Diverse Viruses Harbored in the Chestnut Blight Fungus, Cryphonectria parasitica. J. Virol. 2021, 95. [Google Scholar] [CrossRef]
- Schoebel, C.N.; Prospero, S.; Gross, A.; Rigling, D. Detection of a Conspecific Mycovirus in Two Closely Related Native and Introduced Fungal Hosts and Evidence for Interspecific Virus Transmission. Viruses 2018, 10, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caudullo, G.; Tinner, W.; de Rigo, D. Picea abies in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publ. Off. EU: Luxembourg, 2016; p. e012300+. [Google Scholar]
- Castello, J.D.; Rogers, S.O.; Bachand, G.D.; Fillhart, R.C.; Murray, J.S.; Weidemann, K.; Bachand, M.; Almond, M.A. Detection and partial characterization of tenuiviruses from black spruce. Plant Dis. 2000, 84, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Woodward, S.; Stenlid, J.; Karjalainen, R.; Hütterman, A. (Eds.) Heterobasidion Annosum: Biology, Ecology, Impact and Control; CAB International: Wallingford, UK, 1998. [Google Scholar]
- Vainio, E.J.; Jurvansuu, J.; Hyder, R.; Kashif, M.; Piri, T.; Tuomivirta, T.; Poimala, A.; Xu, P.; Mäkelä, S.; Nitisa, D.; et al. Heterobasidion Partitivirus 13 Mediates Severe Growth Debilitation and Major Alterations in the Gene Expression of a Fungal Forest Pathogen. J. Virol. 2018, 92, e01744-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozlakidis, Z.; Hacker, C.V.; Bradley, D.; Jamal, A.; Phoon, X.; Webber, J.; Brasier, C.M.; Buck, K.W.; Coutts, R.H.A. Molecular characterisation of two novel double-stranded RNA elements from Phlebiopsis gigantea. Virus Genes 2009, 39, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Petrzik, K.; Sarkisova, T.; Starý, J.; Koloniuk, I.; Hrabáková, L.; Kubešová, O. Molecular characterization of a new monopartite dsRNA mycovirus from mycorrhizal Thelephora terrestris (Ehrh.) and its detection in soil oribatid mites (Acari: Oribatida). Virology 2016, 489, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, P.; Pinno, B.D.; Šebesta, J.; Albrectsen, B.R.; Li, G.; Ivanova, N.; Kusbach, A.; Kuuluvainen, T.; Landhäusser, S.M.; Liu, H.; et al. A global view of aspen: Conservation science for widespread keystone systems. Glob. Ecol. Conserv. 2020, 21, e00828. [Google Scholar] [CrossRef]
- Eaton, E.; Caudullo, G.; Oliveira, S.; de Rigo, D. Quercus robur and Quercus petraea in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxembourg, 2016; p. e01c6df+. [Google Scholar]
- Lorimer, C.G. The Decline of Oak Forests. BioScience 2003, 53, 915. [Google Scholar] [CrossRef] [Green Version]
- Charlebois, D. Elderberry as a medicinal plant. In Issues in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, VA, USA, 2007; pp. 284–292. [Google Scholar]
- McAllister, H.A. The Genus Sorbus: Mountain Ash and other Rowans; Royal Botanic Gardens Kew: Richmond, UK, 2005; ISBN 9781842460887. [Google Scholar]
- Schmelzer, K. Proof of relationship between the origins of Cherry leaf roll virus and Elm mosaic virus]. Zent. Bakteriol. Parasitenkd. Infekt. Hyg. 1972, 127, 140–144. [Google Scholar]
- Cole, T.E.; Mcller, B.M.; Hong, Y.; Brasier, C.M.; Buck, K.W. Complexity of Virus-like Double-stranded RNA Elements in a Diseased Isolate of the Dutch Elm Disease Fungus, Ophiostoma novo-ulmi. J. Phytopathol. 2008, 146, 593–598. [Google Scholar] [CrossRef]
- Shamoun, S.F.; Varga, A.; Valverde, R.A.; Ramsfield, T.; Sumampong, G.; Elliott, M.; Masri, S.; James, D. Identification and molecular characterization of a new double-stranded RNA virus infecting Chondrostereum purpureum. Can. J. Plant Pathol. 2008, 30, 604–613. [Google Scholar] [CrossRef]
- Sato, Y.; Miyazaki, N.; Kanematsu, S.; Xie, J.; Ghabrial, S.A.; Hillman, B.I.; Suzuki, N. ICTV Report Consortium. ICTV Virus Taxonomy Profile: Megabirnaviridae. J. Gen. Virol. 2019, 100, 1269–1270. [Google Scholar] [CrossRef]
- Valverde, R.A.; Khalifa, M.E.; Okada, R.; Fukuhara, T.; Sabanadzovic, S. ICTV Report Consortium. ICTV Virus Taxonomy Profile: Endornaviridae. J. Gen. Virol. 2019, 100, 1204–1205. [Google Scholar] [CrossRef]
- Jiāng, D.; Ayllón, M.A.; Marzano, S.Y.L. ICTV Report Consortium. ICTV Virus Taxonomy Profile: Mymonaviridae. J. Gen. Virol. 2019, 100, 1343–1344. [Google Scholar] [CrossRef]
- Massart, S.; Candresse, T.; Gil, J.; Lacomme, C.; Predajna, L.; Ravnikar, M.; Reynard, J.S.; Rumbou, A.; Saldarelli, P.; Škorić, D.; et al. A framework for the evaluation of biosecurity, commercial, regulatory and scientific impacts of plant viruses and viroids identified by NGS technologies. Front. Microbiol. 2017, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Massart, S.; Candresse, T.; Gil, J.; Lacomme, C.; Predajna, L.; Ravnikar, M.; Reynard, J.S.; Rumbou, A.; Saldarelli, P.; Škorić, D.; et al. After the data deluge: Biological characterization of the new variants and viral species identified by NGS. In Proceedings of the International Congress of Plant Pathology (ICPP), Boston, MA, USA, 29 July–3 August 2018. [Google Scholar]
- Rosenberg, E.; Zilber-Rosenberg, I. The hologenome concept of evolution after 10 years. Microbiome 2018, 6, 78. [Google Scholar] [CrossRef]
- Yue, J.; Hu, X.; Huang, J. Horizontal gene transfer in the innovation and adaptation of land plants. Plant Signal Behav. 2013, 8, e24130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maumus, F.; Epert, A.; Nogué, F.; Blanc, G. Plant genomes enclose footprints of past infections by giant virus relatives. Nat. Commun. 2014, 5, 4268. [Google Scholar] [CrossRef]
- Geering, A.D.W.; Olszewski, N.E.; Harper, G.; Lockhart, B.E.L.; Hull, R.; Thomas, J.E. Banana contains a diverse array of endogenous badnaviruses. J. Gen. Virol. 2005, 86, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Borah, B.K.; Sharma, S.; Kant, R.; Anthony-Johnson, A.M.; Saigopal, D.V.R.; Dasgupta, I. Bacilliform DNA-containing plant viruses in the tropics: Commonalities within a genetically diverse group. Mol. Plant Pathol. 2013, 14, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fu, Y.; Jiang, D.; Li, G.; Xie, J.; Cheng, J.; Peng, Y.; Ghabrial, S.A.; Yi, X. Widespread Horizontal Gene Transfer from Double-Stranded RNA Viruses to Eukaryotic Nuclear Genomes. J. Virol. 2010, 84, 11876–11887. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.; Lian, S.; Chu, H.; Cho, J.K.; Yoo, S.H.; Choi, H.; Yoon, J.Y.; Choi, S.K.; Lee, B.C.; Cho, W.K. Peach RNA viromes in six different peach cultivars. Sci. Rep. 2018, 8, 1844. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, B.M.; Freeborough, J.; Maree, H.J.J.; Celton, M.; Rees, J.G.; Burger, J.T. Deep sequencing analysis of viruses infecting grapevines: Virome of a vineyard. Virology 2010, 400, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Beuve, M.; Hily, J.M.; Alliaume, A.; Reinbold, C.; Le Maguet, J.; Candresse, T.; Herrbach, E.; Lemaire, O. A complex virome unveiled by deep sequencing analysis of RNAs from a French Pinot Noir grapevine exhibiting strong leafroll symptoms. Arch. Virol. 2018, 163, 2937–2946. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Nuss, D.L.; Suzuki, N. Synergism between a mycoreovirus and a hypovirus mediated by the papain-like protease p29 of the prototypic hypovirus CHV1-EP713. J. Gen. Virol. 2006, 87, 3703–3714. [Google Scholar] [CrossRef]
- Hisano, S.; Zhang, R.; Faruk, M.I.; Kondo, H.; Suzuki, N. A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: Taxonomic and evolutionary considerations. Virus Res. 2018, 244, 75–83. [Google Scholar] [CrossRef]
- Wu, S.; Cheng, J.; Fu, Y.; Chen, T.; Jiang, D.; Ghabrial, S.A.; Xie, J. Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses. PLoS Pathog. 2017, 13, e1006234. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Linder-Basso, D.; Hillman, B.I.; Kaneko, S.; Milgroom, M.G. Evidence for interspecies transmission of viruses in natural populations of filamentous fungi in the genus Cryphonectria. Mol. Ecol. 2003, 12, 1619–1628. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Roossinck, M.J. Evolutionary and ecological links between plant and fungal viruses. New Phytol. 2019, 221, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Díaz, C.; García-Orozco, A.; Riera-Leal, A.; Padilla-Arellano, J.R.; Fafutis-Morris, M. Microbiota and Its Role on Viral Evasion: Is It With Us or Against Us? Front Cell Infect Microbiol. 2019, 9, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massart, S.; Martinez-Medina, M.; Jijakli, M.H. Biological control in the microbiome era: Challenges and opportunities. Biol. Control. 2015, 89, 98–108. [Google Scholar] [CrossRef]
- Chiba, S.; Lin, Y.-H.; Kondo, H.; Kanematsu, S.; Suzuki, N. A novel betapartitivirus RnPV6 from Rosellinia necatrix tolerates host RNA silencing but is interfered by its defective RNAs. Virus Res. 2016, 219, 62–72. [Google Scholar] [CrossRef]
- Salaipeth, L.; Chiba, S.; Eusebio-Cope, A.; Kanematsu, S.; Suzuki, N. Biological properties and expression strategy of rosellinia necatrix megabirnavirus 1 analysed in an experimental host, Cryphonectria parasitica. J. Gen. Virol. 2014, 95, 740–750. [Google Scholar] [CrossRef]
- Kanematsu, S.; Arakawa, M.; Oikawa, Y.; Onoue, M.; Osaki, H.; Nakamura, H.; Ikeda, K.; Kuga-Uetake, Y.; Nitta, H.; Sasaki, A.; et al. A Reovirus Causes Hypovirulence of Rosellinia necatrix. Phytopathology 2004, 94, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiba, S.; Salaipeth, L.; Lin, Y.H.; Sasaki, A.; Kanematsu, S.; Suzuki, N. A novel bipartite double-stranded RNA Mycovirus from the white root rot Fungus Rosellinia necatrix: Molecular and biological characterization, taxonomic considerations, and potential for biological control. J. Virol. 2009, 83, 12801–12812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, A.; Nakamura, H.; Suzuki, N.; Kanematsu, S. Characterization of a new megabirnavirus that confers hypovirulence with the aid of a co-infecting partitivirus to the host fungus, Rosellinia necatrix. Virus Res. 2016, 219, 73–82. [Google Scholar] [CrossRef]
- Suzuki, N. Frontiers in fungal virology. J. Gen. Plant Pathol. 2017, 83, 419–423. [Google Scholar] [CrossRef]
- Martemyanov, V.V.; Bakhvalov, S.A.; Rantala, M.J.; Dubovskiy, I.M.; Shul’ts, E.E.; Belousova, I.A.; Strel’nikov, A.G.; Glupov, V.V. The response of gypsy moth (Lymantria dispar L.) larvae infected with nuclear polyhedrosis virus to induced resistance in birch (Betula pendula Roth.). Russ. J. Ecol. 2009, 40, 434–439. [Google Scholar] [CrossRef]
- Roden, D.B.; Mattson, W.J. Rapid induced resistance and host species effects on gypsy moth, Lymantria dispar (L.): Implications for outbreaks on three tree species in the boreal forest. For. Ecol. Manag. 2008, 255, 1868–1873. [Google Scholar] [CrossRef]
- Castro, M.; Melo, F.L.; Tagliari, M.; Inglis, P.W.; Craveiro, S.R.; Ribeiro, Z.; Ribeiro, B.M.; Báo, S.N. The genome sequence of Condylorrhiza vestigialis NPV, a novel baculovirus for the control of the Alamo moth on Populus spp. in Brazil. J. Invert. Pathol. 2017, 148, 152–161. [Google Scholar] [CrossRef]
- Thumbi, D.K.; Eveleigh, R.J.; Lucarotti, C.J.; Lapointe, R.; Graham, R.I.; Pavlik, L.; Lauzon, H.A.; Arif, B.M. Complete sequence, analysis and organization of the Orgyia leucostigma nucleopolyhedrovirus genome. Viruses 2011, 3, 2301–2327. [Google Scholar] [CrossRef]
- Brodersen, G.; Johns, R.; Lapointe, R.; Thumbi, D.; Thurston, G.; Lucarotti, C.; Quiring, D. Larval diet prior to and following virus ingestion influences the efficacy of two nucleopolyhedroviruses in whitemarked tussock moth (Orgyia leucostigma) caterpillars. Can. Entomol. 2012, 144, 447–457. [Google Scholar] [CrossRef]
- Graves, R.; Quiring, D.T.; Lucarotti, C.J. Transmission of a Gammabaculovirus within Cohorts of Balsam Fir Sawfly (Neodiprion abietis) Larvae. Insects 2012, 3, 989–1000. [Google Scholar] [CrossRef] [Green Version]
- Solter, L.F.; Hajek, A.E.; Lacey, L.A. Exploration for Entomopathogens. In Microbial Control of Insect and Mite Pests: From Theory to Practice; Lacey, L., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 13–23. [Google Scholar] [CrossRef]
- Koonin, E.; Dolja, V.; Krupovic, M. The healthy human virome: From virus–host symbiosis to disease. Curr. Opinion Virol. 2021, 47, 86–94. [Google Scholar] [CrossRef]
- Engering, A.; Hogerwerf, L.; Slingenbergh, J. Pathogen–host–environment interplay and disease emergence. Emerg. Microbes Infect. 2013, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
Virus Name | Genus, Family Name | Host Name (s) | Distribution + | References | |
---|---|---|---|---|---|
1 | apple chlorotic leaf spot virus (ACLSV) | Trichovirus, Beta- flexiviridae (+)ssRNA | Aesculus hippocastanum, S. aucuparia | UK, Germany | [6,29] |
2 | apple mosaic virus (ApMV) | Ilarvirus, Bromoviridae (+)ssRNA | Carpinus, Sorbus, Aesculus, Betula | Canada, Europe | [30,31](Sorbus, Aesculus, Betula, Carpinus); [32] (Betula); [33] (Rubus); [34] |
3 | arabis mosaic virus (ArMV) | Nepovirus, Seco- viridae (+)ssRNA | Acer, Fraxinus, Populus, Rubus, Betula | Europe, USA | [35] (Betula), [36] (Populus); [37,38] (Fraxinus); [39] (Rubus); [40,41] (Acer) |
4 HTS | aspen mosaic-associated virus (AsMaV) | Emaravirus, Fimo- viridae (−)ssRNA | Populus tremula | Germany | [42] |
5 HTS | birch leafroll-associated virus (BLRaV) | Badnavirus, Cauli- moviridae RT virus | Betula | Germany, Finland | [14,15] |
6 HTS | birch idaeovirus (BIV) | Idaeovirus, Mayoviridae (+)ssRNA | Betula | Germany | [14] |
7 HTS | birch capillovirus (BCV) | Capillovirus, Betaflexiviridae (+)ssRNA | Betula | Germany | [14] |
8 HTS | birch carlavirus (BiCV) | Carlavirus, Betaflexiviridae (+)ssRNA | Betula | Germany | [14] |
9 | blueberry scorch virus (BlScV) | Carlavirus, Betafle- xiviridae (+)ssRNA | Sambucus nigra | Poland | [43,44] |
10 | brome mosaic virus (BMV) | Bromovirus, Bromoviridae (+)ssRNA | Salix | [45] | |
11 | cherry leaf roll virus (CLRV) | Nepovirus, Secoviridae (+)ssRNA | Betula, Aesculus, Fagus, Fraxinus, Sambucus, Sorbus, Ulmus armeniaca | Europe, USA | [6] (Fagus); [46] (Betula); [29] (Aesculus); [47] (Fraxinus); [13,48] (Betula); [49,50] (Sambucus); [51] (Sambucus nigra, Sorbus); [52] (Ulmus armeniaca, Fagus); [53] |
12 | cherry rasp leaf virus (ChRLV) | Cheravirus, Secoviridae (+)ssRNA | Sambucus nigra subsp. caerulea, | USA | [54] |
13 HTS | chestnut mosaic virus (ChMV) | Badnavirus, Cauli- moviridae RT virus | Castanea sativa | Italy, France | [55] |
14 HTS | common oak ringspot-associated virus (CORaV) | Emaravirus, Fimoviridae (−)ssRNA | Quercus robur | Germany | [56,57] |
15 HTS | elderberry aureusvirus 1 (ElAV1) | Aureusvirus, Tombusviridae (+)ssRNA | Sambucus nigra | Czech Republic | [58] |
16-20 HTS | elderberry carlaviruses A,B,C,D,E (ElVA-ElVE) | Carlavirus, Betaflexiviridae (+)ssRNA | Sambucus nigra | USA | [59,60] |
21 HTS | elm carlavirus (ECV) | Carlavirus, Betaflexiviridae (+)ssRNA | Ulmus laevis | Germany | [61,62,63] |
22 | elderberry latent virus (ELV) | Pelarspovirus, Tombusviridae (+)ssRNA | Sambucus nigra, S. canadensis | Austria, Poland, USA | [49,59] |
23 | Elm mottle virus (EMoV) | Ilarvirus, Bromoviridae (+)ssRNA | Ulmus | central Europe, Russia, UK | [64,65,66] |
24 HTS | European mountain ash ringspot-associated virus (EMARaV) | Emaravirus, Fimoviridae (−)ssRNA | Sorbus aucuparia, Aronia melanocarpa, Amelanchier, Karpatiosorbus × hybrid, S. intermedia | Germany, Finland, Czech Republic, UK, Russia, Sweden, Poland, Norway | [67]; [18]; [68]; [17,69]; [70]; [19,71]; [72]; [73]; |
25 HTS | maple mottle-associated virus | Emaravirus, Fimoviridae (−)ssRNA | Acer pseudoplatanus | Germany | [74] |
26 | peanut stunt virus (PSV) | Cucumovirus, Bromoviridae (+)ssRNA | Robinia pseudoacacia | Croatia, Italy, Iran | [75,76,77,78] |
27 HTS | Pinus nigra virus 1 (PnV1) | unclass. Caulimoviridae RT virus | air samples, Pinus nigra | Spain | [79] |
28 HTS | Pinus patula amalgavirus 1 | unclass. Amalgaviridae dsRNA | Pinus patula | TSA database | [80] |
29 | Pinus sylvestris partitivirus NL-2005 | put. Cryptovirus, unclass. Partitiviridae dsRNA | Pinus sylvestris | Germany | [81] |
30 | poplar mosaic virus (PopMV) | Carlavirus, Betafle- xiviridae (+)ssRNA | Populus | UK, Germany | [82,83,84] |
31 HTS | Sambucus virus S (SVS) | Bromovirus, Bromo- viridae (+)ssRNA | Sambucus nigra | Czech Republic | [85] |
32 | strawberry latent ringspot virus (SLRV) | Stralarivirus,Secoviridae (+)ssRNA | Aesculus hippocastanum, Robinia pseu- doacacia | Germany, Poland | [86,87,88,89] |
33 | tomato black ring virus (ToBRV) | Nepovirus, Secoviridae (+)ssRNA | Sambucus nigra, Populus | UK, Poland | [36,90] |
34 | tomato bushy stunt virus (TBSV) | Tombusvirus, Tombusviridae (+)ssRNA | Sambucus nigra, S. canadensis | USA, Czech Republic | [91,92] |
35 | tomato mosaic virus (ToMV) | Tobamovirus, Virgaviridae (+)ssRNA | Picea rubens, P. mariana, Abies balsamea, Salix | Canada, USA | [45,93,94] |
36 | tomato ringspot virus (ToRSV) | Nepovirus, Secoviridae (+)ssRNA | Betula, Fraxinus, Populus, Ulmus americana | UK, USA | [35,36,95,96] |
37 | tobacco mocaic virus (TMV) | Tobamovirus, Virgaviridae (+)ssRNA | Fraxinus, Quercus | USA, Hungary, Germany | [97,98,99,100,101,102,103,104] |
38 | tobacco necrosis virus (TNV) | Alphanecrovirus, Tombusviridae, (+)ssRNA | Betula, Fagus, Fraxinus,Pinus, Quercus, Sambucus nigra | Europe | [5,35,91,105,106] |
39 | tobacco rattle virus (TRV) | Tobravirus, Virgaviridae (+)ssRNA | Fraxinus, Populus | Germany | [107,108] |
40 | tobacco ringspot virus (TRSV) | Nepovirus Secoviridae (+)ssRNA | Fraxinus, Sambucus nigra | USA | [38,98,99,108,109,110,111,112] |
41 | white ash mosaic virus (WAMV) | unclassified Flexiviridae (+)ssRNA | Fraxinus americana | USA | [113,114] |
42 HTS | putative cryptovirus | Partitiviridae dsRNA | Fraxinus americana | [115] | |
43 HTS | putative caulimovirus | Caulimoviridae RT virus | Fraxinus americana | [115] |
Virus Name | Genus, Family Name | Fungal Host (s) | Tree Host | Distribution + | References | |
---|---|---|---|---|---|---|
1 HTS | Armillaria borealis mycovirgavirus 1 (AbMV1) | unclass. Virgaviridae (+)ssRNA | Armillaria borealis | Populus spp. | Russia | [116] |
2–4 HTS | Armillaria borealis ambi-like virus 1, 2, 3 (AbAlV1–3) | unclass. Riboviria | Armillaria borealis | Populus spp. | Russia, Finland | [116] |
5 HTS | Armillaria mellea negative strand RNA virus 1 (AmNSRV1) | Mymonaviridae (−)ssRNA | Armillaria mellea | Quercus robur | South Africa | [116] |
6 HTS | Armillaria mellea ourmia-like virus 2 (AmOlV2) | Botourmiaviridae (+)ssRNA | Armillaria mellea | Quercus robur | South Africa | [116] |
7–11 HTS | Cronartium ribicola mitovirus 15 (CrMV1–5) | unclass. Mitovirus, Mitoviridae (+)ssRNA | Cronartium ribicola | Pinus strobus | North America | [117] |
12–14 | Cryphonectria hypovirus 1, 2, 3 (CHV-1–3) | Hypovirus, Hypoviridae (+)ssRNA | Cryphonectria parasitica | Castanea spp., Aesculus hippocastanum | England, Croatia, Slovenia, Greece, Turkey Slovakia, USA | [118,119,120,121,122,123,124] |
15 HTS | Cryphonectria parasitica ambivirus 1- NB631 (CpaV1) | Riboviria; unclass. Ambivirus (−)ssRNA | Cryphonectria parasitica | Castanea sativa | Azerbaijan | [125] |
16 | Cryphonectria parasitica mitovirus 1 (CMV-1-cpNB631) | Mitovirus,Mitoviridae (+)ssRNA | Cryphonectria parasitica | Castanea sativa | USA | [126] |
17 HTS | Cryphonectria parasitica sclerotimonavirus 1 (CpSV1) | unclass.Sclerotimonavirus, Mymonaviridae (−)ssRNA | Cryphonectria parasitica | Castanea sativa | Azerbaijan | [125] |
18–20 HTS | Heterobasidion mitovirus 1, 2, 3 (HetMV1–3) | Mitovirus, Mitoviridae (+)ssRNA | H. annosum and H. parviporum | Pinus sylvestris, Picea abies | Poland, Finland, Russia | [9,127] [128] |
21 | Heterobasidion RNA virus 6 (HetRV6 *) | Orthocurvulavirus, Curvulaviridae dsRNA | Heterobasidion abietinum, H. annosum, H. parviporum, H. occidentale | Abies alba, A. sibirica, A. cephalonica, A. cilicica, A. equi-trojani, A. concolor, Pinus sylvestris, P. nigra, P. obovata, Picea abies, Fagus | Europe, USA | [129] |
22–35 | Heterobasidion partitivirus 1, 3, 4 *, 5, 9, 10, 11, 12 13 *, 14, 15, 16, 20 (HetPV1, HetPV3–5, HetPV9–16, HetPV20) | Alphapartitivirus, Partitiviridae dsRNA | Heterobasidion abietinum, H. ecrustosum, H. parviporum, H. occidentale, H. australe, H. annosum, H. irregulare | Abies cephalonica, A. concolor, Pinus massoniana, P. wallichiana, P. sylvestris, P. elliottii, P. abies, P. pinea, Picea likiangensis | Greece, China, Finland, Italy, Poland, Russia, USA, Bhutan | [127,130,131,132,133,134,135,136] |
36–38 | Heterobasidion partitivirus 2 *, 7 *, 8 (HetPV2–8) | Betapartitivirus, Partitiviridae dsRNA | Heterobasidion parviporum, H. annosum, H. irregulare | Picea abies, P. sylvestris, P. pinea | Finland, Italy | [127,134,137] |
39 | Hymenoscyphus fraxineus mitovirus 1 (HfMV1) | unclass. Mitovirus, Mitoviridae (+)ssRNA | Hymenoscyphus fraxineus | Fraxinus spp. | Switzerland, Japan, Poland, Germany, Lithuania, Norway | [138] |
40–42 HTS | Fusarium circinatum mitovirus 1, 2–1 and 2–2 (FcMV1, FcMV2–1, FcMV2–2) | unclass. Mitovirus, Mitoviridae (+)ssRNA | Fusarium circinatum | Pinus radiate, P. pinaster, P. nigra, P. sylvestris | Spain | [139,140,141] |
43–44 | Gremmeniella abietina mitochondrial RNA virus S1, S2 (GaMRV-S1, S2) | Mtovirus, Mitoviridae (+)ssRNA | Gremmeniella abietina | mainly Pinus sylvestris, Picea, Abies and Larix | Northern and Central Europe, North America and Japan, Spain, Turkey | [142,143] |
45 | Gremmeniella abietina RNA virus L1 (GaRV-L1) | Victorivirus, Totiviridae dsRNA | Gremmeniella abietina | mainly Pinus sylvestris, Abies and Larix | Finland | [143] |
46 | Gremmeniella abietina RNA virus MS1 (GaRV-MS1) | Gammapartitivirus, Partitiviridae dsRNA | Gremmeniella abietina | Pinus sylvestris, (Abies and Larix) | Finland | [143] |
47 | Gremmeniella abietina RNA virus 6 (GaRV6) | Curvulaviridae dsRNA | Gremmeniella abietina | Pinus halepensis | Spain | [144] |
48 | Gremmeniella betaendornavirus (XL) (GBRV-XL) | Endornaviridae (+)ssRNA | Gremmeniella abietina | Pinus sylvesris, P. contorta | Finland | [145,146] |
49 | Gremmeniella fusarivirus 1 (GFV1) | unclass. Riboviria, proposed family “Fusariviridae” (+)ssRNA | Gremmeniella abietina | Pinus hapepensis | Spain | [146] |
50–52 | Mycoreovirus 1, 2, 3 (MyRV-1–3) | Mycoreovirus, Reoviridae dsRNA | Cryphonectria parasitica | Castanea sativa, Prunus | [147,148,149] | |
53–60 | Ophiostoma mitoviruses 1a, 1b, 1c, 3a, 3b, 4, 5, 6 (OMV1a–OMV6) | Mitovirus, Mitoviridae (+)ssRNA | Ophiostoma novo-ulmi | Ulmus | UK, Canada | [150,151] |
61 HTS | Phytophthora alphaendornavirus 1 (PEV1) | Alphaendornavirus, Endornaviridae (+)ssRNA | Phytophthora ramorum, Phytophthora taxon douglasfir | Pseudotsuga menziesii, Quercus agrifolia, Viburnum spp., Laurus nobilis, Rhododendron | USA, UK, Netherlands | [152] |
62 HTS | Phytophthora cactorum RNA virus 1 (PcRV1) | unclass. Totiviridae dsRNA | Phytophthora cactorum | Betula pendula | Denmark | [153] |
63 HTS | Sphaeropsis sapinea RNA virus 1 (SsRV1) | Victorivirus, Totiviridae dsRNA | Diplodia pinea, D. scrobiculata | Pinus roxburghii | South Africa | [154] |
Virus Name | Genus, Family Name | Fungal Host (s) | Tree Species | Distribution + | References | |
---|---|---|---|---|---|---|
1 HTS | Hygrophorus penarioides partitivirus 1 (HpPV1) | unclass. Alpha- partitivirus, Partitiviridae dsRNA | Hygrophorus penarioides | Quercus petraea | Turkey | [155] |
2 HTS | Geopora sumneriana mitovirus 1 (GsMV1) | unclass. Mitovirus, Mitoviridae/Narnaviridae (+)ssRNA | Geopora sumneriana | Cedrus libani | Turkey | [156] |
3 HTS | Gyromitra esculenta endornavirus 1 (GeEV1) | unclass. Endornaviridae (+)ssRNA | Gyromitra esculenta | Pinus brutia | Turkey | [157] |
4 HTS | Gyromitra esculenta partitivirus 1 (GePV1) | unclass. Partitiviridae dsRNA | Gyromitra esculenta | Pinus brutia | Turkey | [158] |
5 | Lactarius rufus RNA virus 1 (LrRV1) | Orthocurvulavirus, Curvulaviridae dsRNA | Lactarius rufus, L. tabidus | Pinus sylvesrtris, Picea abies | Finland | [159] |
6 | Lactarius tabidus RNA virus 1 (LtRV1) | Orthocurvulavirus, Curvulaviridae dsRNA | Lactarius rufus, L. tabidus | Pinus sylvesrtris, Picea abies | Finland | [159] |
7 HTS | Picoa juniperi mycovirus 1 (PjMTV1) | unclass. Riboviria, newly proposed Megatotiviridae dsRNA | Picoa juniperi | various forest tree species | Turkey | [160] |
8 | Tuber aestivum virus 1 (TaV1) | Totivirus, Totiviridae dsRNA | Tuber aestivum | mixed beech forest | Hungary | [161] |
9 | Tuber aestivum endornavirus (TaEV) | Betaendornavirus, Endornaviridae (+)ssRNA | Tuber aestivum | mixed oak forest | Hungary | [162] |
10 | Tuber aestivum mitovirus (TaMV) | unclass. Mitovirus, Mitoviridae (+)ssRNA | Tuber aestivum | mixed oak forest | Hungary | [163] |
11 | Tuber excavatum mitovirus (TeMV) | unclass. Mitovirus, Mitoviridae ssRNA(+) | Tuber excavatum | mixed beech forest | Germany | [164] |
12–13 HTS | putative alpha- and betapartitiviruses (ScPV) | Partitiviridae dsRNA | Sarcosphaera coronaria | Pinus brutia | Turkey | [165] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumbou, A.; Vainio, E.J.; Büttner, C. Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems. Microorganisms 2021, 9, 1730. https://doi.org/10.3390/microorganisms9081730
Rumbou A, Vainio EJ, Büttner C. Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems. Microorganisms. 2021; 9(8):1730. https://doi.org/10.3390/microorganisms9081730
Chicago/Turabian StyleRumbou, Artemis, Eeva J. Vainio, and Carmen Büttner. 2021. "Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems" Microorganisms 9, no. 8: 1730. https://doi.org/10.3390/microorganisms9081730
APA StyleRumbou, A., Vainio, E. J., & Büttner, C. (2021). Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems. Microorganisms, 9(8), 1730. https://doi.org/10.3390/microorganisms9081730