Genome-Wide Association Study Demonstrates the Role Played by the CD226 Gene in Rasa Aragonesa Sheep Reproductive Seasonality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Samples
2.2. Measurement of Reproductive Seasonality Traits
2.3. Sampling and Genotyping Analysis
2.4. Data Quality Control and Genome-Wide Association Analysis
2.5. Gene Identification
2.6. Validation of GWAS Results
2.6.1. CD226 and NPY Gene Characterization
2.6.2. CD226 and NPY Polymorphism Genotyping
2.6.3. SNP Association Studies
2.6.4. Haplotype Association Studies
3. Results
3.1. GWAS Results
3.2. Validation Studies
3.3. SNP Association Studies
3.4. Haplotype Association Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosa, H.J.D.; Bryant, M.J. Seasonality of reproduction in sheep. Small Rumin. Res. 2003, 48, 155–171. [Google Scholar] [CrossRef]
- Ortavant, R.; Pelletier, J.; Ravault, J.P.; Thimonier, J.; Volland-Nail, P. Photoperiod: Main proximal and distal factor of the circannual cycle of reproduction in farm mammals. Oxf. Rev. Reprod. Biol. 1985, 7, 305–345. [Google Scholar]
- Ortavant, R.; Bocquier, F.; Pelletier, J.; Ravault, J.P.; Thimonier, J.; Volland-Nail, P. Seasonality of reproduction in sheep and its control by photoperiod. Aust. J. Biol. Sci. 1988, 41, 69–86. [Google Scholar] [CrossRef]
- Martin, G.B.; Kadokawa, H. “Clean, green and ethical” animal production. Case study: Reproductive efficiency in small ruminants. J. Reprod. Dev. 2006, 52, 145–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avdi, M.; Driancourt, M.; Chemineau, P.; Driancourt, M.A. Variations saisonnières du comportement d’oestrus et de l’activité ovulatoire chez les brebis Chios et Serres en Grèce. Reprod. Nutr. Dev. 1993, 33, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Thimonier, J.; Mauléon, P.; Bézard, J.; De Reviers, M.-M.; Cornu, C. Variations saisonnières du comportement d’œstrus et des activités ovarienne et hypophysaire chez les ovins. Ann. Biol. Anim. Biochim. Biophys. 1969, 9, 233–250. [Google Scholar] [CrossRef]
- Folch, J.; Alabart, J.L. Respuesta al efecto macho de ovejas rasa aragonesa según su estado cíclico tratadas o no con melatonina en primavera. ITEA 1999, 20, 339–341. (In Spanish) [Google Scholar]
- Hanocq, E.; Bodin, L.; Thimonier, J.; Teyssier, J.; Malpaux, B.; Chemineau, P. Genetic parameters of spontaneous spring ovulatory activity in Mérinos d’Arles sheep. Genet. Sel. Evol. 1999, 31, 77. [Google Scholar] [CrossRef]
- Avdi, M.; Banos, G.; Kouttos, A.; Bodin, L.; Chemineau, P. Sources of variation and genetic profile of spontaneous, out-of-season ovulatory activity in the Chios sheep. Genet. Sel. Evol. 2003, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrán De Heredia, I.; Ugarte, E.; Malpaux, B.; Canepa, S.; Bodin, L. Genetic aspects of out of season breeding ability in Latxa sheep. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002. [Google Scholar]
- Hazard, D. Seasonality of Reproduction in Sheep: (A) Experimental Project for QTL Detection Influencing Seasonality; (B) Preliminary Results of an Experimental Genetic Selection for Seasonality; AgroParisTech: Paris, France, 2010; pp. 1–43. [Google Scholar]
- Porto-Neto, L.R.; Barendse, W.; Henshall, J.M.; McWilliam, S.M.; Lehnert, S.A.; Reverter, A. Genomic correlation: Harnessing the benefit of combining two unrelated populations for genomic selection. Genet. Sel. Evol. 2015, 47, 84. [Google Scholar] [CrossRef] [Green Version]
- Van Binsbergen, R.; Calus, M.P.L.; Bink, M.C.A.M.; Van Eeuwijk, F.A.; Schrooten, C.; Veerkamp, R.F. Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle. Genet. Sel. Evol. 2015, 47, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschhorn, J.N.; Daly, M.J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 2005, 6, 95–108. [Google Scholar] [CrossRef]
- Pelletier, J.; Bodin, L.; Hanocq, E.; Malpaux, B.; Teyssier, J.; Thimonier, J.; Chemineau, P. Association between expression of reproductive seasonality and alleles of the gene for mel1a receptor in the ewe. Biol. Reprod. 2000, 62, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Notter, D.R.; Cockett, N.E.; Hadfield, T.S. Evaluation of melatonin receptor 1a as a candidate gene influencing reproduction in an autumn-lambing sheep flock. J. Anim. Sci. 2003, 81, 912–917. [Google Scholar] [CrossRef]
- Faigl, V.; Kerestes, M.; Kulcsar, M.; Reiczigel, J.; Cseh, S.; Huszenicza, G.; Arnyasi, M.; Javor, A. Seasonality of reproduction and MT1 receptor gene polymorphism in Awassi sheep. Reprod. Domest. Anim. 2009, 43, 11. [Google Scholar]
- Mura, M.C.; Luridiana, S.; Vacca, G.M.; Bini, P.P.; Carcangiu, V. Effect of genotype at the MTNR1A locus and melatonin treatment on first conception in Sarda ewe lambs. Theriogenology 2010, 74, 1579–1586. [Google Scholar] [CrossRef]
- Mateescu, R.G.; Lunsford, A.K.; Thonney, M.L. Association between melatonin receptor 1A gene polymorphism and reproductive performance in Dorset ewes. J. Anim. Sci. 2009, 87, 2485–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teyssier, J.; Migaud, M.; Debus, N.; Maton, C.; Tillard, E.; Malpaux, B.; Chemineau, P.; Bodin, L. Expression of seasonality in Merinos d’Arles ewes of different genotypes at the MT1 melatonin receptor gene. Animal 2011, 5, 329–336. [Google Scholar] [CrossRef]
- Carcangiu, V.; Mura, M.C.; Vacca, G.M.; Pazzola, M.; Dettori, M.L.; Luridiana, S.; Bini, P.P. Polymorphism of the melatonin receptor MT1 gene and its relationship with seasonal reproductive activity in the Sarda sheep breed. Anim. Reprod. Sci. 2009, 116, 65–72. [Google Scholar] [CrossRef]
- Carcangiu, V.; Luridiana, S.; Vacca, G.M.; Daga, C.; Mura, M.C. A polymorphism at the melatonin receptor 1A (MTNR1A) gene in Sarda ewes affects fertility after AI in the spring. Reprod. Fertil. Dev. 2011, 23, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Royo, A.; Lahoz, B.; Alabart, J.L.; Folch, J.; Calvo, J.H. Characterisation of the Melatonin Receptor 1A (MTNR1A) gene in the Rasa Aragonesa sheep breed: Association with reproductive seasonality. Anim. Reprod. Sci. 2012, 133, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Mura, M.C.; Luridiana, S.; Bodano, S.; Daga, C.; Cosso, G.; Diaz, M.L.; Bini, P.P.; Carcangiu, V. Influence of melatonin receptor 1A gene polymorphisms on seasonal reproduction in Sarda ewes with different body condition scores and ages. Anim. Reprod. Sci. 2014, 149, 173–177. [Google Scholar] [CrossRef]
- Chu, M.X.; Ji, C.L.; Chen, G.H. Association between PCR-RFLP of melatonin receptor 1a gene and high prolificacy in Small Tail Han sheep. Asian-Aust. J. Anim. Sci. 2003, 16, 1701–1704. [Google Scholar] [CrossRef]
- Ding-Ping, B.; Cheng-Jiang, Y.; Yu-Lin, C. Association between AA-NAT gene polymorphism and reproductive performance in sheep. Electron. J. Biotechnol. 2012, 15, 86–92. [Google Scholar] [CrossRef]
- Lakhssassi, K.; Serrano, M.; Lahoz, B.; Sarto, M.P.; Iguácel, L.P.; Folch, J.; Alabart, J.L.; Calvo, J.H. The LEPR gene is associated with reproductive seasonality traits in Rasa Aragonesa sheep. Animals 2020, 10, 2448. [Google Scholar] [CrossRef] [PubMed]
- Calvo, J.H.; Serrano, M.; Martinez-Royo, A.; Lahoz, B.; Sarto, P.; Ibañez-Deler, A.; Folch, J.; Alabart, J.L. SNP rs403212791 in exon 2 of the MTNR1A gene is associated with reproductive seasonality in the Rasa aragonesa sheep breed. Theriogenology 2018, 113, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Lincoln, G.; Messager, S.; Andersson, H.; Hazlerigg, D. Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: Evidence for an internal coincidence timer. Proc. Natl. Acad. Sci. USA 2002, 99, 13890–13895. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.T.; Clay, C.M.; Caraty, A.; Clarke, I.J. KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology 2007, 148, 1150–1157. [Google Scholar] [CrossRef]
- West, A.; Dupré, S.M.; Yu, L.; Paton, I.R.; Miedzinska, K.; Mcneilly, A.S.; Davis, J.R.E.; Burt, D.W.; Loudon, A.S.I. Npas4 is activated by melatonin, and drives the clock gene cry1 in the ovine pars tuberalis. Mol. Endocrinol. 2013, 27, 979–989. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Royo, A.; Alabart, J.L.; Sarto, P.; Serrano, M.; Lahoz, B.; Folch, J.; Calvo, J.H. Genome-wide association studies for reproductive seasonality traits in Rasa Aragonesa sheep breed. Theriogenology 2017, 99, 21–29. [Google Scholar] [CrossRef]
- Russel, A.J.F.; Doney, J.M.; Gunn, R.G. Subjective assessment of body fat in live sheep. J. Agric. Sci. 1969, 72, 451–454. [Google Scholar] [CrossRef]
- Radford, H.M.; Watson, R.H.; Wood, G.F. A crayon and associated harness for the detection of mating under field conditions. Aust. Vet. J. 1960, 36, 57–66. [Google Scholar] [CrossRef]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Browning, S.R.; Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 2007, 81, 1084–1097. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 2015, 57, 289–300. [Google Scholar]
- Wang, S.; Dvorkin, D.; Da, Y. SNPEVG: A graphical tool for GWAS graphing with mouse clicks. BMC Bioinform. 2012, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A.; Hall, T.A. Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/ NT. Sci. Open 1999. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.; Bouchet-Valat, M.; Andronic, L.; Ash, M.; Boye, T.; Calza, S.; Chang, A.; Grosjean, P.; Heiberger, R.; Pour, K.K.; et al. Package “Rcmdr”. 2020. Available online: cran.ma.imperial.ac.uk/web/packages/Rcmdr/Rcmdr.pdf (accessed on 19 April 2020).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Stannard, K.A.; Lemoine, S.; Waterhouse, N.J.; Vari, F.; Chatenoud, L.; Gandhi, M.K.; Martinet, L.; Smyth, M.J.; Guillerey, C. Human peripheral blood DNAM-1neg NK cells are a terminally differentiated subset with limited effector functions. Blood Adv. 2019, 3, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Nersesian, S.; Glazebrook, H.; Toulany, J.; Grantham, S.R.; Boudreau, J.E. Naturally killing the silent killer: NK cell-based immunotherapy for ovarian cancer. Front. Immunol. 2019, 10, 1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, I.J.; Backholer, K.; Tilbrook, A.J. Y2 receptor-selective agonist delays the estrogen-induced luteinizing hormone surge in ovariectomized ewes, but Y1-receptor-selective agonist stimulates voluntary food intake. Endocrinology 2005, 146, 769–775. [Google Scholar] [CrossRef] [Green Version]
- Kalra, S.P. Mandatory neuropeptide-steroid signaling for the preovulatory luteinizing hormone-releasing hormone discharge. Endocr. Rev. 1993, 14, 507–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorram, O.; Pau, K.Y.F.; Spies, H.G. Bimodal effects of neuropeptide y on hypothalamic release of gonadotropin-releasing hormone in conscious rabbits. Neuroendocrinology 1987, 45, 290–297. [Google Scholar] [CrossRef]
- Francis Pau, K.-Y.; Berria, M.; Hess, D.L.; Spies, H.G. Hypothalamic site-dependent effects of neuropeptide Y on gonadotropin-releasing hormone secretion in rhesus macaques. J. Neuroendocrinol. 1995, 7, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.W.F.; Naylor, A.M.; McNeilly, A.S.; Lincoln, D.W. Endocrine actions of central neuropeptide Y in the ewe: Activation of the hypothalamo-pituitary-adrenal axis by exogenous neuropeptide Y and role of endogenous neuropeptide Y in the secretion of luteinizing hormone during the oestrous cycle. J. Neuroendocrinol. 1993, 5, 163–174. [Google Scholar] [CrossRef]
- Barker-Gibb, M.L.; Scott, C.J.; Boublik, J.H.; Clarke, I.J. The role of neuropeptide Y (NPY) in the control of LH secretion in the ewe with respect to season, NPY receptor subtype and the site of action in the hypothalamus. J. Endocrinol. 1995, 147, 565–579. [Google Scholar] [CrossRef]
- Sar, M.; Sahu, A.; Crowley, W.R.; Kalra, S.P. Localization of neuropeptide-y immunoreactivity in estradiol-concentrating cells in the hypothalamus. Endocrinology 1990, 127, 2752–2756. [Google Scholar] [CrossRef]
- Skinner, D.C.; Herbison, A.E. Effects of photoperiod on estrogen receptor, tyrosine hydroxylase, neuropeptide Y, and β-endorphin immunoreactivity in the ewe hypothalamus. Endocrinology 1997, 138, 2585–2595. [Google Scholar] [CrossRef]
- Barker-Gibb, M.L.; Clarke, I.J. Effect of season on neuropeptide Y and galanin within the hypothalamus of the ewe in relation to plasma luteinizing hormone concentrations and the breeding season: An immunohistochemical analysis. J. Neuroendocrinol. 2000, 12, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.M.; Adam, C.L.; Mercer, J.G.; Moar, K.M.; Slater, D.; Hunter, L.; Findlay, P.A.; Hoggard, N. Leptin receptor and neuropeptide Y gene expression in the sheep brain. J. Neuroendocrinol. 1999, 11, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Barb, C.R.; Kraeling, R.R.; Rampacek, G.B.; Hausman, G.J. The role of neuropeptide Y and interaction with leptin in regulating feed intake and luteinizing hormone and growth hormone secretion in the pig. Reproduction 2006, 131, 1127–1135. [Google Scholar] [CrossRef] [Green Version]
- Miner, J.L. Recent advances in the central control of intake in ruminants. J. Anim. Sci. 1992, 70, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Tahara-Hanaoka, S.; Shibuya, K.; Onoda, Y.; Zhang, H.; Yamazaki, S.; Miyamoto, A.; Honda, S.I.; Lanier, L.L.; Shibuya, A. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol. 2004, 16, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Raulet, D.H.; Moretta, A.; Caligiuri, M.A.; Zitvogel, L.; Lanier, L.L.; Yokoyama, W.M.; Ugolini, S. Innate or adaptive immunity? The example of natural killer cells. Science 2011, 331, 44–49. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, L.F.; Smyth, M.J.; Martinet, L. DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol. Cell Biol. 2014, 92, 237–244. [Google Scholar] [CrossRef]
- Kannan, G.S.; Aquino-Lopez, A.; Lee, D.A. Natural killer cells in malignant hematology: A primer for the non-immunologist. Blood Rev. 2017, 31, 1–10. [Google Scholar] [CrossRef]
- Cooper, M.A.; Fehniger, T.A.; Turner, S.C.; Chen, K.S.; Ghaheri, B.A.; Carson, W.E.; Caligiuri, M.A. Human natural killer cells: A unique innate immunoregulatory role for the CD56BRIGHT SUBSET. Blood 2000, 96, 3146–3151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukassen, H.G.M.; Van Der Meer, A.; Van Lierop, M.J.C.; Lindeman, E.J.M.; Joosten, I.; Braat, D.D.M. The proportion of follicular fluid CD16+CD56DIM NK cells is increased in IVF patients with idiopathic infertility. J. Reprod. Immunol. 2003, 60, 71–84. [Google Scholar] [CrossRef]
- Křížan, J.; Cuchalová, L.; Šíma, P.; Králíčková, M.; Madar, J.; Větvička, V. Altered distribution of NK and NKT cells in follicular fluid is associated with IVF outcome. J. Reprod. Immunol. 2009, 82, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Fainaru, O.; Amsalem, H.; Bentov, Y.; Esfandiari, N.; Casper, R.F. CD56brightCD16- natural killer cells accumulate in the ovarian follicular fluid of patients undergoing in vitro fertilization. Fertil. Steril. 2010, 94, 1918–1921. [Google Scholar] [CrossRef] [PubMed]
- Hanna, J.; Goldman-Wohl, D.; Hamani, Y.; Avraham, I.; Greenfield, C.; Natanson-Yaron, S.; Prus, D.; Cohen-Daniel, L.; Arnon, T.I.; Manaster, I.; et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 2006, 12, 1065–1074. [Google Scholar] [CrossRef]
- Huang, Z.; Qi, G.; Miller, J.S.; Zheng, S.G. CD226: An emerging role in immunologic diseases. Front. Cell Dev. Biol. 2020, 8. [Google Scholar] [CrossRef]
Target Gene | Site | Primer Sequence (5′–3′) 1 | AT (°C) 2 | Size (bp) |
---|---|---|---|---|
CD226 | Exon 1 | F: GCATGATGGCAAGGATTTTT | 52 | 486 |
- | R: GCGTCATAAATTCTGAACGTG | - | - | |
Exon 2 | F: TTTCTGATATTTCTCTGGTGTTTCA | 52 | 493 | |
- | R: GACCCCAAAATGGGATAAGG | - | - | |
Exon 3 | F: CCTCATATCCAAGAACTTGAGGA | 52 | 498 | |
- | R:TGTATAAGAAAGTCATGAGAAAGACAA | - | - | |
Exon 4 | F: TCCCAACTTCCTCTCTATTCTAGC | 55 | 212 | |
- | R: GCATCAGAATTACTCAGGAGGAG | - | - | |
NPY | Exon 1 | F: CACAGGGGTTAGGGATCG | 55 | 236 |
- | R: AGCCATAAAAACCCTGTTGC | - | - | |
Exon 2 | F: AAGATGCCCATGATCTCCAG | 55 | 300 | |
- | R: GAATTCCCTAAGCCCCCTTC | - | - | |
Exon 3 | F: CTTTCCCTGACCACCTTGAG | 55 | 188 | |
- | R: AAGAACTTTTACTCCCCCAACC | - | - | |
Exon 4 | F: TGACGACAAAGGGAAACTGC | 55 | 220 | |
- | R: TCTTACAAGCCTCCCAGGAA | - | - |
Trait | SNP | dbSNP | Chr | Position | MAF | p-Value | Genes within 250 kb on either Side |
---|---|---|---|---|---|---|---|
TDA | oar3_OAR23_7427625 | rs404991855 | 23 | 7427625 | 0.40 | 1.22 × 10−7 | RTTN -CD226-DOK6 |
oar3_OAR23_7428353 | rs418191944 | 23 | 7428353 | 0.39 | 2.77 × 10−6 | RTTN -CD226-DOK6 | |
P4CM | oar3_OAR4_71540823 | rs424340754 | 4 | 71540823 | 0.22 | 7.12 × 10−6 | NPY |
oar3_OAR4_71552651 | rs410373132 | 4 | 71552651 | 0.22 | 7.12 × 10−6 | NPY | |
oar3_OAR6_114690755 | rs409834034 | 6 | 114690755 | 0.21 | 3.01 × 10−7 | ENSOARG00000011847-ENSOARG00000013314-LRPAP1- ENSOARG00000013472-ENSOARG00000013494 -ENSOARG00000013502- RGS12 | |
oar3_OAR7_57807908 | rs428238419 | 7 | 57807908 | 0.04 | 8.59 × 10−6 | DTWD1- ENSOARG00000020999- FGF7- GALK2 | |
oar3_OAR7_87670575 | rs405959180 | 7 | 87670575 | 0.12 | 1.22 × 10−5 | ENSOARG00000002769 | |
oar3_OAR23_7427625 | rs404991855 | 23 | 7427625 | 0.40 | 6.07 × 10−8 | RTTN -CD226-DOK6 | |
oar3_OAR23_7428353 | rs418191944 | 23 | 7428353 | 0.39 | 3.83 × 10−6 | RTTN -CD226-DOK6 | |
OCM | oar3_OAR23_6962033 | rs405024177 | 23 | 6962033 | 0.08 | 2.30 × 10−5 | SOCS6- RTTN |
oar3_OAR23_7427625 | rs404991855 | 23 | 7427625 | 0.40 | 3.63 × 10−7 | RTTN -CD226-DOK6 | |
oar3_OAR23_7428353 | rs418191944 | 23 | 7428353 | 0.39 | 4.86 × 10−6 | RTTN -CD226-DOK6 | |
oar3_OAR23_48239663 | rs410842314 | 23 | 48239663 | 0.21 | 4.09 × 10−6 | ZBTB7C-CTIF |
Gene | dbSNP | Location | Position in OAR Version 3.1 | Nucleotide Change | Amino Acid Change | VEP (SIFT Score) | Polyphen-2 (Score) |
---|---|---|---|---|---|---|---|
NPY | - | Exon 2 | OAR4:g.71593018 | G > T | Leu21 = 1 | - | - |
- | rs594346709 | Exon 2 | OAR4:g.71593068 | G > A | Ser18 = | - | - |
CD226 | rs427511555 | Exon 2 | OAR23:g.7375331 | G > A | Thr25 = | - | - |
- | rs403900117 | Exon 2 | OAR23:g.7375377 | T > C | Leu41 = | - | - |
- | rs588529642 | Exon 2 | OAR23:g.7375434 | A > G | Met60Val | Tolerated (0.1) | Benign (0.03) |
- | rs404360094 | Exon 3 | OAR23:g.7432390 | A > G | Asn243Asp | Tolerated (1) | Benign (0.008) |
Trait | p-Value SNP | SNP LSMs | ||
---|---|---|---|---|
AA | AG | GG | ||
TDA | 0.0003 | 120.7 ± 12.21 a | 69.9 ± 4.88 b | 78.1 ± 4.94 b |
P4CM | 0.0006 | 0.64 ± 0.04 a | 0.83 ± 0.01 b | 0.79 ± 0.01 b |
OCM | 0.001 | 0.29 ± 0.05 a | 0.50 ± 0.02 b | 0.46 ± 0.02 b |
Trait | Haplotype 1 | Frequency | p-Value Haplotype | Haplotype LSMs 2 | ||
---|---|---|---|---|---|---|
0 copies | 1 copy | 2 copies | ||||
TDA | H1(AG) | 0.70 | 0.002 | 110.3 ± 11.17 a | 70.7 ± 4.83 b | 79 ± 5.08 b |
P4CM | - | - | 0.002 | 0.67 ± 0.04 a | 0.82 ± 0.01 b | 0.79 ± 0.01 b |
OCM | - | - | 0.004 | 0.32 ± 0.04 a | 0.49 ± 0.02 b | 0.46 ± 0.02 b |
TDA | H2(AA) | 0.25 | 0.0007 | 77.5 ± 4.88 a | 71.1 ± 4.94 a | 122.1 ± 12.69 b |
P4CM | - | - | 0.0005 | 0.79 ± 0.01 a | 0.83 ± 0.01 a | 0.63 ± 0.04 b |
OCM | - | - | 0.003 | 0.46 ± 0.02 a | 0.49 ± 0.02 a | 0.29 ± 0.05 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakhssassi, K.; Lahoz, B.; Sarto, P.; Iguácel, L.P.; Folch, J.; Alabart, J.L.; Serrano, M.; Calvo, J.H. Genome-Wide Association Study Demonstrates the Role Played by the CD226 Gene in Rasa Aragonesa Sheep Reproductive Seasonality. Animals 2021, 11, 1171. https://doi.org/10.3390/ani11041171
Lakhssassi K, Lahoz B, Sarto P, Iguácel LP, Folch J, Alabart JL, Serrano M, Calvo JH. Genome-Wide Association Study Demonstrates the Role Played by the CD226 Gene in Rasa Aragonesa Sheep Reproductive Seasonality. Animals. 2021; 11(4):1171. https://doi.org/10.3390/ani11041171
Chicago/Turabian StyleLakhssassi, Kenza, Belén Lahoz, Pilar Sarto, Laura Pilar Iguácel, José Folch, José Luis Alabart, Malena Serrano, and Jorge Hugo Calvo. 2021. "Genome-Wide Association Study Demonstrates the Role Played by the CD226 Gene in Rasa Aragonesa Sheep Reproductive Seasonality" Animals 11, no. 4: 1171. https://doi.org/10.3390/ani11041171
APA StyleLakhssassi, K., Lahoz, B., Sarto, P., Iguácel, L. P., Folch, J., Alabart, J. L., Serrano, M., & Calvo, J. H. (2021). Genome-Wide Association Study Demonstrates the Role Played by the CD226 Gene in Rasa Aragonesa Sheep Reproductive Seasonality. Animals, 11(4), 1171. https://doi.org/10.3390/ani11041171