Latest Advances in Sow Nutrition during Early Gestation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Focus of Nutrition: Establishment of Pregnancy, Embryo Survival, and Embryo Development
2.1. Luteal Tissue Formation and Maintenance
2.2. Progesterone, Prostaglandins, and Remodeling of the Endometrium
2.3. Embryo Elongation, Maternal Recognition, and Embryo Survival
3. The Role of Nutrition in Luteal Tissue Formation, Progesterone, and Embryo Development Before Implantation
4. Ovarian and Systemic Progesterone Dynamics
5. Specific Nutritional Effects in the Pre-Implantation Phase
6. Effects of Nutrition from Implantation Onwards
7. Loss of Pregnancy Related to Nutrition
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Langendijk, P.; Peltoniemi, O. How does nutrition influence luteal function and early embryo survival. Soc. Reprod. Fertil. 2013, 68, 145–158. [Google Scholar]
- Almeida, F.R.C.L.; Mao, J.; Novak, S.; Cosgrove, J.R.; Foxcroft, G.R. Effects of different patterns of feed restriction and insulin treatment during the luteal phase on reproductive, metabolic, and endocrine parameters in cyclic gilts. J. Anim. Sci. 2001, 79, 200–212. [Google Scholar] [CrossRef]
- Athorn, R.Z.; Stott, P.G.; Bouwman, E.G.; Edwards, A.C.; Blackberry, M.A.; Martin, G.B.; Langendijk, P. Feeding level and dietary energy source have no effect on embryo survival in gilts, despite changes in systemic progesterone levels. Anim. Prod. Sci. 2013, 53, 30–37. [Google Scholar] [CrossRef]
- Willis, H.J.; Zak, L.J.; Foxcroft, G.R. Duration of lactation, endocrine and metabolic state, and fertility of primiparous sows. J. Anim. Sci. 2003, 81, 2088–2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foxcroft, G.R. Mechanisms mediating nutritional effects on embryonic survival in pigs. J. Reprod. Fertil. 1997, 1, 47–62. [Google Scholar]
- Zak, L.J.; Williams, I.H.; Foxcroft, G.R.; Pluske, J.R.; Cegielski, A.J.; Clowes, E.J.; Aherne, F.X. Feeding lactating primiparous sows to establish three divergent metabolic states: I. Associated endocrine changes and postweaning reproductive performance. J. Anim. Sci. 1998, 76, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, R.; Soede, N.M.; Laurenssen, B.; Langendijk, P.; Dieleman, S.J.; Hazeleger, W.; Laurenssen, B.F.A.; Kemp, B. Feeding level does not affect progesterone levels in intermittently suckled sows with lactational ovulation. Anim. Reprod. Sci. 2008, 103, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Steinhauser, C.B.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A. Expression of progesterone receptor in the porcine uterus and placenta throughout gestation: Correlation with expression of uteroferrin and osteopontin. Domest. Anim. Endocrinol. 2017, 58, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Waclawik, A.; Kaczmarek, M.M.; Blitekl, A.; Kaczynski, P.; Ziecik, A.J. Embryo-maternal dialogue during pregnancy establishment and implantation in the pig. Mol. Reprod. Dev. 2017, 84, 842–855. [Google Scholar] [CrossRef] [Green Version]
- Ford, S.P.; Vonnahme, K.A.; Wilson, M.E. Uterine capacity in the pig reflects a combination of uterine environment and conceptus genotype effects. J. Anim. Sci. 2002, 80, E66–E73. [Google Scholar]
- Anderson, L.H.; Christenson, L.K.; Christenson, R.K.; Ford, S.P. Investigations into the control of litter size in swine: II. Comparisons of morphological and functional embryonic diversity between Chinese and American breeds. J. Anim. Sci. 1993, 71, 1566–1571. [Google Scholar] [CrossRef] [PubMed]
- Dziuk, P. Effect of migration, distribution and spacing of pig embryos on pregnancy and fetal survival. J. Reprod. Fertil. 1985, 33, 57–63. [Google Scholar]
- Pope, W.F.; Lawyer, M.S.; First, N.L. Intrauterine migration of the porcine embryo: Coordination of bead migration with estradiol. J. Anim. Sci. 1986, 63, 848–853. [Google Scholar] [CrossRef] [Green Version]
- Dziuk, P.J. Effect of number of embryos and terine space on embryonic survival in the pig. J. Anim. Sci. 1968, 27, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Geisert, R.D.; Schmitt, R.A.M. Early embryonic survival in the pig: Can it be improved? J. Anim. Sci. 2002, 80, E54–E65. [Google Scholar]
- Geisert, R.D.; Ross, J.W.; Ashworth, M.D.; White, F.J.; Johnson, G.A.; Da Silva, U. Maternal recognition of pregnancy or endocrine disruptor: The two faces of oestrogen during establishment of pregnancy in the pig. Soc. Reprod. Suppl. 2006, 62, 131–145. [Google Scholar] [CrossRef]
- Morgan, G.L.; Geisert, R.D.; Zavy, M.T.; Fazleabas, A.T. Development and survival of pig blastocysts after oestrogen administration on day 9 or days 9 and 10 of pregnancy. J. Reprod. Fertil. 1987, 80, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Rampacek, G.R.; Robison, O.W.; Ulberg, L.C. Uterine Capacity and Progestin Levels in Superinducted Gilts. J. Anim. Sci. 1975, 41, 564–567. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Dziuk, P.J. Influence of initial length of uterus per embryo and gestation stage on prenatal survival, development, and sex ratio in the pig. J. Anim. Sci. 1993, 71, 1895–1901. [Google Scholar] [CrossRef]
- Père, M.C.; Dourmad, J.-Y.; Etienne, M. Effect of number of pig embryos in the uterus on their survival and development and on maternal metabolism. J. Anim. Sci. 1997, 75, 1337–1342. [Google Scholar] [CrossRef]
- Town, S.C.; Putman, C.T.; Turchinsky, N.J.; Dixon, W.T.; Foxcroft, G.R. Number of conceptuses in utero affects porcine fetal muscle development. Reproduction 2004, 128, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.E.; Christenson, R.K.; Zimmerman-Pope, V.A.; Day, B.N. Effect of number of embryos on embryonic survival in recipient gilts. J. Anim. Sci. 1972, 35, 805–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webel, S.K.; Dziuk, P.J. Effect of stage of gestation and uterine space on prenatal survival in the pig. J. Anim. Sci. 1974, 38, 960–963. [Google Scholar] [CrossRef]
- Langendijk, P.; Chen, T.Y.; Athorn, R.Z.; Bouwman, E.G. Embryonic survival at day 9, 21 and 35 of pregnancy in intact and unilaterally oviduct ligated multiparous sows. Animal 2016, 10, 1336–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltoniemi, O.A.T.; Easton, B.G.; Love, R.J.; Klupiec, C.; Evans, G. Effect of chronic treatment with a GnRH agonist (Goserelin) on LH secretion and early pregnancy in gilts. Anim. Reprod. Sci. 1995, 40, 121–133. [Google Scholar] [CrossRef]
- Quesnel, H.; Pasquier, A.; Mounier, A.-M.; Prunier, A. Feed restriction in cyclic gilts: Gonadotrophin-independent effects on follicular growth. Reprod. Nutr. Dev. 2000, 40, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.Y.; Stott, P.; Athorn, R.Z.; Bouwman, E.G.; Langendijk, P. Undernutrition during early follicle development has irreversible effects on ovulation rate and embryos. Reprod. Fertil. Dev. 2012, 24, 886–892. [Google Scholar] [CrossRef]
- Ashworth, C.J.; Beattie, L.; Antipatis, C. Effects of pre- and post-mating nutritional status on hepatic function, progesterone concentration, uterine protein secretion and embryo survival in meishan pigs. Reprod. Fertil. Dev. 1999, 11, 67–73. [Google Scholar] [CrossRef]
- Mao, J.; Zak, L.J.; Cosgrove, J.R.; Shostak, S.; Foxcroft, G.R. Reproductive, metabolic, and endocrine responses to feed restriction and gnrh treatment in primiparous, lactating sows. J. Anim. Sci. 1999, 77, 724–735. [Google Scholar] [CrossRef]
- Mao, J.; Treacy, B.K.; Almeida, F.R.C.L.; Novak, S.; Dixon, W.T.; Foxcroft, G.R. Feed Restriction and Insulin Treatment Affect Subsequent Luteal Function in the Immediate Postovulatory Period in Pigs: Progesterone Production In Vitro and Messenger Ribonucleic Acid Expression for Key Steroidogenic Enzymes. Biol. Reprod. 2001, 64, 359–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.Y.; Stott, P.; Bouwman, E.G.; Langendijk, P. Effects of Pre-Weaning Energy Substitutions on Post-Weaning Follicle Development, Steroid Hormones and Subsequent Litter Size in Primiparous Sows. Reprod. Domest. Anim. 2013, 48, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Wientjes, J.G.M.; Soede, N.M.; van den Brand, H.; Kemp, B. Nutritionally induced relationships between insulin levels during the weaning-to-ovulation interval and reproductive characteristics in multiparous sows: II. Luteal development, progesterone and conceptus development and uniformity. Reprod. Domest. Anim. 2011, 47, 62–68. [Google Scholar] [CrossRef]
- Athorn, R.Z.; Stott, P.; Bouwman, E.G.; Chen, T.Y.; Kennaway, D.J.; Langendijk, P. Effect of feeding level on luteal function and progesterone concentration in the vena cava during early pregnancy in gilts. Reprod. Fertil. Dev. 2012, 25, 531–538. [Google Scholar] [CrossRef]
- Ferguson, E.M.; Ashworth, C.J.; Edwards, S.A.; Hawkins, N.; Hepburn, N.; Hunter, M.G. Effect of different nutritional regimens before ovulation on plasma concentrations of metabolic and reproductive hormones and oocyte maturation in gilts. Reproduction 2003, 126, 61–71. [Google Scholar] [CrossRef]
- Novak, S.; Treacy, B.K.; Almeida, F.R.C.L.; Mao, J.; Buhi, W.C.; Dixon, W.T.; Foxcroft, G.R. Regulation of IGF-I and porcine oviductal secretory protein (pOSP) secretion into the pig oviduct in the peri-ovulatory period, and effects of previous nutrition. Reprod. Nutr. Dev. 2002, 42, 355–372. [Google Scholar] [CrossRef] [Green Version]
- Ptak, A.; Gregoraszczuk, E.L.; Rzasa, J. Growth hormone and insulin-like growth factor-I action on progesterone secretion by porcine corpora lutea isolated at various periods of the luteal phase. Acta Vet. Hung. 2003, 51, 197–208. [Google Scholar] [CrossRef]
- Miller, E.A.; Ge, Z.; Hedgpeth, V.; Gadsby, J.E. Steroidogenic responses of pig corpora lutea to insulin-like growth factor I (IGF-I) throughout the oestrous cycle. Reproduction 2003, 125, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Ptak, A.; Kajta, M.; Gregoraszczuk, E.L. Effect of growth hormone and insulin-like growth factor-I on spontaneous apoptosis in cultured luteal cells collected from early, mature, and regressing porcine corpora lutea. Anim. Reprod. Sci. 2004, 80, 267–279. [Google Scholar] [CrossRef]
- Langendijk, P.; van den Brand, H.; Gerritsen, R.; Quesnel, H.; Soede, N.M.; Kemp, B. Porcine luteal function in relation to IGF-1 levels following ovulation during lactation or after weaning. Reprod. Domest. Anim. 2008, 43, 131–136. [Google Scholar] [CrossRef]
- Prime, G.R.; Symonds, H.W. Influence of plane of nutrition on portal blood flow and the metabolic clearance rate of progesterone in ovariectomised gilts. J. Agric. Sci. 1993, 121, 389–397. [Google Scholar] [CrossRef]
- Jindal, R.; Cosgrove, J.R.; Aherne, F.X.; Foxcroft, G.R. Effect of nutrition on embryonal mortality in gilts: Association with progesterone. J. Anim. Sci. 1996, 74, 620–624. [Google Scholar] [CrossRef] [Green Version]
- Langendijk, P. Early gestation feeding and management for optimal reproductive performance. In The Gestating and Lactating Sow; Farmer, C., Ed.; Wageningen Academic Press: Wageningen, The Netherlands, 2015; pp. 27–46. [Google Scholar]
- Leal, D.F.; Muroa, B.B.D.; Nichia, M.; Almond, G.W.; Viana, C.H.C.; Viotid, G.; Carnevale, R.F.; Garbossa, C.A.P. Effects of post-insemination energy content of feed on embryonic survival in pigs: A systematic review. Anim. Reprod. Sci. 2019, 205, 70–77. [Google Scholar] [CrossRef]
- Athorn, R.Z.; Stott, P.; Bouwman, E.G.; Ashman, R.; O’Leary, S.; Nottle, M.; Langendijk, P. Direct ovarian-uterine transfer of progesterone increases embryo survival in gilts. Reprod. Fertil. Dev. 2011, 23, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Stefanczyk-Krzymowska, S.; Grzegorzewski, W.; Wasowska, B.; Skipor, J.; Krzymowski, T. Local increase of ovarian steroid hormone concentration in blood supplying the oviduct and uterus during early pregnancy of sows. Theriogenology 1998, 50, 1071–1080. [Google Scholar] [CrossRef]
- Virolainen, J.V.; Love, R.J.; Tast, A.; Peltoniemi, O.A. Plasma progesterone concentration depends on sampling site in pigs. Anim. Reprod. Sci. 2005, 86, 305–316. [Google Scholar] [CrossRef]
- Bazer, F.W.; Kim, J.; Song, G.; Ka, H.; Wu, G.; Johnson, G.A.; Vallet, J.L. Roles of selected nutrients in development of the porcine conceptus during pregnancy. In Control of Pig Reproduction IX, Proceedings of the International Conference on Pig Reproduction, Olsztyn, Poland, 9–13 June 2013; Rodrigues-Martinez, H., Ed.; Context Products Ltd.: Leicestershire, UK, 2013; pp. 159–174. [Google Scholar]
- Lindemann, M.D. Supplemental folic acid: A requirement for optimizing swine reproduction. J. Anim. Sci. 1993, 71, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Gaudré, D.; Quiniou, N. What mineral and vitamin levels to recommend in swine diets? Rev. Bras. Zootec. 2009, 38, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Matte, J.J.; Farmer, C.; Girard, C.L.; Laforest, J.-P. Dietary folic acid, uterine function and early embryonic development in sows. Can. J. Anim. Sci. 1996, 76, 427–433. [Google Scholar] [CrossRef]
- Tremblay, G.F.; Matte, J.J.; Dufour, J.J.; Brisson, G.J. Days of gestation after folic acid addition to a swine diet survival rate and development of fetuses during the first 30 days. J. Anim. Sci. 1989, 67, 724–732. [Google Scholar] [CrossRef] [Green Version]
- Harper, A.F.; Knight, J.W.; Kokue, E.; Usry, J.L. Plasma reduced folates, reproductive performance, and conceptus development in sows in response to supplementation with oxidized and reduced sources of folic acid. J. Anim. Sci. 2003, 81, 735–744. [Google Scholar] [CrossRef]
- Guay, F.; Matte, J.J.; Girard, C.L.; Palin, M.-F.; Giguère, A.; Laforest, J.-P. Effect of folic acid and glycine supplementation on embryo development and folate metabolism during early pregnancy in pigs. J. Anim. Sci. 2002, 80, 2134–2143. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W. Use of supplemental dietary riboflavin to increase fertility and/or prolificacy in animals. U.S. Patent no. 5063226, 5 November 1991. [Google Scholar]
- Langendijk, P.; Bouwman, E.G.; Chen, T.Y.; Koopmanschap, R.E.; Soede, N.M. Effects of temporary undernutrition on ovarian progesterone secretion and corpora lutea morphometrics during early gestation in gilts. Reprod. Fertil. Dev. 2017, 29, 1349–1355. [Google Scholar] [CrossRef]
- Kongsted, A.G. Reproduction Performances and Conditions of Group-Housed Non-Lactating Sows. Ph.D. Thesis, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark, 2004. [Google Scholar]
- Athorn, R.Z.; Stott, P.; Langendijk, P. Feeding level and dietary energy source during early pregnancy in first parity sows: Effects on pregnancy and litter size. In Proceedings of the Australasian Pig Science Association, Adelaide, Australia, 27–30 November 2011; Van Barneveld, R.J., Ed.; Australasian Pig Science Association: Adelaide, Australia, 2011; p. 81. [Google Scholar]
- Langendijk, P.; Athorn, R.Z.; Stott, P. Feeding level and dietary fibre content during early pregnancy in gilts and pregnancy rate and litter size. In Proceedings of the Australasian Pig Science Association: Adelaide, Australia, 27–30 November 2011; Van Barneveld, R.J., Ed.; Australasian Pig Science Association: Adelaide, Australia, 2011; p. 162. [Google Scholar]
- Jensen, M.B.; Pedersen, L.J.; Theil, P.K.; Yde, C.C.; Knudsen, K.E.B. Feeding motivation and plasma metabolites in pregnant sows fed diets rich in dietary fiber either once or twice daily. J. Anim. Sci. 2012, 90, 1910–1919. [Google Scholar] [CrossRef]
- Knudsen, K.E.B.; Henry, J.; Canibe, N. Quantification of the absorption of nutrients derived from carbohydrate assimilation: Model experiment with catheterised pigs fed on wheat- or oat-based rolls. Brit. J. Nutr. 2000, 84, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Novak, S.; Paradis, F.; Patterson, J.L.; Pasternak, J.A.; Oxtoby, K.; Moore, H.S.; Hahn, M.; Dyck, M.K.; Dixon, W.T.; Foxcroft, G.R. Temporal candidate gene expression in the sow placenta and embryo during early gestation and effect of maternal Progenos supplementation on embryonic and placental development. Reprod. Fertil. Dev. 2012, 24, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Hazeleger, W.; Smits, C.; Kemp, B. Influence of nutritional factors on placental growth and piglet imprinting. In Paradigms in Pig Science; Wiseman, J., Kemp, B., Varley, M., Eds.; Nottingham University Press: Nottingham, UK, 2007; pp. 309–327. [Google Scholar]
- Ramaekers, P.; Kemp, B.; van der Lende, T. Progenos in sows increases number of piglets born. J. Anim. Sci. 2006, 84, 394. [Google Scholar]
- Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Li, X.L.; Satterfield, M.C.; Spencer, T.E. Impacts of amino acid nutrition on pregnancy outcome in pigs: Mechanisms and implications for swine production. J. Anim. Sci. 2010, 88, E195–E204. [Google Scholar] [CrossRef] [Green Version]
- Costa, K.A.; Saraiva, A.; Guimarães, J.D.; Botelho, D.; Marques, D.; Machado-Neves, M.; Barbosa, L.M.R.; Villadiego, F.A.C.; Veroneze, R.; de Oliveira, L.F.; et al. Dietary L-arginine supplementation during early gestation of gilts affects conceptuses development. Theriogenology 2019, 140, 62–71. [Google Scholar] [CrossRef]
- Garcia, I.S.; Teixeira, S.A.; Costa, K.A.; Marques, D.B.D.; de Amorim Rodrigues, G.; Costa, T.C.; Guimarães, J.D.; Otto, P.I.; Saraiva, A.; Ibelli, A.M.G.; et al. L-Arginine supplementation of gilts during early gestation modulates energy sensitive pathways in pig conceptuses. Mol. Reprod. Dev. 2020, 87, 819–834. [Google Scholar] [CrossRef]
- Langendijk, P.; Dieleman, S.J.; Gerritsen, R.; Hazeleger, W.; Mainsant, M.-L.; Soede, N.M.; Kemp, B. Pulsatile release of luteinising hormone during the luteal phase in lactating and weaned sows. Reprod. Fertil. Dev. 2007, 19, 961–966. [Google Scholar] [CrossRef]
- Tast, A.; Peltoniemi, O.; Virolainen, J.; Love, R. Early disruption of pregnancy as a manifestation of seasonal infertility in pigs. Anim. Reprod. Sci. 2002, 74, 75–86. [Google Scholar] [CrossRef]
- Haen, S.M.; Heinonen, M.; Bjorkmann, S.; Soede, N.M.; Peltoniemi, O.A.T. Progesterone and luteinizing hormone secretion patterns in early pregnant gilts. Reprod. Dom. Anim. 2020, 55, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Peltoniemi, O.A.; Virolainen, J.V. Seasonality of reproduction in gilts and sows. Soc. Reprod. Fertil. Suppl. 2006, 62, 205–218. [Google Scholar] [PubMed]
- Virolainen, J.V.; Tast, A.; Sorsa, A.; Love, R.J.; Peltoniemi, O.A.T. Changes in feeding level during early pregnancy affect fertility in gilts. Anim. Reprod. Sci. 2004, 80, 341–352. [Google Scholar] [CrossRef]
- Athorn, R.Z.; Sawyer, K.S.; Collins, C.L.; Luxford, B.G. High growth rates during early pregnancy positively affect farrowing rate in parity one and two sows. In Manipulating Pig Production XIV; Pluske, J., Pluske, J., Eds.; Australasian Pig Science Association: Melbourne, Australia, 2013; p. 132. [Google Scholar]
- Sawyer, K.S.; Athorn, R.Z.; Collins, C.L.; Luxford, B.G. Increasing feed intake in early gestation improves farrowing rate in first and second parity sows. In Manipulating Pig Production XIV; Pluske, J., Pluske, J., Eds.; Australasian Pig Science Association: Melbourne, Australia, 2013; p. 132. [Google Scholar]
Item | Day 21 Intact Sows | Day 21 Oviduct Ligation * | Day 35 Intact Sows | Day 35 Oviduct Ligation * |
---|---|---|---|---|
Number of sows | 15 | 11 | 17 | 12 |
Ovulations | 20.9 ± 1.5 a | 11.6 ± 0.8 b | 20.3 ± 0.9 a | 10.7 ± 0.9 b |
Viable embryos, % ** | 76 ± 5 | 75 ± 5 | 59 ± 4 a | 77 ± 3 b |
Length of implantations, cm | 9.9 ± 1.1 | 11.4 ± 1.2 | 15.5 ± 1.3 x | 19.0 ± 1.2 y |
Embryo weight, g | 0.22 ± 0.03 | 0.25 ± 0.05 | 4.3 ± 0.3 x | 4.9 ± 0.2 y |
Reference | Feed Allowance (High vs. Low *) | Duration of Treatments | Luteal Tissue Mass, g | Stage of Gestation | |
---|---|---|---|---|---|
High | Low | ||||
[3] | 2.4 vs. 1.2 M | d1–25 | 7.2 a | 6.7 b | d35 |
[7] | +2.5 kg | d1–7 | 9.5 a | 7.7 b | d30 |
[33] | 2.4 vs. 1.2 M | d1–10 | 8.2 | 7.9 | d10 |
[26] | 2.4 vs. 0.8 M | - | No effect | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langendijk, P. Latest Advances in Sow Nutrition during Early Gestation. Animals 2021, 11, 1720. https://doi.org/10.3390/ani11061720
Langendijk P. Latest Advances in Sow Nutrition during Early Gestation. Animals. 2021; 11(6):1720. https://doi.org/10.3390/ani11061720
Chicago/Turabian StyleLangendijk, Pieter. 2021. "Latest Advances in Sow Nutrition during Early Gestation" Animals 11, no. 6: 1720. https://doi.org/10.3390/ani11061720
APA StyleLangendijk, P. (2021). Latest Advances in Sow Nutrition during Early Gestation. Animals, 11(6), 1720. https://doi.org/10.3390/ani11061720