Differential Somatic Cell Count as a Marker for Changes of Milk Composition in Cows with Very Low Somatic Cell Count
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Herd and Cow Selection
2.2. Sample Collection
2.3. Milk Composition Analysis
2.4. Repeatibility of the SCC and DSCC Measures
2.5. Molecular Analysis
2.6. Cow and Milk Test Record Data
2.7. Statistical Analysis
3. Results
3.1. Repeatability
3.2. Field Trial—Data Description
3.3. Intramammary Infections and DSCC
3.4. DSCC, Milk Composition and Yield
4. Discussion
4.1. Repeatibility
4.2. Field Trial—Data Description
4.3. Intramammary Infections and DSCC
4.4. DSCC, Milk Composition and Yield
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sargeant, J.M.; Leslie, K.E.; Shirley, J.E.; Pulkrabek, B.J.; Lim, G.H. Sensitivity and specificity of somatic cell count and California Mastitis Test for identifying intramammary infection in early lactation. J. Dairy Sci. 2001, 84, 2018–2024. [Google Scholar] [CrossRef]
- Ferronatto, J.A.; Ferronatto, T.C.; Schneider, M.; Pessoa, L.F.; Blagitz, M.G.; Heinemann, M.B.; Della Libera, A.M.M.P.; Souza, F.N. Diagnosing mastitis in early lactation: Use of Somaticell®, California mastitis test and somatic cell count. Ital. J. Anim. Sci. 2018, 17, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Schukken, Y.; Wilson, D.; Welcome, F.; Garrison-Tikofsky, L.; Gonzalez, R. Monitoring udder health and milk quality using somatic cell counts. Vet. Res. 2003, 34, 579–596. [Google Scholar] [CrossRef] [Green Version]
- Piccinini, R.; Binda, E.; Belotti, M.; Dapra, V.; Zecconi, A. Evaluation of milk components during whole lactation in healthy quarters. J. Dairy Res. 2007, 74, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.; Dohoo, I.R.; Riekerink, R.O.; Stryhn, H.; Mastitis Res Workers, C. Diagnosing intramammary infections: Evaluating expert opinions on the definition of intramammary infection using conjoint analysis. J. Dairy Sci. 2010, 93, 2966–2975. [Google Scholar] [CrossRef] [Green Version]
- Dufour, S.; Dohoo, I.R. Monitoring herd incidence of intramammary infection in lactating cows using repeated longitudinal somatic cell count measurements. J. Dairy Sci. 2013, 96, 1568–1580. [Google Scholar] [CrossRef]
- Vangroenweghe, F.; Dosogne, H.; Burvenich, C. Composition and milk cell characteristics in quarter milk fractions of dairy cows with low cell count. Vet. J. 2002, 164, 254–260. [Google Scholar] [CrossRef]
- Lindmark-Mansson, H.; Branning, C.; Alden, G.; Paulsson, M. Relationship between somatic cell count, individual leukocyte populations and milk components in bovine udder quarter milk. Int. Dairy J. 2006, 16, 717–727. [Google Scholar] [CrossRef]
- Schwarz, D.; Diesterbeck, U.S.; Konig, S.; Brugemann, K.; Schlez, K.; Zschock, M.; Wolter, W.; Czerny, C.P. Flow cytometric differential cell counts in milk for the evaluation of inflammatory reactions in clinically healthy and subclinically infected bovine mammary glands. J. Dairy Sci. 2011, 94, 5033–5044. [Google Scholar] [CrossRef] [Green Version]
- Zecconi, A.; Vairani, D.; Cipolla, M.; Rizzi, N.; Zanini, L. Assessment of Subclinical Mastitis Diagnostic Accuracy by Differential Cell Count in Individual Cow Milk. Ital. J. Anim. Sci. 2018, 18, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Cuccuru, C.; Moroni, P.; Zecconi, A.; Casu, S.; Caria, A.; Contini, A. Milk differential cell counts in relation to total counts in Sardinian ewes. Small Ruminant Res. 1997, 25, 169–173. [Google Scholar] [CrossRef]
- Hamann, J. Relationship between somatic cell counts and milk composition. Bulletin FIL-IDF 2002, 372, 56–59. [Google Scholar]
- Merle, R.; Schroder, A.; Hamann, J. Cell function in the bovine mammary gland: A preliminary study on interdependence of healthy and infected udder quarters. J. Dairy Res. 2007, 74, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Trevisi, E.; Zecconi, A.; Bertoni, G.; Piccinini, R. Blood and milk immune and inflammatory profiles in periparturient dairy cows showing different liver activity index. J. Dairy Res. 2010, 77, 310–317. [Google Scholar] [CrossRef]
- Koess, C.; Hamann, J. Detection of mastitis in the bovine mammary gland by flow cytometry at early stages. J. Dairy Res. 2008, 75, 225–232. [Google Scholar] [CrossRef]
- Damm, M.; Holm, C.; Blaabjerg, M.; Bro, M.N.; Schwarz, D. Differential somatic cell count-A novel method for routine mastitis screening in the frame of Dairy Herd Improvement testing programs. J. Dairy Sci. 2017, 100, 4926–4940. [Google Scholar] [CrossRef] [Green Version]
- Zecconi, A.; Sesana, G.; Vairani, D.; Cipolla, M.; Rizzi, N.; Zanini, L. Somatic Cell Count as a Decision Tool for Selective Dry Cow Therapy in Italy. Ital. J. Anim. Sci. 2018, 17, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mahmmod, Y.S.; Mweu, M.M.; Nielsen, S.S.; Katholm, J.; Klaas, I.C. Effect of carryover and presampling procedures on the results of real-time PCR used for diagnosis of bovine intramammary infections with Streptococcus agalactiae at routine milk recordings. Prev. Vet. Med. 2014, 113, 512–521. [Google Scholar] [CrossRef]
- Faye, B.; Perochon, L.; Dorr, N.; Gasqui, P. Relationship between individual cow udder health status in early lactation and dairy cow characteristics in Brittany, France. Vet. Res. 1998, 29, 31–46. [Google Scholar]
- Hagnestam-Nielsen, C.; Emanuelson, U.; Berglund, B.; Strandberg, E. Relationship between somatic cell count and milk yield in different stages of lactation. J. Dairy Sci. 2009, 92, 3124–3133. [Google Scholar] [CrossRef]
- Zecconi, A.; Piccinini, R. Intramammary Infections: Epidemiology and Diagnosis; Klinik für Rinderkrankheiten: Hannover, Germany, 2002. [Google Scholar]
- Zecconi, A.; Binda, E.; Borromeo, V.; Piccinini, R. Relationship between some Staphylococcus aureus pathogenic factors and growth rates or somatic cell counts. J. Dairy Res. 2005, 72, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Forsback, L.; Lindmark-Mansson, H.; Andren, A.; Svennersten-Sjaunja, K. Evaluation of quality changes in udder quarter milk from cows with low-to-moderate somatic cell counts. Animal 2010, 4, 617–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Roux, Y.; Laurent, F.; Moussaoui, F. Polymorphonuclear proteolytic activity and milk composition change. Vet. Res. 2003, 34, 629–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wellnitz, O.; Zbinden, C.; Luttgenau, J.; Bollwein, H.; Bruckmaier, R.M. Different chronological patterns of appearance of blood derived milk components during mastitis indicate different mechanisms of transfer from blood into milk. J. Dairy Res. 2015, 82, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, N.I.; Larsen, T.; Bjerring, M.; Ingvartsen, K.L. Quarter health, milking interval, and sampling time during milking affect the concentration of milk constituents. J. Dairy Sci. 2005, 88, 3186–3200. [Google Scholar] [CrossRef] [Green Version]
- Bruckmaier, R.M.; Wellnitz, O. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Pathogen-specific immune response and changes in the blood-milk barrier of the bovine mammary gland. J. Anim. Sci. 2017, 95, 5720–5728. [Google Scholar] [CrossRef]
- Kessler, E.C.; Wall, S.K.; Hernandez, L.L.; Gross, J.J.; Bruckmaier, R.M. Short communication: Mammary gland tight junction permeability after parturition is greater in dairy cows with elevated circulating serotonin concentrations. J. Dairy Sci. 2019, 102, 1768–1774. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.A.D.; Neville, M.C. Tight junction regulation in the mammary gland. J. Mammary Gland Biol. Neoplasia 1998, 3, 233–246. [Google Scholar] [CrossRef]
Statistics | Trial 1 | Trial 2 | Trial 3 | Trial 4 | Trial 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Instrument 1 | Instrument 2 | Instrument 1 | Instrument 2 | Instrument 1 | Instrument 2 | Instrument 1 | Instrument 2 | Instrument 1 | Instrument 2 | |
SCC | ||||||||||
Mean | 40 | 39 | 43 | 44 | 46 | 48 | 41 | 43 | 44 | 44 |
Std. Dev. | 3.62 | 2.37 | 2.09 | 2.97 | 2.54 | 3.82 | 2.09 | 2.67 | 2.48 | 2.78 |
CV % 3 | 9 | 6 | 5 | 7 | 6 | 8 | 5 | 6 | 6 | 6 |
Min | 33 | 39 | 39 | 38 | 41 | 42 | 38 | 37 | 38 | 39 |
Max | 47 | 48 | 47 | 51 | 50 | 53 | 45 | 47 | 48 | 49 |
Range | 14 | 9 | 8 | 13 | 9 | 11 | 7 | 10 | 10 | 10 |
DSCC | ||||||||||
Mean | 40.0 | 37.7 | 66.7 | 66.4 | 60.2 | 59.0 | 59.6 | 60.2 | 57.8 | 56.3 |
Std. Dev. | 2.80 | 2.39 | 2.65 | 2.56 | 2.90 | 2.90 | 2.91 | 3.25 | 3.28 | 1.94 |
CV % | 9 | 6 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 3 |
Min | 35.3 | 34.7 | 61.1 | 61.4 | 54.1 | 54.7 | 54.2 | 54.7 | 52.1 | 52.5 |
Max | 44.3 | 42.5 | 71.3 | 72.1 | 65.9 | 65.8 | 65.9 | 66.3 | 62.1 | 61.3 |
Range | 9.0 | 7.8 | 10.2 | 10.7 | 11.8 | 11.3 | 11.7 | 11.6 | 10 | 8.8 |
Statistics | Samples ≤ 50,000 Cells/mL | Samples > 50,000 Cells/mL | ||||||
---|---|---|---|---|---|---|---|---|
SCC 1/mL | SCS 2 (Units) | DSCC 3 (%) | Yield (kg/d) | SCC/mL | SCS (Units) | DSCC (%) | Yield (kg/d) | |
Mean | 28,600 | 4.41 | 50.89 | 35.25 | 506,070 | 5.34 | 67.97 | 30.04 |
Std. Dev. | 11,418 | 0.20 | 13.38 | 9.24 | 1,100,636 | 0.49 | 14.24 | 9.81 |
Min | 5,000 | 3.70 | 12.2 | 15.0 | 51,000 | 4.71 | 5.10 | 4.0 |
Max | 50,000 | 4.70 | 91.6 | 72.0 | 18,242,000 | 7.26 | 93.9 | 69.0 |
Cells/mL | Parity | Total | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | >4 | |||
≤50,000 | N | 460 a, 1 | 266 b | 103c | 41 c | 31 c | 901 |
% | 38.8% | 30.2% | 21.4% | 14.4% | 16.6% | 29.8% | |
>50,000 | N | 726 a | 616 b | 379 c | 244 c | 156 c | 2,121 |
% | 61.2% | 69.8% | 78.6% | 85.6% | 83.4% | 70.2% | |
Total | N | 1,186 | 882 | 482 | 285 | 187 | 3,022 |
% | 39.2% | 29.2% | 15.9% | 9.4% | 6.2% | 100.0% |
Cells/mL | Days in Milk | Total | |||||
---|---|---|---|---|---|---|---|
5–60 | 61–120 | 121–180 | 181–240 | >240 | |||
≤50,000 | N | 238 a, 1 | 227 a | 145 b | 122 b | 169 c | 901 |
% | 43.3% | 41.3% | 31.8% | 28.4% | 16.3% | 28.8% | |
>50,000 | N | 312 a | 323 a | 311 b | 307 b | 868 c | 2,121 |
% | 56.7% | 58.7% | 68.2% | 71.6% | 83.7% | 70.2% | |
Total | N | 550 | 550 | 456 | 429 | 1037 | 3,022 |
% | 18.4% | 18.4% | 15.2% | 14.3% | 33.8% | 100.0% |
Microbiological Results | DSCC 1 (%) | |||
---|---|---|---|---|
12.2–41.2 | 41.3–51.7 | 51.8–60.6 | 60.7–91.6 | |
Negative | 24.5% | 24.4% | 25.4% | 25.8% |
Major pathogens | 27.8% | 27.3% | 25.1% | 19.8% |
Coagulase negative staphylococci | 27.3% | 30.0% | 24.5% | 18.2% |
R2 Model (%) P of the Model | N | Milk Parameters | ||||||
Yield (kg/d) | SCS 2 (units) | Fat % | Protein % | Casein % | Lactose % | |||
55.1 | 15.4 | 26.5 | 45.3 | 46.3 | 25.8 | |||
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||
Herd contribution to R2 (%) | 22.9 | 6.0 | 14.6 | 5.3 | 5.3 | 13.7 | ||
DSCC 3 (%) | P | 0.2965 | <0.0001 1 | 0.0003 | <0.0001 | <0.0001 | 0.2113 | |
Classes | 12.2–41.2 | 227 | 34.5 ± 0.63 | 4.38 ± 0.019 a | 4.25 ± 0.074 a | 3.42 ± 0.027 a | 2.68 ± 0.024 a | 4.83 ± 0.015 |
41.3–51.7 | 225 | 35.0 ± 0.63 | 4.44 ± 0.019 b | 4.11 ± 0.073 b | 3.39 ± 0.027 a | 2.65 ± 0.024 a | 4.84 ± 0.015 | |
51.8–60.6 | 228 | 36.7 ± 0.64 | 4.45 ± 0.019 b | 3.99 ± 0.075 b, c | 3.31 ± 0.027 b | 2.59 ± 0.025 b | 4.86 ± 0.015 | |
60.7–91.6 | 221 | 35.4 ± 0.69 | 4.49 ± 0.020 c | 3.96 ± 0.080 c | 3.30 ± 0.029 b | 2.58 ± 0.026 b | 4.86 ± 0.016 | |
Parity (n) | P | <0.0001 | 0.1497 | 0.2902 | 0.0003 | 0.0003 | <0.0001 | |
Classes | 1 | 460 | 29.5 ± 0.48 a | 4.42 ± 0.014 | 4.00 ± 0.056 | 3.40 ± 0.021 a | 2.67±0.018 a | 4.93±0.011 a |
2 | 266 | 36.1 ± 0.57 b | 4.45 ± 0.017 | 4.10 ± 0.066 | 3.45 ± 0.024 b | 2.70 ± 0.021 a | 4.85 ± 0.014 b | |
3 | 103 | 36.0 ± 0.74 b | 4.46 ± 0.022 | 4.00 ± 0.085 | 3.39 ± 0.0.3 a, b | 2.65 ± 0.028 a | 4.83 ± 0.018 b | |
4 | 41 | 38.4 ± 1.07 c | 4.46 ± 0.032 | 4.04 ± 0.124 | 3.38 ± 0.046 c | 2.56 ± 0.041 b | 4.81 ± 0.026 b | |
>4 | 31 | 35.6 ± 1.24 b, c | 4.43 ± 0.036 | 4.24 ± 0.143 | 3.26 ± 0.053 c | 2.55 ± 0.047 b | 4.82 ± 0.030 b | |
Days in milk (d) | P | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Classes | 5–60 | 248 | 37.6 ± 0.60 a | 4.37 ± 0.018 a | 3.98 ± 0.070 a | 3.31 ± 0.026 a | 2.41 ± 0.023 a | 4.87 ± 0.015 a |
61–120 | 227 | 38.4 ± 0.63 a | 4.41 ± 0.018 b | 3.81 ± 0.073 b | 3.17 ± 0.027 a | 2.46 ± 0.024 b | 4.89 ± 0.015 a | |
121–180 | 145 | 35.7 ± 0.72 b | 4.44 ± 0.021 b, c | 3.93 ± 0.084 b | 3.32 ± 0.031 b | 2.59 ± 0.028 c | 4.86 ± 0.017 a | |
181–240 | 122 | 34.1 ± 0.78 c | 4.47 ± 0.023 c | 4.26 ± 0.091 c | 3.51 ± 0.034 c | 2.77 ± 0.029 d | 4.82 ± 0.019 b | |
>240 | 169 | 29.8 ± 0.70 d | 4.52 ± 0.021 d | 4.40 ± 0.081 c | 3.66 ± 0.030 d | 2.88 ± 0.027 e | 4.80 ± 0.017 b | |
IMI 4 | P | <0.0978 | 0.3555 | 0.1686 | 0.8360 | 0.8634 | 0.7921 | |
Classes | Negative | 714 | 35.1 ± 1.04 | 4.44 ± 0.012 | 4.10 ± 0.051 | 3.37 ± 0.018 | 2.61 ± 0.016 | 4.85 ± 0.010 |
CNS | 99 | 36.3 ± 0.73 | 4.45 ± 0.031 | 3.93 ± 0.121 | 3.34 ± 0.045 | 2.63 ± 0.040 | 4.85 ± 0.017 | |
Major path. | 88 | 33.9 ± 0.73 | 4.44 ± 0.022 | 4.19 ± 0.085 | 3.36 ± 0.031 | 2.63 ± 0.028 | 4.84 ± 0.017 |
Cluster | N | DSCC 2 (%) | SCS 3 (unit) | Fat (%) | Protein (%) | Casein (%) | Lactose (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | ||
A | 274 | 35.04 a. 1 | 6.14 | 4.36 a | 0.20 | 4.19 a | 0.82 | 3.46 a | 0.37 | 2.71 a | 0.33 | 4.86 a | 0.17 |
B | 518 | 54.73 b | 6.32 | 4.43 b | 0.19 | 4.02 b | 0.86 | 3.36 b | 0.35 | 2.63 b | 0.31 | 4.90 b | 0.17 |
C | 109 | 72.47 c | 5.38 | 4.60 b | 0.20 | 3.99 b | 0.72 | 3.27 c | 0.35 | 2.55 c | 0.30 | 4.90 b | 0.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zecconi, A.; Dell’Orco, F.; Vairani, D.; Rizzi, N.; Cipolla, M.; Zanini, L. Differential Somatic Cell Count as a Marker for Changes of Milk Composition in Cows with Very Low Somatic Cell Count. Animals 2020, 10, 604. https://doi.org/10.3390/ani10040604
Zecconi A, Dell’Orco F, Vairani D, Rizzi N, Cipolla M, Zanini L. Differential Somatic Cell Count as a Marker for Changes of Milk Composition in Cows with Very Low Somatic Cell Count. Animals. 2020; 10(4):604. https://doi.org/10.3390/ani10040604
Chicago/Turabian StyleZecconi, Alfonso, Francesca Dell’Orco, Diego Vairani, Nicoletta Rizzi, Micaela Cipolla, and Lucio Zanini. 2020. "Differential Somatic Cell Count as a Marker for Changes of Milk Composition in Cows with Very Low Somatic Cell Count" Animals 10, no. 4: 604. https://doi.org/10.3390/ani10040604
APA StyleZecconi, A., Dell’Orco, F., Vairani, D., Rizzi, N., Cipolla, M., & Zanini, L. (2020). Differential Somatic Cell Count as a Marker for Changes of Milk Composition in Cows with Very Low Somatic Cell Count. Animals, 10(4), 604. https://doi.org/10.3390/ani10040604