The Occurrence and Characterization of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolated from Clinical Diagnostic Specimens of Equine Origin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Bacterial Identification
2.2. Antimicrobial Susceptibility Testing
2.3. Detection and Characterization of Bla Genes
2.4. Multi-Locus Sequence Typing (MLST)
2.5. E. coli Phylogroup Identification
2.6. Ethics
3. Results
3.1. Phenotypic Analysis
3.2. Genetic Characterization of ESBL-Positive E. coli Isolates
3.3. Phylogenetic Grouping
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014; pp. 1–256.
- O’Neill, J. Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance: London, UK, 2014; pp. 1–20. [Google Scholar]
- Dolejska, M.; Duskova, E.; Rybarikova, J.; Janoszowska, D.; Roubalova, E.; Dibdakova, K.; Maceckova, G.; Kohoutova, L.; Literak, I.; Smola, J.; et al. Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J. Antimicrob. Chemother. 2011, 66, 757–764. [Google Scholar] [CrossRef] [Green Version]
- Rawat, D.; Nair, D. Extended-spectrum beta-lactamases in Gram negative bacteria. J. Glob. Infect. Dis. 2010, 2, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Woodford, N. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol. 2006, 14, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Bradford, P.A. Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001, 14, 933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudresh, S.M.; Nagarathnamma, T. Extended spectrum β-lactamase producing Enterobacteriaceae & antibiotic co-resistance. Indian J. Med. Res. 2011, 133, 116–118. [Google Scholar] [PubMed]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [Green Version]
- Datta, N.; Kontomichalou, P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 1965, 208, 239–241. [Google Scholar] [CrossRef]
- Pitout, J.D. Infections with extended-spectrum beta-lactamase-producing Enterobacteriaceae: Changing epidemiology and drug treatment choices. Drugs 2010, 70, 313–333. [Google Scholar] [CrossRef]
- Mshana, S.E.; Imirzalioglu, C.; Hain, T.; Domann, E.; Lyamuya, E.F.; Chakraborty, T. Multiple ST clonal complexes, with a predominance of ST131, of Escherichia coli harbouring blaCTX-M-15 in a tertiary hospital in Tanzania. Clin. Microbiol. Infect. 2011, 17, 1279–1282. [Google Scholar] [CrossRef] [Green Version]
- Maddox, T.W.; Pinchbeck, G.L.; Clegg, P.D.; Wedley, A.L.; Dawson, S.; Williams, N.J. Cross-sectional study of antimicrobial-resistant bacteria in horses. part 2: Risk factors for faecal carriage of antimicrobial-resistant Escherichia coli in horses. Equine Vet. J. 2012, 44, 297–303. [Google Scholar] [CrossRef]
- Wieler, L.H.; Ewers, C.; Guenther, S.; Walther, B.; Lubke-Becker, A. Methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: Nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int. J. Med. Microbiol. 2011, 301, 635–641. [Google Scholar] [PubMed]
- Walther, B.; Lübke-Becker, A.; Stamm, I.; Gehlen, H.; Barton, A.K.; Janssen, T.; Wieler, L.H.; Guenther, S. Suspected nosocomial infections with multi-drug resistant E. coli, including extended-spectrum beta-lactamase (ESBL)-producing strains, in an equine clinic. Berl. Munch. Tierarztl. Wochenschr. 2014, 127, 421–427. [Google Scholar] [PubMed]
- de Lagarde, M.; Larrieu, C.; Praud, K.; Schouler, C.; Doublet, B.; Sallé, G.; Fairbrother, J.M.; Arsenault, J. Prevalence, risk factors, and characterization of multidrug resistant and extended spectrum β-lactamase/AmpC β-lactamase producing Escherichia coli in healthy horses in France in 2015. J. Vet. Intern. Med. 2019, 33, 902–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smet, A.; Boyen, F.; Flahou, B.; Doublet, B.; Praud, K.; Martens, A.; Butaye, P.; Cloeckaert, A.; Haesebrouck, F. Emergence of CTX-M-2-producing Escherichia coli in diseased horses: Evidence of genetic exchanges of blaCTX-M-2 linked to ISCR1. J. Antimicrob. Chemother. 2012, 67, 1289–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, Y.S.; Song, J.W.; Kim, D.H.; Shin, S.; Park, Y.K.; Yang, S.J.; Lim, S.K.; Park, K.T.; Park, Y.H. Isolation and characterization of antimicrobial-resistant Escherichia coli from national horse racetracks and private horse-riding courses in Korea. J. Vet. Sci. 2016, 17, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Huijbers, P.M.; de Kraker, M.; Graat, E.A.; van Hoek, A.H.; van Santen, M.G.; de Jong, M.C.; van Duijkeren, E.; de Greeff, S.C. Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in humans living in municipalities with high and low broiler density. Clin. Microbiol. Infect. 2013, 19, E256–E259. [Google Scholar] [CrossRef] [Green Version]
- Apostolakos, I.; Franz, E.; van Hoek, A.; Florijn, A.; Veenman, C.; Sloet-van Oldruitenborgh-Oosterbaan, M.; Dierikx, C.E. Occurrence and molecular characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses in an equine clinic. J. Antimicrob. Chemother. 2017, 72, 1915–1921. [Google Scholar] [CrossRef] [Green Version]
- Walther, B.; Klein, K.S.; Barton, A.K.; Semmler, T.; Huber, C.; Wolf, S.A.; Tedin, K.; Merle, R.; Mitrach, F.; Guenther, S.; et al. Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Acinetobacter baumannii among horses entering a veterinary teaching hospital: The contemporary “trojan horse”. PLoS ONE 2018, 13, e0191873. [Google Scholar] [CrossRef] [Green Version]
- Quinn, P.J.; Markey, B.K.; Leonard, F.C.; Hartigan, P.; Fanning, S.; Fitzpatrick, E. Veterinary Microbiology and Microbial Disease: Pathogenic Bacteria; Wiley-Blackwell, Ltd.: Oxford, UK, 2011; pp. 1–286. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Pitout, J.D.; Thomson, K.S.; Hanson, N.D.; Ehrhardt, A.F.; Moland, E.S.; Sanders, C.C. Beta-lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob. Agents Chemother. 1998, 42, 1350–1354. [Google Scholar] [CrossRef] [Green Version]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J. Antimicrob. Chemother. 2005, 57, 154–155. [Google Scholar] [CrossRef] [Green Version]
- Coordinators, N.R. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018, 46, D8–D13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.J.; Lee, J.H.; Kwon, D.B.; Jeon, J.H.; Park, K.S.; Lee, C.R.; Lee, S.H. Fast and accurate large-scale detection of beta-lactamase genes conferring antibiotic resistance. Antimicrob. Agents Chemother. 2015, 59, 5967–5975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alikhan, N.F.; Zhou, Z.; Sergeant, M.J.; Achtman, M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018, 14, e1007261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [Green Version]
- Osei Sekyere, J.; Govinden, U.; Bester, L.A.; Essack, S.Y. Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: Emerging resistance mechanisms and detection methods. J. Appl. Microbiol. 2016, 121, 601–617. [Google Scholar] [CrossRef]
- Timonin, M.E.; Poissant, J.; McLoughlin, P.D.; Hedlin, C.E.; Rubin, J.E. A survey of the antimicrobial susceptibility of Escherichia coli isolated from Sable Island horses. Can. J. Microbiol. 2016, 63, 246–251. [Google Scholar] [CrossRef]
- Weese, J.; Baptiste, K.; Baverud, V.; Toutain, P.E. Guidelines for Antimicrobial Use in Horses, 1st ed.; Blackwell Publishing Ltd.: Ames, IA, USA, 2008. [Google Scholar]
- Schaufler, K.; Semmler, T.; Wieler, L.H.; Trott, D.J.; Pitout, J.; Peirano, G.; Bonnedahl, J.; Dolejska, M.; Literak, I.; Fuchs, S.; et al. Genomic and functional analysis of emerging virulent and multidrug-resistant Escherichia coli lineage sequence type 648. Antimicrob. Agents Chemother. 2019, 63, e00243-19. [Google Scholar] [CrossRef] [Green Version]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Ewers, C.; Bethe, A.; Stamm, I.; Grobbel, M.; Kopp, P.A.; Guerra, B.; Stubbe, M.; Doi, Y.; Zong, Z.; Kola, A.; et al. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: Another pandemic clone combining multiresistance and extraintestinal virulence? J. Antimicrob. Chemother. 2014, 69, 1224–1230. [Google Scholar] [CrossRef] [Green Version]
- Guenther, S.; Grobbel, M.; Beutlich, J.; Bethe, A.; Friedrich, N.D.; Goedecke, A.; Lubke-Becker, A.; Guerra, B.; Wieler, L.H.; Ewers, C. CTX-M-15-type extended-spectrum beta-lactamases-producing Escherichia coli from wild birds in Germany. Environ. Microbiol. Rep. 2010, 2, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Roer, L.; Overballe-Petersen, S.; Hansen, F.; Schønning, K.; Wang, M.; Røder, B.L.; Hansen, D.S.; Justesen, U.S.; Andersen, L.P.; Fulgsang-Damgaard, D.; et al. Escherichia coli sequence type 410 is causing new international high-risk clones. mSphere 2018, 3, e00337-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidjabat, H.E.; Paterson, D.L.; Adams-Haduch, J.M.; Ewan, L.; Pasculle, A.W.; Muto, C.A.; Tian, G.B.; Doi, Y. Molecular epidemiology of CTX-M-producing Escherichia coli isolates at a tertiary medical center in western Pennsylvania. Antimicrob. Agents Chemother. 2009, 53, 4733–4739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavroidi, A.; Miriagou, V.; Malli, E.; Stefos, A.; Dalekos, G.N.; Tzouvelekis, L.S.; Petinaki, E. Emergence of Escherichia coli sequence type 410 (ST410) with KPC-2 β-lactamase. Int. J. Antimicrob. Agents 2012, 39, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Huber, H.; Zweifel, C.; Wittenbrink, M.M.; Stephan, R. ESBL-producing uropathogenic Escherichia coli isolated from dogs and cats in Switzerland. Vet. Microbiol. 2013, 162, 992–996. [Google Scholar] [CrossRef]
- López-Cerero, L.; Egea, P.; Serrano, L.; Navarro, D.; Mora, A.; Blanco, J.; Doi, Y.; Paterson, D.L.; Rodríguez-Baño, J.; Pascual, A. Characterisation of clinical and food animal Escherichia coli isolates producing CTX-M-15 extended-spectrum β-lactamase belonging to ST410 phylogroup A. Int. J. Antimicrob. Agents 2011, 37, 365–367. [Google Scholar] [CrossRef]
- Silva, K.C.; Moreno, M.; Cabrera, C.; Spira, B.; Cerdeira, L.; Lincopan, N.; Moreno, A.M. First characterization of CTX-M-15-producing Escherichia coli strains belonging to sequence type (ST) 410, ST224, and ST1284 from commercial swine in South America. Antimicrob. Agents Chemother. 2016, 60, 2505–2508. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Rodríguez, I.; Baumann, B.; Guiral, E.; Beutin, L.; Schroeter, A.; Kaesbohrer, A.; Pfeifer, Y.; Helmuth, R.; Guerra, B. blaCTX-M-15-carrying Escherichia coli and Salmonella isolates from livestock and food in Germany. J. Antimicrob. Chemother. 2014, 69, 2951–2958. [Google Scholar] [CrossRef] [Green Version]
- Schaufler, K.; Semmler, T.; Wieler, L.H.; Wöhrmann, M.; Baddam, R.; Ahmed, N.; Müller, K.; Kola, A.; Fruth, A.; Ewers, C.; et al. Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410—Another successful pandemic clone? FEMS Microbiol. Ecol. 2015, 92. [Google Scholar]
- Yamaji, R.; Friedman, C.R.; Rubin, J.; Suh, J.; Thys, E.; McDermott, P.; Hung-Fan, M.; Riley, L.W. A population-based surveillance study of shared genotypes of Escherichia coli isolates from retail meat and suspected cases of urinary tract infections. mSphere 2018, 3, e00179-18. [Google Scholar] [CrossRef] [Green Version]
- Schink, A.K.; Kadlec, K.; Kaspar, H.; Mankertz, J.; Schwarz, S. Analysis of extended-spectrum-β-lactamase-producing Escherichia coli isolates collected in the GERM-Vet monitoring programme. J. Antimicrob. Chemother. 2013, 68, 1741–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aizawa, J.; Neuwirt, N.; Barbato, L.; Neves, P.R.; Leigue, L.; Padilha, J.; Pestana de Castro, A.F.; Gregory, L.; Lincopan, N. Identification of fluoroquinolone-resistant extended-spectrum beta-lactamase (CTX-M-8)-producing Escherichia coli ST224, ST2179 and ST2308 in buffalo (Bubalus bubalis). J. Antimicrob. Chemother. 2014, 69, 2866–2869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guenther, S.; Aschenbrenner, K.; Stamm, I.; Bethe, A.; Semmler, T.; Stubbe, A.; Stubbe, M.; Batsajkhan, N.; Glupczynski, Y.; Wieler, L.H.; et al. Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS ONE 2012, 7, e53039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eklund, M.; Thomson, K.; Jalava, J.; Niiinistö, K.; Grönthal, T.; Piiparinen, H.; Rantala, M. Epidemiological comparison of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae from equine patients at the finnish veterinary teaching hospital in 2011–2014. ePoster ECMID 2015. Diagn. Bacteriol. Gen. Microbiol. 2015. Unpublished work. [Google Scholar]
- Lv, L.; Cao, Y.; Yu, P.; Huang, R.; Wang, J.; Wen, Q.; Zhi, C.; Zhang, Q.; Liu, J.H. Detection of mcr-1 gene among Escherichia coli isolates from farmed fish and characterization of mcr-1 bearing IncP plasmids. Antimicrob. Agents Chemother. 2018, 62, e02378-17. [Google Scholar] [CrossRef] [Green Version]
- Dierikx, C.M.; van Duijkeren, E.; Schoormans, A.H.W.; van Essen-Zandbergen, A.; Veldman, K.; Kant, A.; Huijsdens, X.W.; van der Zwaluw, K.; Wagenaar, J.A.; Mevius, D.J. Occurrence and characteristics of extended-spectrum-β-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J. Antimicrob. Chemother. 2012, 67, 1368–1374. [Google Scholar] [CrossRef]
- Fu, T.; Du, X.D.; Cheng, P.P.; Li, X.R.; Zhao, X.F.; Pan, Y.S. Characterization of an rmtB-carrying IncI1 ST136 plasmid in avian Escherichia coli isolates from chickens. J. Med. Microbiol. 2016, 65, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.S.; Feng, Y.; Lv, X.Y.; Duan, J.H.; Chen, J.; Fang, L.X.; Xia, J.; Liao, X.P.; Sun, J.; Liu, Y.H. Emergence of NDM-5- and MCR-1-producing Escherichia coli clones ST648 and ST156 from a single muscovy duck (Cairina moschata). Antimicrob. Agents Chemother. 2016, 60, 6899–6902. [Google Scholar] [CrossRef] [Green Version]
- Geue, L.; Schares, S.; Mintel, B.; Conraths, F.J.; Muller, E.; Ehricht, R. Rapid microarray-based genotyping of enterohemorrhagic Escherichia coli serotype O156:H25/H-/Hnt isolates from cattle and clonal relationship analysis. Appl. Environ. Microbiol. 2010, 76, 5510–5519. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, M.C.F.; Ahrenfeldt, J.; Cisneros, J.L.B.; Jurtz, V.; Larsen, M.V.; Hasman, H.; Aarestrup, F.M.; Lund, O. A bacterial analysis platform: An integrated system for analysing bacterial whole genome sequencing data for clinical diagnostics and surveillance. PLoS ONE 2016, 11, e0157718. [Google Scholar] [CrossRef] [Green Version]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Picard, B.; Garcia, J.S.; Gouriou, S.; Duriez, P.; Brahimi, N.; Bingen, E.; Elion, J.; Denamur, E. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect. Immun. 1999, 67, 546–553. [Google Scholar] [PubMed]
- Lambrecht, E.; Van Coillie, E.; Van Meervenne, E.; Boon, N.; Heyndrickx, M.; Van de Wiele, T. Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). Int. J. Food Microbiol. 2019, 311, 108357. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Saralaya, V.; Adhikari, P.; Shenoy, S.; Baliga, S.; Hegde, A. Characterization of Escherichia coli Phylogenetic Groups Associated with Extraintestinal Infections in South Indian Population. Ann. Med. Health Sci. Res. 2015, 5, 241–246. [Google Scholar] [PubMed] [Green Version]
- Mammeri, H.; Poirel, L.; Nordmann, P. Extension of the hydrolysis spectrum of AmpC β-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix. J. Antimicrob. Chemother. 2007, 60, 490–494. [Google Scholar] [CrossRef]
- Miriagou, V.; Cornaglia, G.; Edelstein, M.; Galani, I.; Giske, C.G.; Gniadkowski, M.; Malamou-Lada, E.; Martinez-Martinez, L.; Navarro, F.; Nordmann, P.; et al. Acquired carbapenemases in Gram-negative bacterial pathogens: Detection and surveillance issues. Clin. Microbiol. Infect. 2010, 16, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [Green Version]
Antimicrobials | Isolates Tested | # Resistant Isolates a | % Resistant Isolates | 95% CI Lower | 95% CI Upper | <0.015 | 0.015 | 0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1028 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amikacin b | 123 | ^ | 90.24 | 6.5 | 0 | 1.63 | 1.63 | ||||||||||||||||
Amikacin d | 36 | 0 | 0.00 | 0 | 9.74 * | 86.11 | 5.56 | 8.33 | 0 | ||||||||||||||
Amoxacillin/ Clavulanic Acid c | 48 | 4 | 8.33 | 2.32 | 19.98 | 4.17 | 16.67 | 31.25 | 27.08 | 6.25 | 2.08 | ||||||||||||
Amoxacillin/ Clavulanic Acid d | 36 | 3 | 8.33 | 1.75 | 22.47 | 0 | 38.89 | 52.78 | 0 | 5.56 | 2.78 | ||||||||||||
Ampicillin b | 123 | 27 | 21.95 | 14.99 | 30.31 | 5.69 | 33.33 | 35.77 | 2.44 | 0.81 | 0.81 | 21.14 | |||||||||||
Ampicillin c | 48 | 21 | 43.75 | 29.48 | 58.82 | 8.33 | 22.92 | 20.83 | 4.17 | 0 | 0 | 43.75 | |||||||||||
Ampicillin d | 36 | ^ | 5.56 | 19.44 | 13.89 | 0 | 0 | 61.11 | |||||||||||||||
Azithromycin b | 123 | ^ | 4.07 | 15.45 | 50.41 | 30.08 | |||||||||||||||||
Azithromycin c | 48 | 7 | 14.58 | 6.07 | 27.76 | 4.17 | 12.5 | 52.08 | 14.58 | 2.08 | 14.58 | ||||||||||||
Cefazolin ‡b | 123 | ^ | 91.87 | 2.44 | 0 | 5.69 | |||||||||||||||||
Cefazolin ‡d | 36 | ^ | 0 | 80.56 | 8.33 | 11.11 | |||||||||||||||||
Cefoxitin c | 48 | 4 | 8.33 | 2.32 | 19.98 | 22.92 | 47.92 | 14.58 | 6.25 | 0 | 8.33 | ||||||||||||
Cefoxitin d | 36 | 0 | 0.00 | 0 | 9.74 * | 38.89 | 41.67 | 11.11 | 8.33 | ||||||||||||||
Cefpodoxime d | 36 | 5 | 13.89 | 4.67 | 29.50 | 80.56 | 5.56 | 2.78 | 11.11 | ||||||||||||||
Ceftazodime b | 123 | 4 | 3.25 | 0.89 | 8.12 | 95.93 | 0.81 | 0 | 0 | 1.63 | 0 | 0 | 1.63 | ||||||||||
Ceftiofur b | 123 | ^ | 44.72 | 48.78 | 0.81 | 0.81 | 0.81 | 4.07 | |||||||||||||||
Ceftiofur c | 48 | 13 | 27.08 | 15.28 | 41.85 | 2.08 | 18.75 | 35.42 | 10.42 | 4.17 | 2.08 | 0 | 27.08 | ||||||||||
Ceftiofur d | 36 | ^ | 50 | 27.78 | 5.56 | 5.56 | 2.78 | 8.33 | |||||||||||||||
Ceftriaxone c | 48 | 14 | 29.17 | 16.95 | 44.06 | 62.5 | 2.08 | 2.08 | 4.17 | 2.08 | 0 | 2.08 | 6.25 | 2.08 | 16.67 | ||||||||
Cephalothin d | 36 | ^ | 13.89 | 27.78 | 36.11 | 22.22 | |||||||||||||||||
Chloramphenicol b | 123 | 23 | 18.70 | 12.24 | 26.72 | 37.4 | 37.4 | 6.5 | 2.44 | 16.26 | |||||||||||||
Chloramphenicol c | 48 | 14 | 29.17 | 16.95 | 44.06 | 6.25 | 22.92 | 33.33 | 8.33 | 2.08 | 27.08 | ||||||||||||
Chloramphenicol d | 36 | ^ | 36.11 | 38.89 | 0 | 25 | |||||||||||||||||
Ciprofloxacin c | 48 | 14 | 29.17 | 16.95 | 44.06 | 64.58 | 2.08 | 0 | 0 | 4.17 | 0 | 0 | 0 | 29.17 | |||||||||
Doxycycline b | 123 | 32 | 26.02 | 18.52 | 34.70 | 65.04 | 7.32 | 1.63 | 8.13 | 17.89 | |||||||||||||
Enrofloxacin b | 123 | ^ | 88.62 | 0.81 | 1.63 | 0 | 8.94 | ||||||||||||||||
Enrofloxacin d | 36 | 5 | 13.89 | 4.67 | 29.50 | 86.11 | 0 | 0 | 0 | 13.89 | |||||||||||||
Gentamicin b | 123 | ^ | 69.92 | 6.5 | 1.63 | 0.81 | 21.14 | ||||||||||||||||
Gentamicin c | 48 | 18 | 37.50 | 23.95 | 52.65 | 10.42 | 39.58 | 10.42 | 0 | 2.08 | 0 | 37.5 | |||||||||||
Gentamicin d | 36 | ^ | 44.44 | 8.33 | 0 | 0 | 47.22 | ||||||||||||||||
Imipenem b | 123 | 0 | 0.00 | 0.00 | 2.95* | 100 | 0 | 0 | |||||||||||||||
Imipenemd | 36 | 0 | 0.00 | 0.00 | 9.74* | 100 | 0 | 0 | |||||||||||||||
Marbofloxacin d | 36 | ^ | 86.11 | 2.78 | 0 | 0 | 11.11 | ||||||||||||||||
Naladixic Acid c | 48 | 14 | 29.17 | 16.95 | 44.06 | 12.5 | 39.58 | 14.58 | 4.17 | 0 | 0 | 29.17 | |||||||||||
Orbifloxacin d | 36 | ^ | 86.11 | 0 | 2.78 | 11.11 | |||||||||||||||||
Streptomycin c | 48 | 10 | 20.83 | 10.47 | 34.99 | 4.17 | 52.08 | 16.67 | 6.25 | 0 | 20.83 | ||||||||||||
Sulfisoxazole c | 48 | ^ | 50 | 8.33 | 0 | 2.08 | 0 | 39.58 | |||||||||||||||
Tetracycline b | 123 | ^ | 69.92 | 1.63 | 0.81 | 27.64 | |||||||||||||||||
Tetracycline c | 48 | 24 | 50.00 | 35.23 | 64.77 | 50 | 0 | 0 | 4.17 | 45.83 | |||||||||||||
Tetracycline d | 36 | ^ | 47.22 | 0 | 0 | 52.78 | |||||||||||||||||
Ticarcillin b | 123 | ^ | 77.24 | 0 | 0 | 0.81 | 21.95 | ||||||||||||||||
Ticarcillin d | 36 | ^ | 36.11 | 2.78 | 5.56 | 2.78 | 52.78 | ||||||||||||||||
Ticarcillin/ Clavulanic acid b | 123 | ^ | 88.62 | 4.07 | 3.25 | 0.81 | 3.25 | ||||||||||||||||
Ticarcillin/ Clavulanic acid d | 36 | 0 | 0.00 | 0.00 | 9.74* | 72.22 | 16.67 | 8.33 | 2.78 | ||||||||||||||
Trimethoprim-Sulfamethoxazole b | 123 | 45 | 36.59 | 28.09 | 45.75 | 62.6 | 0.81 | 0 | 36.59 | ||||||||||||||
Trimethoprim-Sulfamethoxazole c | 48 | 19 | 39.58 | 25.77 | 54.73 | 60.42 | 0 | 0 | 0 | 0 | 0 | 39.58 | |||||||||||
Trimethoprim-Sulfamethoxazole d | 36 | ^ | 33.33 | 5.56 | 0 | 61.11 |
Antimicrobial | MIC (μg/mL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1A | E2A | E3A | E4A | E4B | E4C | E5A | E6A | E7ARL | E7ADS | E8A | E8B | E9A | |
Cefazolin a | >16 | >16 | 16 | >16 | 16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 |
Cefepime | 16 | 2 | ≤1 | 16 | ≤1 | >16 | 16 | 8 | 2 | 4 | 16 | >16 | ≤1 |
Cefotaxime | 64 | 16 | 0.5 | >64 | 1 | >64 | >64 | >64 | 8 | 16 | >64 | >64 | 1 |
Cefotaxime/Clavulanic acid | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | 0.25 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | 8 | ≤0.12 |
Cefoxitin | 16 | ≤4 | ≤4 | 16 | ≤4 | 32 | 8 | 8 | ≤4 | ≤4 | 8 | >64 | 8 |
Cefpodoxime | >32 | >32 | 8 | >32 | 4 | >32 | >32 | >32 | >32 | >32 | >32 | >32 | 4 |
Ceftazidime | 8 | 4 | 4 | 16 | 16 | 16 | 64 | 0.5 | 2 | 2 | 16 | 64 | 16 |
Ceftazidime/Clavulanic acid | 0.25 | ≤0.12 | ≤0.12 | 0.25 | ≤0.12 | 0.5 | 0.5 | ≤0.12 | 0.50 | 0.25 | 0.25 | 16 | ≤0.12 |
Ceftriaxone | 128 | 32 | ≤1 | 128 | ≤1 | >128 | >128 | 32 | 64 | 32 | 128 | 128 | 2 |
Cephalothin | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 |
Ciprofloxacin | >2 | >2 | ≤1 | >2 | >2 | >2 | >2 | >2 | ≤1 | ≤1 | >2 | >2 | >2 |
Imipenem | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 |
Meropenem | ≤1 | ≤1 | ≤1 | ≤1 | ≤1 | ≤1 | ≤1 | ≤1 | ≤1 | ≤1 | ≤1 | ≤1 | ≤ 1 |
Piperacillin-Tazobactam | 8 | ≤4 | ≤4 | 16 | ≤4 | 16 | 16 | ≤ 4 | ≤4 | ≤4 | 16 | 16 | ≤ 4 |
Isolate ID | bla Gene Type Detected Using large-scalebla Finder Kit | bla Gene Name by Sequencing of Simplex PCR Products Using Long-Length Primer Pairs of large-scalebla Finder Kit to Detect Each ORF (GenBank Accession No. of Gene) | Phylogroup | MLST |
---|---|---|---|---|
E1A17025 | TEM type | Two silent mutations (C228T and G396T) in blaTEM-1 (J01749) | D | 648 |
E2A28099DS | TEM type | Two silent mutations (C228T and G396T) in blaTEM-1 (J01749) | B1 | 167 |
BER type | blaBERa (EF125541) | |||
BER type | blaBERa (EF125541) | |||
E3A31074 | TEM type | Two silent mutations (C228T and G396T) in blaTEM-1 (J01749) | B1 | 1308 |
SHV type | blaSHV-12a (AY008838) | |||
BER type | Five silent mutations (T375C, G378A, C387T, T477G, and T576A) in blaBER (EF125541) | |||
E4A39024 | BER type | blaBERa (EF125541) | B2 | 648 |
E4B39025 | TEM type | Two silent mutations (C228T and G396T) in blaTEM-1 (J01749) | B1 | 224 |
BER type | blaBERa (EF125541) | |||
E4C44009 | CTX-M-1 type | blaCTX-M-3a (AB976577) | D | 648 |
BER type | blaBERa (EF125541) | |||
E5A41032 | TEM type | Two silent mutations (C228T and G396T) in blaTEM-1 (J01749) | B2 | 410 |
SHV type | blaSHV-12a (AY008838) | |||
BER type | blaBER-v2 (blaBER variant 2) with five silent mutations (T375C, G378A, C387T, T477G, and T576A) and four nucleotide substitutions (G245A, G313A, G469A, and G1012A) in blaBER (EF125541), which caused four amino acid substitutions (S82N, A105T, A157T, and G338S) in BER (ABM69263) and was called as BER-v2 (BER variant 2) | |||
OXA-1 type | blaOXA-1a (GU119958) | |||
E6A43048 | TEM type | Two silent mutations (C228T and G396T) in blaTEM-1 (J01749) | D | 648 |
BER type | blaBER-v1 (blaBER variant 1) with five silent mutations (T375C, G378A, C387T, T477G, and T576A) and two nucleotide substitutions (G469A and G1012A) in blaBER (EF125541), which caused two amino acid substitutions (A157T and G338S) in BER (ABM69263) and was called as BER-v1 (BER variant 1) | |||
E7A44050DS | CTX-M-1 type | blaCTX-M-3a (AB976577) | A | 10 |
IMP type | blaIMP-1a (AB472901) | |||
BER type | blaBERa (EF125541) | |||
E7A44050RL | BER type | blaBERa (EF125541) | A | 10 |
E8A49072 | TEM type | Two silent mutations (C228T and G396T) in blaTEM-1 (J01749) | A | 410 |
CTX-M-1 type | blaCTX-M-3a (AB976577) | |||
BER type | blaBERa (EF125541) | |||
OXA-1 type | blaOXA-1a (GU119958) | |||
E8B49043 | TEM type | Two silent mutations (C228T and G396T) in blaTEM-1 (J01749) | A | 410 |
CTX-M-1 type | blaCTX-M-3a (AB976577) | |||
BER type | blaBERa (EF125541) | |||
OXA-1 type | blaOXA-1a (GU119958) | |||
E9A52022 | TEM type | blaTEM-233a (MH270416) | B1 | 156 |
SHV type | blaSHV-12a (AY008838) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elias, L.; Gillis, D.C.; Gurrola-Rodriguez, T.; Jeon, J.H.; Lee, J.H.; Kim, T.Y.; Lee, S.H.; Murray, S.A.; Ohta, N.; Scott, H.M.; et al. The Occurrence and Characterization of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolated from Clinical Diagnostic Specimens of Equine Origin. Animals 2020, 10, 28. https://doi.org/10.3390/ani10010028
Elias L, Gillis DC, Gurrola-Rodriguez T, Jeon JH, Lee JH, Kim TY, Lee SH, Murray SA, Ohta N, Scott HM, et al. The Occurrence and Characterization of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolated from Clinical Diagnostic Specimens of Equine Origin. Animals. 2020; 10(1):28. https://doi.org/10.3390/ani10010028
Chicago/Turabian StyleElias, Leta, David C. Gillis, Tanya Gurrola-Rodriguez, Jeong Ho Jeon, Jung Hun Lee, Tae Yeong Kim, Sang Hee Lee, Sarah A. Murray, Naomi Ohta, Harvey Morgan Scott, and et al. 2020. "The Occurrence and Characterization of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolated from Clinical Diagnostic Specimens of Equine Origin" Animals 10, no. 1: 28. https://doi.org/10.3390/ani10010028
APA StyleElias, L., Gillis, D. C., Gurrola-Rodriguez, T., Jeon, J. H., Lee, J. H., Kim, T. Y., Lee, S. H., Murray, S. A., Ohta, N., Scott, H. M., Wu, J., & Rogovskyy, A. S. (2020). The Occurrence and Characterization of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolated from Clinical Diagnostic Specimens of Equine Origin. Animals, 10(1), 28. https://doi.org/10.3390/ani10010028