Indigenous, Yellow-Feathered Chickens Body Measurements, Carcass Traits, and Meat Quality Depending on Marketable Age
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Experimental Design
2.3. Body Measurements
2.4. Slaughter Performance
2.5. Carcass Appearance
2.6. Meat Quality
2.7. Statistical Analysis
3. Results and Discussion
3.1. Body Measurements
3.2. Slaughter Performance
3.3. Carcass Appearance
3.4. Meat Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USDA. Livestock and Poultry:World Markets and Trade; Foreign Agricultural Service: Washington, DC, USA, 2022.
- Xin, X.; Mai, Z.; Wen, J.; Wang, J. Analysis of my country’s broiler industry situation in 2021, future prospects and countermeasures. Zhongguo Xumu Zazhi 2022, 58, 222–226. [Google Scholar]
- Asante-Addo, C.; Weible, D. Is there hope for domestically produced poultry meat? A choice experiment of consumers in Ghana. Agribusiness 2020, 36, 281–298. [Google Scholar] [CrossRef]
- Musundire, M.T.; Halimani, T.E.; Chimonyo, M. Effect of age and sex on carcass characteristics and internal organ weights of scavenging chickens and helmeted guinea fowls. J. Appl. Anim. Res. 2018, 46, 860–867. [Google Scholar] [CrossRef]
- Nualhnuplong, P.; Wattanachant, C. Effects of Age at Slaughter and Sex on Carcass Characteristics and Meat Quality of Betong Chicken. J. Trop. Agric. Sci. 2020, 43, 343–357. [Google Scholar]
- Deng, S.; Xing, T.; Li, C.; Xu, X.; Zhou, G. The Effect of Breed and Age on the Growth Performance, Carcass Traits and Metabolic Profile in Breast Muscle of Chinese Indigenous Chickens. Foods 2022, 11, 483. [Google Scholar] [CrossRef]
- Li, J.; Yang, C.; Peng, H.; Yin, H.; Wang, Y.; Hu, Y.; Yu, C.; Jiang, X.; Du, H.; Li, Q.; et al. Effects of Slaughter Age on Muscle Characteristics and Meat Quality Traits of Da-Heng Meat Type Birds. Animals 2020, 10, 69. [Google Scholar] [CrossRef]
- Tok, S.; Sekeroglu, A.; Duman, M.; Tainika, B. Effect of age, stocking density, genotype, and cage tier on feather score of layer pure lines. Turk. J. Vet. Anim. Sci. 2022, 46, 115–123. [Google Scholar]
- Yuan, F.; Song, H.; Hou, L.; Wei, L.; Zhu, S.; Quan, R.; Wang, J.; Wang, D.; Jiang, H.; Liu, H.; et al. Age-dependence of hypervirulent fowl adenovirus type 4 pathogenicity in specific-pathogen-free chickens. Poult. Sci. 2021, 100, 101238. [Google Scholar] [CrossRef]
- Li, Y.; Lei, X.; Lu, H.; Guo, W.; Wu, S.; Yin, Z.; Sun, Q.; Yang, X. Age-Related Changes on CD40 Promotor Methylation and Immune Gene Expressions in Thymus of Chicken. Front. Immunol. 2018, 9, 2731. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kim, H.-Y. Effects of Marketing Ages on the Physicochemical Properties and Sensory Aspects of Cured Broiler Chicken Breast Meat. Foods 2021, 10, 2152. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Zhang, L.; Chen, A.; Yang, S.; Xu, Z. Identification of novel biomarkers in chilled and frozen chicken using metabolomics profiling and its application. Food Chem. 2022, 393, 133334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, S.; Chen, L.; Ding, H.; Wu, P.; Zhang, G.; Xie, K.; Dai, G.; Wang, J. UHPLC-MS/MS-Based Nontargeted Metabolomics Analysis Reveals Biomarkers Related to the Freshness of Chilled Chicken. Foods 2020, 9, 1326. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qin, Y.; Li, J.; Xu, X.; Zhou, G. Edible quality of soft-boiled chicken processing with chilled carcass was better than that of hot-fresh carcass. J. Food, Agric. Environ. 2019, 7, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Performance Ferms and Measurements for Poultry (NY/T823-2020); China Agriculture Press: Beijing, China, 2020.
- Ji, G.G.; Zhang, M.; Liu, Y.; Shan, Y.; Tu, Y.; Ju, X.; Zou, J.; Shu, J.; Wu, J.; Xie, J. A gene co-expression network analysis of the candidate genes and molecular pathways associated with feather follicle traits of chicken skin. J. Anim. Breed. Genet. 2021, 138, 122–134. [Google Scholar] [CrossRef]
- An, F.; Kang, X.; Zhang, L.; Leilei; Wang, J.; Shao, B.; Wang, J. Comparison of muscle properties and meat quality between Jing Ning chicken and Ling Nan Huang Yu meat chicken. J. Food Agric. Environ. 2013, 11, 54–58. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Performance Ferms and Measurements for Poultry (NY/T1180-2006); China Agriculture Press: Beijing, China, 2006.
- Anderson, S. Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan (TM) near-infrared spectrophotometer with FOSS artificial neural network calibration model and associated database: Collaborative study. J. AOAC Int. 2007, 90, 1073–1083. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Naveena, B.M.; Kotaiah, T. Quality, composition, and consumer evaluation of meat from slow-growing broilers relative to commercial broilers. Poult. Sci. 2019, 98, 6177–6186. [Google Scholar] [CrossRef]
- Kim, C.H.; Ku, K.H. Effects of Stock Density on the Growth Performance, and Meat Quality of Korean Native Chickens. Kr. Poult. Sci. 2020, 47, 1–7. [Google Scholar] [CrossRef]
- Yuldashbayev, Y.A.; Shevhuzhev, A.F.; Kochkarov, R.K.; Mishvelov, E.G.; Ponomareva, A.I. Meat Productivity of Young Sheep Karachai’ Breed. Res. J. Pharm., Biol. Chem. Sci. 2018, 9, 692–699. [Google Scholar]
- Yaprak, M.; Koycegiz, F.; Kutluca, M.; Emsen, E.; Ockerman, H.W. Canonical Correlation Analysis of Body Measurements, Growth Performance and Carcass Traits of Red Karaman Lambs. J. Anim. Vet. Adv. 2008, 7, 130–136. [Google Scholar]
- Yu, J.; Yang, H.M.; Wan, X.L.; Chen, Y.J.; Yang, Z.; Liu, W.F.; Liang, Y.Q.; Wang, Z.Y. Effects of cottonseed meal on slaughter performance, meat quality, and meat chemical composition in Jiangnan White goslings. Poult. Sci. 2020, 99, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, R.D.; Faria, D.E.D.; Junqueira, O.M.; Salvador, D.; Faria Filho, D.E.D.; Rizzo, M.F. Effects of energy level in finisher diets and slaughter age of on the performance and carcass yield in broiler chickens. Braz. J. Poult. Sci. 2003, 5, 99–104. [Google Scholar] [CrossRef]
- Seker, I.; Bayraktar, M.; Kul, S.; Ozmen, O. Effect of slaughter age on fattening performance and carcass characteristics of Japanese quails (Coturnix coturnix japonica). J. Appl. Anim. Res. 2007, 31, 193–195. [Google Scholar] [CrossRef]
- Coban, O.; Lacin, E.; Aksu, M.I.; Kara, A.; Sabuncuoglu, N. The impact of slaughter age on performance, carcass traits, properties of cut-up pieces of carcasses, and muscle development in broiler chickens. Eur. Poult. Sci. 2014, 78. [Google Scholar] [CrossRef]
- Mosca, F.; Kuster, C.A.; Stella, S.; Farina, G.; Madeddu, M.; Zaniboni, L.; Cerolini, S. Growth performance, carcass characteristics and meat composition of Milanino chickens fed on diets with different protein concentrations. Br. Poult. Sci. 2016, 57, 531–537. [Google Scholar]
- Hocking, P.M.; Channing, C.E.; Waddington, D.; Jones, R.B. Age-related changes in fear, sociality and pecking behaviours in two strains of laying hen. Br. Poult. Sci. 2001, 42, 414–423. [Google Scholar] [CrossRef]
- Sokolowicz, Z.; Dykiel, M.; Topczewska, J.; Krawczyk, J.; Augustynska-Prejsnar, A. The Effect of the Type of Non-Caged Housing System, Genotype and Age on the Behaviour of Laying Hens. Animals 2020, 10, 2450. [Google Scholar] [CrossRef]
- Wu, J.; Lin, Z.; Chen, G.; Luo, Q.; Nie, Q.; Zhang, X.; Luo, W. Characterization of Chicken Skin Yellowness and Exploration of Genes Involved in Skin Yellowness Deposition in Chicken. Front. Physiol. 2021, 12, 585089. [Google Scholar] [CrossRef]
- Xie, W.Y.; Chen, M.J.; Jiang, S.G.; Yan, H.C.; Wang, X.Q.; Gao, C.Q. Investigation of feather follicle morphogenesis and the expression of the Wnt/beta-catenin signaling pathway in yellow-feathered broiler chick embryos. Br. Poult. Sci. 2020, 61, 557–565. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, Z.; Li, P.; Mao, Y.; Shen, R.; Tao, R.; Diao, X.; Liu, L.; Zhao, Y.; Luo, X. Complex Internal Microstructure of Feather Follicles on Chicken Skin Promotes the Bacterial Cross-Contamination of Carcasses During the Slaughtering Process. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef]
- Chodová, D.; Tmová, E.; Ketta, M.; Skivanová, V. Breast meat quality in males and females of fast-, medium- and slow-growing chickens fed diets of 2 protein levels. Poult. Sci. 2021, 100, 100997. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Matarneh, S.; Gerrard, D.; Tan, J. Modelling of energy metabolism and analysis of pH variations in postmortem muscle. Meat Sci. 2021, 182, 108634. [Google Scholar] [CrossRef] [PubMed]
- Janisch, S.; Krischek, C.; Wicke, M. Color values and other meat quality characteristics of breast muscles collected from 3 broiler genetic lines slaughtered at 2 ages. Poult. Sci. 2011, 90, 1774–1781. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.; Weng, K.; Gu, T.; Zhang, Y.; Zhang, Y.; Chen, G.; Xu, Q. Effect of muscle fiber characteristics on meat quality in fast- and slow-growing ducks. Poult. Sci. 2021, 100, 101264. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty acid and cholesterol profiles, hypocholesterolemic, atherogenic, and thrombogenic indices of broiler meat in the retail market. Lipids Health Dis. 2017, 16, 40. [Google Scholar] [CrossRef]
- Mehmood, W.; Zhang, C. Correlations Between Muscle Fibers Characteristics and Meat Quality Attributes of Biceps Femoris Muscle: A Comparative Study of 2 Distinctive Broiler Breeds. Braz. J. Poult. Sci. 2020, 22, 4. [Google Scholar] [CrossRef]
- Garmiene, G.; Jasutiene, I.; Zaborskiene, G. Influence of the type of husbandry on poultry meat quality. Fleischwirtschaft. 2009, 89, 96–99. [Google Scholar]
- Yang, Y.; Wen, J.; Fang, G.Y.; Li, Z.R.; Liu, J. The effects of raising system on the lipid metabolism and meat quality traits of slow-growing chickens. J. Appl. Anim. Res. 2015, 43, 1–6. [Google Scholar] [CrossRef]
- Qiu, F.; Xie, L.; Ma, J.-E.; Luo, W.; Zhang, L.; Chao, Z.; Chen, S.; Nie, Q.; Lin, Z.; Zhang, X. Lower Expression of SLC27A1 Enhances Intramuscular Fat Deposition in Chicken via Down-Regulated Fatty Acid Oxidation Mediated by CPT1A. Front. Physiol. 2017, 8, 449. [Google Scholar] [CrossRef] [Green Version]
Items | 1–28 d | 29–63 d | 64–100 d |
---|---|---|---|
Ingredient (%) | |||
Corn | 55.82 | 62.49 | 69.30 |
Flour | 2.00 | 2.00 | 2.00 |
Soybean meal | 33.10 | 25.20 | 17.20 |
Corn protein flour | 1.00 | 2.00 | 3.00 |
Soybean oil | 1.31 | 1.96 | 2.27 |
Stone powder | 1.41 | 1.24 | 1.25 |
Calcium hydrogen phosphate | 1.36 | 1.11 | 0.98 |
Choline chloride | 1.00 | 1.00 | 1.00 |
Premix | 3.00 | 3.00 | 3.00 |
Nutritional level (%) | |||
Crude protein | 21.00 | 18.50 | 16.00 |
Metabolizable energy (MJ/kg) | 12.13 | 12.55 | 12.97 |
Ca | 0.94 | 0.80 | 0.75 |
Available phosphorus | 0.38 | 0.33 | 0.30 |
Digestible lysine | 1.05 | 0.90 | 0.80 |
Marketing Age | ||||
---|---|---|---|---|
Items | 90 d | 100 d | SEM | p-Value |
Cockscomb length (cm) | 7.69 b | 8.92 a | 0.174 | <0.001 |
Cockscomb height (cm) | 4.11 | 4.27 | 0.063 | 0.079 |
Body slope length (cm) | 22.36 b | 23.22 a | 0.125 | <0.001 |
Keel length (cm) | 14.86 b | 16.69 a | 0.159 | <0.001 |
Chest width (cm) | 8.20 | 8.36 | 0.057 | 0.208 |
Chest depth (cm) | 7.29 | 7.66 | 0.079 | 0.390 |
Shank length (cm) | 8.83 b | 9.64 a | 0.081 | <0.001 |
Shank girth (cm) | 4.35 | 4.38 | 0.020 | 0.334 |
Marketing Ages | ||||
---|---|---|---|---|
Items | 90 d | 100 d | SEM | p-Value |
Carcass yield (%) | 91.21 | 90.72 | 0.182 | 0.185 |
Semi-eviscerated yield (%) | 81.72 | 81.00 | 0.333 | 0.279 |
Eviscerated yield (%) | 67.72 | 67.80 | 0.303 | 0.894 |
Breast muscle (%) | 18.01 | 18.84 | 0.382 | 0.284 |
Leg muscle (%) | 23.56 | 24.84 | 0.475 | 0.179 |
Lean meat (%) | 41.57 | 43.68 | 0.802 | 0.192 |
Gizzard (%) | 2.65 | 2.35 | 0.086 | 0.079 |
Abdominal fat (%) | 2.90 | 2.93 | 0.208 | 0.931 |
Testis (%) | 1.60 | 1.86 | 0.121 | 0.291 |
Head (%) | 6.39 | 5.87 | 0.149 | 0.085 |
Paws (%) | 0.53 | 0.55 | 0.026 | 0.672 |
Live weight (g) | 1942.54 b | 2254.52 a | 24.152 | <0.001 |
Dressed weight (g) | 1771.93 b | 2045.22 a | 21.613 | <0.001 |
Marketing Ages | |||||
---|---|---|---|---|---|
Items | 90 d | 100 d | SEM | p-Value | |
Follicle density (piece/cm2) | Back | 4.33 | 4.54 | 0.080 | 0.177 |
Abdomen | 3.41 b | 3.97 a | 0.070 | <0.001 | |
Skin color | L* | 72.37 | 72.62 | 0.276 | 0.656 |
a* | 16.44 a | 11.74 b | 0.480 | <0.001 | |
b* | 19.76 a | 15.87 b | 0.711 | 0.005 | |
Spotted skin level proportions (%) | S | 37.93 | 13.33 | ||
A | 17.24 | 33.33 | |||
B | 24.14 | 33.33 | |||
C | 20.69 | 20.00 |
Items | Marketing Ages | pH | Shear Force (N) | Water Loss Rate (%) | Meat Color | Proximate Composition | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH1 | pH24 | L* | a* | b* | Moisture (%) | Protein (%) | Intramuscular Fat (%) | Collagen (%) | ||||
Breast muscle | 90 d | 5.92 b | 5.95 b | 15.98 b | 25.39 | 52.93 a | 2.64 b | 15.03 a | 72.43 b | 24.77 b | 0.51 b | 0.52 |
100 d | 6.20 a | 6.31 a | 23.09 a | 24.69 | 45.78 b | 15.09 a | 12.94 b | 72.82 a | 25.50 a | 1.22 a | 0.52 | |
SEM | 0.031 | 0.039 | 1.268 | 1.219 | 1.035 | 1.322 | 0.504 | 0.092 | 0.090 | 0.076 | 0.025 | |
p-value | <0.001 | <0.001 | 0.006 | 0.782 | <0.001 | <0.001 | 0.036 | 0.031 | <0.001 | <0.001 | 0.928 | |
Leg muscle | 90 d | 6.22 b | 6.31 b | 15.49 b | 20.02 | 44.18 b | 16.68 a | 12.41 b | 74.58 a | 21.59 | 2.80 | 0.45 b |
100 d | 6.58 a | 6.60 a | 25.88 a | 21.49 | 56.67 a | 1.51 b | 15.57 a | 73.83 b | 21.64 | 2.98 | 0.61 a | |
SEM | 0.047 | 0.034 | 1.534 | 0.892 | 1.329 | 1.446 | 0.471 | 1.221 | 0.081 | 0.078 | 0.035 | |
p-value | <0.001 | <0.001 | 0.001 | 0.417 | <0.001 | <0.001 | <0.001 | 0.001 | 0.801 | 0.251 | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Jiang, Y.; Wang, Z.; Chen, G.; Bai, H.; Chang, G. Indigenous, Yellow-Feathered Chickens Body Measurements, Carcass Traits, and Meat Quality Depending on Marketable Age. Animals 2022, 12, 2422. https://doi.org/10.3390/ani12182422
Yuan C, Jiang Y, Wang Z, Chen G, Bai H, Chang G. Indigenous, Yellow-Feathered Chickens Body Measurements, Carcass Traits, and Meat Quality Depending on Marketable Age. Animals. 2022; 12(18):2422. https://doi.org/10.3390/ani12182422
Chicago/Turabian StyleYuan, Chunyou, Yong Jiang, Zhixiu Wang, Guohong Chen, Hao Bai, and Guobin Chang. 2022. "Indigenous, Yellow-Feathered Chickens Body Measurements, Carcass Traits, and Meat Quality Depending on Marketable Age" Animals 12, no. 18: 2422. https://doi.org/10.3390/ani12182422
APA StyleYuan, C., Jiang, Y., Wang, Z., Chen, G., Bai, H., & Chang, G. (2022). Indigenous, Yellow-Feathered Chickens Body Measurements, Carcass Traits, and Meat Quality Depending on Marketable Age. Animals, 12(18), 2422. https://doi.org/10.3390/ani12182422