Growth Performance, Carcass and Meat Traits of Autochthonous Arouquesa Weaners Raised on Traditional and Improved Feeding Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Systems and Experimental Design
2.2. Animal Growth
2.3. Ultrasound Measurements
2.4. Slaughter and Carcass Traits
2.5. Lumbar Measurements
2.6. Post-Mortem Meat Quality Traits
2.6.1. pH
2.6.2. Color
2.6.3. Exudative Losses
2.6.4. Cooking Losses
2.6.5. Sarcomere Length
2.6.6. Shear Force
2.7. Statistical Analysis
2.8. Animal Welfare Disclaimer
3. Results and Discussion
3.1. Live Weight, Ultrasound Traits, Carcass Weight and Lumbar Measurements
3.2. Meat Quality Traits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz-Ulecia, E.; Bernués, A.; Casasús, I.; Olaizola, A.M.; Lobón, S.; Martín-Collado, D. Drivers of Change in Mountain Agriculture: A Thirty-Year Analysis of Trajectories of Evolution of Cattle Farming Systems in the Spanish Pyrenees. Agric. Syst. 2021, 186, 102983. [Google Scholar] [CrossRef]
- Pena, J. As Razões Porque Deve Valorizar as Raças Autóctones Portuguesas; Agricultura e Mar Actual. Available online: https://agriculturaemar.com/as-razoes-porque-deve-valorizar-as-racas-autoctones-portuguesas/ (accessed on 16 November 2021).
- Sacarrão-Birrento, L.; de Almeida, A.M. The Portuguese Serrana Goat Breed: A Review. Trop. Anim. Health. Prod. 2021, 53, 114. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural Abandonment in Mountain Areas of Europe: Environmental Consequences and Policy Response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A Review on Dairy Cattle Farming: Is Precision Livestock Farming the Compromise for an Environmental, Economic and Social Sustainable Production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- García-Martínez, A.; Olaizola, A.; Bernués, A. Trajectories of Evolution and Drivers of Change in European Mountain Cattle Farming Systems. Animal 2009, 3, 152–165. [Google Scholar] [CrossRef]
- Cillero, M.; Wallace, M.; Thorne, F.; Breen, J. Analyzing the Impact of Subsidies on Beef Production Efficiency in Selected European Union Countries. A Stochastic Metafrontier Approach. Am. J. Agric. Econ. 2021, 103, 1903–1923. [Google Scholar] [CrossRef]
- Pagliacci, F.; Cei, L.; Defrancesco, E.; Gatto, P. The EU Mountain Product Voluntary Quality Term as a Valorization Tool for Livestock Farms: Challenges and Opportunities in an Alpine Context. Sustainability 2022, 14, 3292. [Google Scholar] [CrossRef]
- Santos, J.A.C.; Santos, M.C.; Pereira, L.N.; Richards, G.; Caiado, L. Local Food and Changes in Tourist Eating Habits in a Sun-and-Sea Destination: A Segmentation Approach. Int. J. Contemp. Hosp. Manag. 2020, 32, 3501–3521. [Google Scholar] [CrossRef]
- Coutinho, P.; Simões, M.; Pereira, C.; Paiva, T. Sustainable Local Exploitation and Innovation on Meat Products Based on the Autochthonous Bovine Breed Jarmelista. Sustainability 2021, 13, 2515. [Google Scholar] [CrossRef]
- DGADR (Direção-Geral de Agricultura e Desenvolvimento Rural). Carne Arouquesa DOP. Available online: https://tradicional.dgadr.gov.pt/pt/cat/carne/carne-de-bovino/74-carne-arouquesa-dop (accessed on 10 November 2021).
- Direção Geral de Alimentação e Veterinária (DGAV ). Catálogo Oficial de Raças Autóctones Portuguesas; DGAV: Lisbon, Portugal, 2020. [Google Scholar]
- Sociedade Portuguesa de Recursos Genéticos Animais (SPREGA). Bovinos—Raça Arouquesa. Available online: https://www.sprega.com.pt/conteudo.php?idesp=bovinos&idraca=Arouquesa (accessed on 20 November 2021).
- Rodrigues, A.M.; de Andrade, P.; Rodrigues, V. Extensive Beef Cattle Production in Portugal: The Added Value of Indigenous Breeds in the Beef Market. In Livestock Production in the European LFAS–Meeting Future Economic, Environmental and Policy Objectives through Integrated Research; Laker, J.P., Milne, J.A., Eds.; LSIRD: Dublin, UK, 2003; pp. 61–69. [Google Scholar]
- ANCRA. Raça—Sistema Produtivo. Available online: https://www.ancra.pt/sistema-produtivo/ (accessed on 5 November 2021).
- Moreira, D. Caracterização Do Sistema de Produção Da Raça Bovina Arouquesa Estudo de Alguns Indicadores Produtivos. Master Thesis, University of Trás-os-Montes e Alto Douro; UTAD, Vila Real, Portugal, 2020. [Google Scholar]
- Villalba, D.; Casasús, I.; Sanz, A.; Bernués, A.; Estany, J.; Revilla, R. Stochastic Simulation of Mountain Beef Cattle Systems. Agric. Syst. 2006, 89, 414–434. [Google Scholar] [CrossRef]
- Casasú, S.; Sanz, A.; Villalba, D.; Ferrer, R.; Revilla, R. Factors Affecting Animal Performance during the Grazing Season in a Mountain Cattle Production System. J. Anim. Sci 2002, 80, 1638–1651. [Google Scholar] [CrossRef] [PubMed]
- Alfaia, C.P.M.; Castro, M.L.F.; Martins, S.I.V.; Portugal, A.P.V.; Alves, S.P.A.; Fontes, C.M.G.A.; Bessa, R.J.B.; Prates, J.A.M. Influence of Slaughter Season and Muscle Type on Fatty Acid Composition, Conjugated Linoleic Acid Isomeric Distribution and Nutritional Quality of Intramuscular Fat in Arouquesa-PDO Veal. Meat Sci. 2007, 76, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Cooperativa Agrícola Cinfanense. Caderno de Especificações Carne Arouquesa. Available online: https://ec.europa.eu/geographical-indications-register/eambrosia-public-api/api/v1/attachments/59494 (accessed on 29 July 2022).
- Commission Internationale de l’Eclairage. Colorimetry, 2nd ed.; Commission Internationale de l’Eclairage: Vienna, Austria, 1986. [Google Scholar]
- American Meat Science Association. Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012. [Google Scholar]
- Honikel, K.O. How to Measure the Water Holding Capacity of Meat? Recommendation of Standardized Method. In Evaluation and Control of Meat Quality in Pigs; Tarrant, P.V., Eikelenboom, G., Monin, G., Eds.; Martinus Nijhoff Publisher: Leiden, The Netherlands, 1987; pp. 129–142. [Google Scholar]
- Cross, H.R.; West, R.L.; Dutson, T.R. Comparison of Methods for Measuring Sarcomere Length in Beef Semitendinosus Muscle. Meat Sci. 1981, 5, 261–266. [Google Scholar] [CrossRef]
- Henriques, L.; de Campos, S.; Filho, V.; Fonseca, A.; Veiga, P.; Paulino, R.; Detmann, E.; Ferreira, R.; Valadares, D. Avaliação de Modelos Não-Lineares e Da Relação Do Consumo Voluntário de Vacas Primíparas e de Bezerros Com a Curva de Lactação de Vacas Nelore. Rev. Bras. Zootec. 2011, 40, 1287–1295. [Google Scholar] [CrossRef]
- Roche, J.R.; Macdonald, K.A.; Schütz, K.E.; Matthews, L.R.; Verkerk, G.A.; Meier, S.; Loor, J.J.; Rogers, A.R.; McGowan, J.; Morgan, S.R.; et al. Calving Body Condition Score Affects Indicators of Health in Grazing Dairy Cows. J. Dairy Sci. 2013, 96, 5811–5825. [Google Scholar] [CrossRef] [PubMed]
- Noya, A.; Ripoll, G.; Casasús, I.; Sanz, A. Long-Term Effects of Early Maternal Undernutrition on the Growth, Physiological Profiles, Carcass and Meat Quality of Male Beef Offspring. Res. Vet. Sci. 2022, 142, 1–11. [Google Scholar] [CrossRef]
- INRA; Noziere, P.; Sauvant, D.; Delaby, L. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Chen, H.; Wang, C.; Huasai, S.; Chen, A. Effects of Dietary Forage to Concentrate Ratio on Nutrient Digestibility, Ruminal Fermentation and Rumen Bacterial Composition in Angus Cows. Sci. Rep. 2021, 11, 17023. [Google Scholar] [CrossRef]
- Bispo, E.; Monserrat, L.; González, L.; Franco, D.; Moreno, T. Effect of Weaning Status on Animal Performance and Meat Quality of Rubia Gallega Calves. Meat Sci. 2010, 86, 832–838. [Google Scholar] [CrossRef]
- Blanco, M.; Villalba, D.; Ripoll, G.; Sauerwein, H.; Casasús, I. Effects of Early Weaning and Breed on Calf Performance and Carcass and Meat Quality in Autumn-Born Bull Calves. Livest. Sci. 2009, 120, 103–115. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Alves, S.P.; Francisco, A.; Portugal, A.P.; Almeida, J.; Fialho, L.; Jerónimo, E.; Bessa, R.J.B. Effects of a High-Fibre and Low-Starch Diet in Growth Performance, Carcass and Meat Quality of Young Alentejana Breed Bulls. Meat Sci. 2020, 168, 108191. [Google Scholar] [CrossRef]
- Silva, S.R.; Cadavez, V.P. Real-Time Ultrasound (RTU) Imaging Methods for Quality Control of Meats. In Computer Vision Technology in the Food and Beverage Industries; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 277–329. [Google Scholar] [CrossRef]
- Scholz, A.M.; Bünger, L.; Kongsro, J.; Baulain, U.; Mitchell, A.D. Non-Invasive Methods for the Determination of Body and Carcass Composition in Livestock: Dual-Energy X-Ray Absorptiometry, Computed Tomography, Magnetic Resonance Imaging and Ultrasound: Invited Review. Animal 2015, 9, 1250–1264. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Stouffer, J.R. Looking under the Hide of Animals. The History of Ultrasound to Assess Carcass Composition and Meat Quality in Farm Animals. Hist. Ciênc. Ensino Constr. Interfaces 2019, 20, 523–535. [Google Scholar] [CrossRef]
- Silva, S.; Guedes, C.; Rodrigues, S.; Teixeira, A. Non-Destructive Imaging and Spectroscopic Techniques for Assessment of Carcass and Meat Quality in Sheep and Goats: A Review. Foods 2020, 9, 1074. [Google Scholar] [CrossRef] [PubMed]
- Perkins, T.L.; Green, R.D.; Hamlin, K.E. Evaluation of Ultrasonic Estimates of Carcass Fat Thickness and Longissimus Muscle Area in Beef Cattle. J. Anim. Sci. 1992, 70, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Greiner, S.P.; Rouse, G.H.; Wilson, D.E.; Cundiff, L.V.; Wheeler, T.L. The Relationship between Ultrasound Measurements and Carcass Fat Thickness and Longissimus Muscle Area in Beef Cattle. J. Anim. Sci. 2003, 81, 676–682. [Google Scholar] [CrossRef]
- Schmidt, B.M.; Gonda, M.G.; MacNeil, M.D. Partitioning Variation in Measurements of Beef Carcass Traits Using Ultrasound1. Transl. Anim. Sci. 2020, 4, txaa162. [Google Scholar] [CrossRef]
- Williams, A.R. Ultrasound Applications in Beef Cattle Carcass Research and Management. J. Anim. Sci. 2002, 80 (Suppl. S2), E183–E188. [Google Scholar] [CrossRef]
- Houghton, P.L.; Turlington, L.M. Application of Ultrasound for Feeding and Finishing Animals: A Review. J. Anim. Sci. 1992, 70, 930–941. [Google Scholar] [CrossRef] [Green Version]
- Santin, I.A.; Lima, H.L.; Mateus, K.A.; Santos, M.R.; Zampar, A.; Cucco, D.C. Carcass and Meat Quality of Young Angus Steers with Different Growth Potential Finished Exclusively Grass-Fed or Corn Supplemented. Trop. Anim. Health Prod. 2021, 53, 521. [Google Scholar] [CrossRef]
- Arthington, J.D.; Spears, J.W.; Miller, D.C. The Effect of Early Weaning on Feedlot Performance and Measures of Stress in Beef Calves. J. Anim. Sci. 2005, 83, 933–939. [Google Scholar] [CrossRef]
- Wolcott, M.L.; Graser, H.U.; Johnston, D.J. Effects of Early Weaning on Growth, Feed Efficiency and Carcass Traits in Shorthorn Cattle. Anim. Prod. Sci. 2010, 50, 315–321. [Google Scholar] [CrossRef]
- Vasconcelos, J.T.; Sawyer, J.E.; Tedeschi, L.O.; McCollum, F.T.; Greene, L.W. Effects of Different Growing Diets on Performance, Carcass Characteristics, Insulin Sensitivity, and Accretion of Intramuscular and Subcutaneous Adipose Tissue of Feedlot Cattle. J. Anim. Sci. 2009, 87, 1540–1547. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.A.; Russel, A.J.F. Changes in the Body Composition of Beef Cattle during Compensatory Growth. Anim. Sci. 1991, 52, 105–113. [Google Scholar] [CrossRef]
- Fruet, A.P.B.; Stefanello, F.S.; Trombetta, F.; de Souza, A.N.M.; Rosado Júnior, A.G.; Tonetto, C.J.; Flores, J.L.C.; Scheibler, R.B.; Bianchi, R.M.; Pacheco, P.S.; et al. Growth Performance and Carcass Traits of Steers Finished on Three Different Systems Including Legume-Grass Pasture and Grain Diets. Animal 2019, 13, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, A.A.; Zulkifli, I.; Goh, Y.M.; Kaka, U.; Sabow, A.B.; Imlan, J.C.; Awad, E.A.; Othman, A.H.; Raghazli, R.; Mitin, H.; et al. Effects of Stocking and Transport Conditions on Physicochemical Properties of Meat and Acute-Phase Proteins in Cattle. Foods 2021, 10, 252. [Google Scholar] [CrossRef]
- Cadavez, V.A.P.; Xavier, C.; Gonzales-Barron, U. Classification of Beef Carcasses from Portugal Using Animal Characteristics and PH/Temperature Decline Descriptors. Meat Sci. 2019, 153, 94–102. [Google Scholar] [CrossRef]
- Carrasco-García, A.A.; Pardío-Sedas, V.T.; León-Banda, G.G.; Ahuja-Aguirre, C.; Paredes-Ramos, P.; Hernández-Cruz, B.C.; Murillo, V.V. Effect of stress during slaughter on carcass characteristics and meat quality in tropical beef cattle. Asian-Australas. J. Anim. Sci. 2020, 33, 1656–1665. [Google Scholar] [CrossRef]
- Steinshamn, H.; Höglind, M.; Havrevoll, Ø.; Saarem, K.; Lombnæs, I.H.; Steinheim, G.; Svendsen, A. Performance and Meat Quality of Suckling Calves Grazing Cultivated Pasture or Free Range in Mountain. Livest. Sci. 2010, 132, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Panea, B.; Casasús, I.; Joy, M.; Carrasco, S.; Ripoll, G.; Albertí, P.; Blanco, M. Effecto de La Dieta Invernal Sobre La Calidad de La Carne de Cebones Finalizados En Pastos de Montaña Suplemen-Tados Con Cebada. Span. J. Agric. Res. 2012, 10, 1037–1047. [Google Scholar] [CrossRef]
- Neethling, N.E.; Suman, S.P.; Sigge, G.O.; Hoffman, L.C.; Hunt, M.C. Exogenous and Endogenous Factors Influencing Color of Fresh Meat from Ungulates. Meat Muscle Biol. 2017, 1, 32. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Mao, Y.; Coombs, C.E.O.; van de Ven, R.J.; Hopkins, D.L. Relationship between Colorimetric (Instrumental) Evaluation and Consumer-Defined Beef Colour Acceptability. Meat Sci. 2016, 121, 104–106. [Google Scholar] [CrossRef]
- Ijaz, M.; Li, X.; Zhang, D.; Hussain, Z.; Ren, C.; Bai, Y.; Zheng, X. Association between Meat Color of DFD Beef and Other Quality Attributes. Meat Sci. 2020, 161, 107954. [Google Scholar] [CrossRef] [PubMed]
- Keady, T.W.J.; Gordon, A.W.; Moss, B.W. Effects of Replacing Grass Silage with Maize Silages Differing in Inclusion Level and Maturity on the Performance, Meat Quality and Concentrate-Sparing Effect of Beef Cattle. Animal 2013, 7, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Ertbjerg, P.; Puolanne, E. Muscle Structure, Sarcomere Length and Influences on Meat Quality: A Review. Meat Sci. 2017, 132, 139–152. [Google Scholar] [CrossRef]
- Onopiuk, A.; Szpicer, A.; Pogorzelski, G.; Wierzbicka, A.; Poltorak, A. Analysis of the Impact of Exogenous Preparations of Cysteine Proteases on Tenderness of Beef Muscles Semimembranosus and Longissimus Thoracis et Lumborum. Livest. Sci. 2022, 258, 104866. [Google Scholar] [CrossRef]
- Veiseth-Kent, E.; Pedersen, M.E.; Rønning, S.B.; Rødbotten, R. Can Postmortem Proteolysis Explain Tenderness Differences in Various Bovine Muscles? Meat Sci. 2018, 137, 114–122. [Google Scholar] [CrossRef]
- Maher, S.C.; Mullen, A.M.; Moloney, A.P.; Reville, W.; Buckley, D.J.; Kerry, J.P.; Troy, D.J. Ultrastructural Variation in Beef M. Longissimus Dorsi as an Explanation of the Variation in Beef Tenderness. J. Food Sci. 2006, 70, E579–E584. [Google Scholar] [CrossRef]
- Silva, J.A.; Cardoso, R.; Vieira, R.; Almeida, J.C.; Gomes, M.J.; Venâncio, C.; Patarata, L. The Effect of Weaning and Slaughter Age on the Physicochemical and Sensory Characteristics of Arouquesa Beef—A PDO Portuguese Meat. Foods 2022, 11, 2505. [Google Scholar] [CrossRef]
- Silva, J.A.; Patarata, L.; Martins, C. Influence of Ultimate PH on Bovine Meat Tenderness during Ageing. Meat Sci. 1999, 52, 453–459. [Google Scholar] [CrossRef]
- Watanabe, G.; Motoyama, M.; Nakajima, I.; Sasaki, K. Relationship between Water-Holding Capacity and Intramuscular Fat Content in Japanese Commercial Pork Loin. Asian-Australas. J. Anim. Sci. 2018, 31, 914–918. [Google Scholar] [CrossRef]
- Hornick, J.L.; van Eenaeme, C.; Clinquart, A.; Gerard, O.; Istasse, L. Different Modes of Food Restriction and Compensatory Growth in Double-Muscled Belgian Blue Bulls: Animal Performance, Carcass and Meat Characteristics. Anim. Sci. 1999, 69, 563–572. [Google Scholar] [CrossRef]
Meadow Hay | Ground Maize | S1 | S2 | S3 | ||
---|---|---|---|---|---|---|
Chemical composition 1 | ||||||
Dry matter | % | 84.31 | 84.49 | 87.50 | 87.45 | 87.43 |
Ash | % | 5.70 | 1.61 | 5.46 | 4.62 | 4.39 |
Crude protein | % | 8.18 | 9.08 | 18.56 | 16.60 | 15.57 |
Crude fat | % | nd | nd | 3.33 | 3.80 | 4.21 |
Crude fiber | % | nd | nd | 4.32 | 4.84 | 4.77 |
NDF | % | 69.10 | 20.54 | 15.08 | 14.59 | 14.10 |
ADF | % | 41.86 | 4.23 | 5.31 | 5.88 | 5.58 |
ADL | 6.89 | 0.86 | nd | nd | nd | |
Starch | % | nd | nd | 35.48 | 40.57 | 43.87 |
Calcium | % | nd | nd | 0.64 | 0.42 | 0.40 |
Phosphorus | % | nd | nd | 0.46 | 0.40 | 0.34 |
Sodium | % | nd | nd | 0.20 | 0.20 | 0.20 |
Chlorine | % | nd | nd | 0.39 | 0.38 | 0.38 |
Magnesium | % | nd | nd | 0.21 | 0.22 | 0.27 |
Potassium | % | nd | nd | 0.97 | 0.81 | 0.73 |
Energy and protein values 2 | ||||||
UFV | UF·kg−1 | 0.57 | 1.06 | 0.98 | 1.01 | 1.03 |
PDIA | % | 2.6 | 4.6 | 7.3 | 6.5 | 6.1 |
PDIE | % | 7.1 | 8.4 | 11.7 | 10.9 | 10.5 |
PDIN | % | 5.6 | 6.3 | 13.5 | 12.0 | 11.2 |
Traits | Feeding System | p | ||
---|---|---|---|---|
TF (n = 11) | TF + S1 (n = 13) | S1 + S2 (n = 15) | ||
LW final (kg) | 240.2 b (8.9) | 272.6 a (6.9) | 273.4 a (7.5) | 0.013 |
ADG (g·day−1) | 867.2 b (64.9) | 1006.3 a (118.0) | 1004.2 a (178.0) | 0.027 |
Ultrasound | ||||
LMdepth_RTU (mm) | 59.8 (2.8) | 58.9 (4.9) | 56.8 (6.0) | 0.680 |
SF_RTU (mm) | 5.2 (0.74) | 6.9 (0.63) | 5.8 (0.62) | 0.145 |
CW (kg) | 122.2 (19.3) | 136.1 (21.6) | 136.5 (16.4) | 0.266 |
Carcass yield (%) | 51.0 (6.9) | 50.2 (9.9) | 49.9 (4.7) | 0.911 |
Lumbar measurements | ||||
Area (mm2) | 4617.7 (263.5) | 4822.1 (271.5) | 4422.2 (226.6) | 0.541 |
Perimeter (mm) | 287.8 (9.9) | 295.8 (10.2) | 283.4 (8.5) | 0.660 |
Major (mm) | 107.3 (4.1) | 111.9 (4.2) | 107.0 (3.5) | 0.659 |
LMdepth (mm) | 54.5 (1.5) | 54.5 (1.6) | 52.1 (1.3) | 0.402 |
SF (mm) | 4.65 (0.42) | 5.87 (0.43) | 5.13 (0.36) | 0.148 |
Traits | Feeding System | p | |
---|---|---|---|
TF + S3 (n = 10) | S3 (n = 11) | ||
LW final (kg) | 307.3 (6.1) | 310.8 (4.9) | 0.688 |
ADG (gday-1) | 937.368.1) | 1122.2 (54.9) | 0.074 |
Ultrasound | |||
LMdepth_RTU (mm) | 65.0 (3.3) | 64.1 (3.8) | 0.872 |
SF_RTU (mm) | 5.8 b (0.38) | 8.3 a (0.43) | 0.002 |
CW (kg) | 167.7 (5.5) | 155.4 (4.5) | 0.139 |
Carcass yield (%) | 54.6 (1.6) | 50.4 (1.3) | 0.077 |
Lumbar measurements | |||
Area (mm2) | 5352.1 (235.8) | 5239.8 (273.2) | 0.790 |
Perimeter (mm) | 306.9 (6.7) | 319.4 (7.7) | 0.304 |
Major (mm) | 116.5 (2.2) | 114.4 (2.6) | 0.604 |
LMdepth (mm) | 57.7 (2.0) | 60.5 (2.3) | 0.449 |
SF (mm) | 5.5 b (0.41) | 7.1 a (0.47) | 0.037 |
Traits | Feeding System | p | ||
---|---|---|---|---|
TF (n = 11) | TF + S1 (n = 13) | S1 + S2 (n = 15) | ||
pH24h | 6.29 (0.13) | 6.11 (0.12) | 6.45 (0.10) | 0.101 |
L* | 37.9 (1.4) | 38.3 (1.2) | 35.5 (1.0) | 0.156 |
a* | 23.1 (2.4) | 23.2 (2.5) | 22.9 (2.8) | 0.903 |
b* | 5.87 (0.60) | 6.18 (0.52) | 4.66 (0.45) | 0.079 |
EL (%) | 2.31 a (0.33) | 1.85 a (0.29) | 0.97 b (0.25) | 0.006 |
CL (%) | 13.5 a (1.5) | 14.0 a (1.3) | 10.0 b (1.1) | 0.049 |
CS (µm) | 1.69 (0.053) | 1.63 (0.047) | 1.71 (0.041) | 0.493 |
SF (N/cm2) | 47.1 (8.7) | 52.9 (7.6) | 51.5 (6.6) | 0.878 |
Traits | Feeding System | p | |
---|---|---|---|
TF + S3 (n = 6 *) | S3 (n = 11) | ||
pH24h | 6.2 (0.24) | 5.8 (0.14) | 0.268 |
L* | 36.9 (1.9) | 39.4 (1.1) | 0.323 |
a* | 23.3 (1.4) | 24.8 (0.82) | 0.408 |
b* | 6.5 (1.2) | 7.7 (0.68) | 0.426 |
EL (%) | 2.0 (0.94) | 2.9 (0.53) | 0.426 |
CL (%) | 16.7 (3.1) | 18.1 (1.8) | 0.724 |
CS (µm) | 1.67 (0.04) | 1.75 (0.02) | 0.167 |
SF (N/cm2) | 50.8 (10.9) | 67.4 (6.2) | 0.237 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacarrão-Birrento, L.; Gomes, M.J.; Silva, S.R.; Silva, J.A.; Moreira, D.; Vieira, R.; Ferreira, L.M.; Pereira, P.; de Almeida, A.M.; Almeida, J.C.; et al. Growth Performance, Carcass and Meat Traits of Autochthonous Arouquesa Weaners Raised on Traditional and Improved Feeding Systems. Animals 2022, 12, 2501. https://doi.org/10.3390/ani12192501
Sacarrão-Birrento L, Gomes MJ, Silva SR, Silva JA, Moreira D, Vieira R, Ferreira LM, Pereira P, de Almeida AM, Almeida JC, et al. Growth Performance, Carcass and Meat Traits of Autochthonous Arouquesa Weaners Raised on Traditional and Improved Feeding Systems. Animals. 2022; 12(19):2501. https://doi.org/10.3390/ani12192501
Chicago/Turabian StyleSacarrão-Birrento, Laura, Maria José Gomes, Severiano R. Silva, José A. Silva, Duarte Moreira, Raquel Vieira, Luis Mendes Ferreira, Pedro Pereira, André M. de Almeida, José Carlos Almeida, and et al. 2022. "Growth Performance, Carcass and Meat Traits of Autochthonous Arouquesa Weaners Raised on Traditional and Improved Feeding Systems" Animals 12, no. 19: 2501. https://doi.org/10.3390/ani12192501
APA StyleSacarrão-Birrento, L., Gomes, M. J., Silva, S. R., Silva, J. A., Moreira, D., Vieira, R., Ferreira, L. M., Pereira, P., de Almeida, A. M., Almeida, J. C., & Venâncio, C. (2022). Growth Performance, Carcass and Meat Traits of Autochthonous Arouquesa Weaners Raised on Traditional and Improved Feeding Systems. Animals, 12(19), 2501. https://doi.org/10.3390/ani12192501