Looking beyond the Shoal: Fish Welfare as an Individual Attribute
Abstract
:Simple Summary
Abstract
1. Introduction
2. Fishes Are Individuals: Implications for Welfare in an Aquaculture Setting
2.1. Personalities and Individual Behavioral Variation
2.2. Cognition
2.3. Emotion
2.4. Preferences
3. Fish Welfare Assessment Focuses on the Shoal
Why Don’t Group Level Assessments Ensure High Welfare for All Individuals?
4. Can We Further Take Inter-Individual Differences into Account in Animal Welfare Assessment?
Zoos Utilize Individual-Focused Welfare Assessments
5. Conclusions: Making Progress with Understanding How to Provide Fishes with Good Welfare at the Individual Level under Captive Conditions
Author Contributions
Funding
Conflicts of Interest
References
- Broom, D.M. A History of Animal Welfare Science. Acta Biotheor. 2011, 59, 121–137. [Google Scholar] [CrossRef]
- Franks, B.; Ewell, C.; Jacquet, J. Animal Welfare Risks of Global Aquaculture. Sci. Adv. 2021, 7, eabg0677. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.F.; Conceição, L.E.C.; Millot, S.; Rey, S.; Bégout, M.L.; Damsgård, B.; Kristiansen, T.; Höglund, E.; Øverli, Ø.; Martins, C.I.M. Coping Styles in Farmed Fish: Consequences for Aquaculture. Rev. Aquac. 2017, 9, 23–41. [Google Scholar] [CrossRef]
- Koolhaas, J.M.; Korte, S.M.; De Boer, S.F.; Van Der Vegt, B.J.; Van Reenen, C.G.; Hopster, H.; De Jong, I.C.; Ruis, M.A.W.; Blokhuis, H.J. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 1999, 23, 925–935. [Google Scholar] [CrossRef]
- Maia, C.M.; Volpato, G.L. Individuality matters for substrate-size preference in the Nile tilapia juveniles. J. Appl. Anim. Welf. Sci. 2018, 21, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Weeks, C.A.; Nicol, C.J. Behavioural needs, priorities and preferences of laying hens. Worlds Poult. Sci. J. 2006, 62, 296–307. [Google Scholar] [CrossRef]
- Douglas, C.; Bateson, M.; Walsh, C.; Bédué, A.; Edwards, S.A. Environmental enrichment induces optimistic cognitive biases in pigs. Appl. Anim. Behav. Sci. 2012, 139, 65–73. [Google Scholar] [CrossRef]
- Friel, M.; Kunc, H.P.; Griffin, K.; Asher, L.; Collins, L.M. Positive and negative contexts predict duration of pig vocalisations. Sci. Rep. 2019, 9, 2062. [Google Scholar] [CrossRef] [PubMed]
- Neave, H.W.; Daros, R.R.; Costa, J.H.C.; Von Keyserlingk, M.A.G.; Weary, D.M. Pain and pessimism: Dairy calves exhibit negative judgement bias following hot-iron disbudding. PLoS ONE 2013, 8, e80556. [Google Scholar] [CrossRef] [PubMed]
- Zidar, J.; Campderrich, I.; Jansson, E.; Wichman, A.; Winberg, S.; Keeling, L.; Løvlie, H. Environmental complexity buffers against stress-induced negative judgement bias in female chickens OPEN. Sci. Rep. 2018, 8, 5404. [Google Scholar] [CrossRef] [Green Version]
- Dawkins, M.S. Using Behaviour to Assess Animal Welfare. Anim. Welf. 2004, 13, 3–7. [Google Scholar]
- Winckler, C. Assessing Animal Welfare at the Farm Level: Do We Care Sufficiently about the Individual? Anim. Welf. 2019, 28, 77–82. [Google Scholar] [CrossRef]
- Whitham, J.C.; Wielebnowski, N. New Directions for Zoo Animal Welfare Science. Appl. Anim. Behav. Sci. 2013, 147, 247–260. [Google Scholar] [CrossRef]
- Dawkins, M.S. From an Animal’s Point of View: Motivation, Fitness, and Animal Welfare. Behav. Brain Sci. 1990, 13, 1–9. [Google Scholar]
- Duncan, I.J.H. Animal Welfare Defined in Terms of Feelings. Acta Agric. Scand. A Anim. Supplementum 1996, 27, 29–35. [Google Scholar]
- Duncan, I.J.H.H. The changing concept of animal sentience. Appl. Anim. Behav. Sci. 2006, 100, 11–19. [Google Scholar] [CrossRef]
- Duncan, I.J.H.; Dawkins, M.S. The Problem of Assessing “Well-Being” and “Suffering” in Farm Animals. In Proceedings of the Indicators Relevant to Farm Animal Welfare: A Seminar in the CEC Programme of Coordination of Research on Animal Welfare, Mariensee, Germany, 9–10 November 1982; Smidt, D., Ed.; Springer: Dordrecht, The Netherlands, 1983; pp. 13–24. ISBN 9789400967380. [Google Scholar]
- McMillan, F.D. Quality of Life in Animals. J. Am. Vet. Med. Assoc. 2000, 216, 1904–1910. [Google Scholar] [CrossRef] [PubMed]
- McMillan, F.D. Maximizing Quality of Life in Ill Animals. J. Am. Anim. Hosp. Assoc. 2003, 39, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, M.S. The Science of Animal Suffering. Ethology 2008, 114, 937–945. [Google Scholar] [CrossRef]
- Sánchez-Suárez, W.; Franks, B.; Torgerson-White, L. From Land to Water: Taking Fish Welfare Seriously. Animals 2020, 10, 1585. [Google Scholar] [CrossRef] [PubMed]
- Broom, D.M. Indicators of Poor Welfare. Br. Vet. J. 1986, 142, 524–526. [Google Scholar] [CrossRef]
- Mellor, D.J. Updating Animal Welfare Thinking: Moving beyond the “Five Freedoms” towards “A Life Worth Living”. Animals 2016, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Edgar, J.L.; Mullan, S.M.; Pritchard, J.C.; McFarlane, U.J.C.; Main, D.C.J. Towards a “good life” for farm animals: Development of a resource tier framework to achieve positive welfare for laying hens. Animals 2013, 3, 584–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fife-Cook, I.; Franks, B. Positive Welfare for Fishes: Rationale and Areas for Future Study. Fish. Sahul 2019, 4, 31. [Google Scholar] [CrossRef]
- Fraser, D. Understanding animal welfare. Acta Vet. Scand. 2008, 50, S1. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; ISBN 9789251326923. [Google Scholar]
- FishCount Numbers of Farmed Fish Slaughtered Each Year. Available online: http://fishcount.org.uk/fish-count-estimates-2/numbers-of-farmed-fish-slaughtered-each-year (accessed on 14 April 2021).
- Teletchea, F.; Fontaine, P. Levels of domestication in fish: Implications for the sustainable future of aquaculture. Fish Fish. 2014, 15, 181–195. [Google Scholar] [CrossRef]
- Fish Ethology Database. Available online: https://fishethobase.net/ (accessed on 4 August 2022).
- Wankowski, J.W.J.; Thorpe, J.E. Spatial Distribution and Feeding in Atlantic Salmon, Salmo Salar L. Juveniles. J. Fish Biol. 1979, 14, 239–247. [Google Scholar] [CrossRef]
- Cutts, C.J. Metabolic Rate, Territoriality and Life-History Strategies of Juvenile Atlantic Salmon (Salmo salar L.). Ph.D. Thesis, University of Glasgow, Glasgow, UK, 1996. [Google Scholar]
- Volpato, G.L.; Gonçalves-de-Freitas, E.; Fernandes-de-Castilho, M. Insights into the Concept of Fish Welfare. Dis. Aquat. Organ. 2007, 75, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Volpato, G.L. Challenges in Assessing Fish Welfare. ILAR J. 2009, 50, 329–337. [Google Scholar] [CrossRef]
- Conte, F.S. Stress and the welfare of cultured fish. Appl. Anim. Behav. Sci. 2004, 86, 205–223. [Google Scholar] [CrossRef]
- Ashley, P.J. Fish welfare: Current issues in aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Huntingford, F.A.; Adams, C.; Braithwaite, V.A.; Kadri, S.; Pottinger, T.G.; Sandoe, P.; Turnbull, J.F. Current Issues in Fish Welfare. J. Fish Biol. 2006, 68, 332–372. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Diaz-Gil, C.; Saraiva, J.L.; Moranta, D.; Castanheira, M.F.; Nuñez-Velázquez, S.; Ledesma-Corvi, S.; Mora-Ruiz, M.R.; Grau, A. Effects of Structural Environmental Enrichment on Welfare of Juvenile Seabream (Sparus Aurata). Aquac. Rep. 2019, 15, 100224. [Google Scholar] [CrossRef]
- Brown, C.; Dorey, C. Pain and Emotion in Fishes—Fish Welfare Implications for Fisheries and Aquaculture. Anim. Stud. J. 2019, 8, 175–201. [Google Scholar] [CrossRef]
- Budaev, S.; Brown, C. Personality traits and behaviour. In Fish Cognition and Behavior; Krause, J., Brown, C., Laland, K., Eds.; Wiley-Blackwell Publishing Ltd.: West Sussex, UK, 2011; pp. 135–165. [Google Scholar]
- Allport, G.W. Personality: A Psychological Interpretation; H. Holt: New York, NY, USA, 1937. [Google Scholar]
- Cattell, R.B. The Description of Personality: Principles and Findings in a Factor Analysis. Am. J. Psychol. 1945, 58, 69–90. [Google Scholar] [CrossRef]
- Svendsen, G.E. Behavioral and Environmental Factors in the Spatial Distribution and Popualtion Dynamics of a Yellow-Bellied Marmot Population. Ecology 1974, 55, 760–771. [Google Scholar] [CrossRef]
- Sloan Wilson, D.; Clark, A.B.; Coleman, K.; Dearstyne, T. Shyness and boldness in humans and other animals. Trends Ecol. Evol. 1994, 9, 442–446. [Google Scholar] [CrossRef]
- Gosling, S.D.; John, O.P. Personality dimensions in nonhuman animals: A cross-species review. Curr. Dir. Psychol. Sci. 1999, 8, 69–75. [Google Scholar] [CrossRef]
- Gosling, S.D. Personality Dimensions in Spotted Hyenas (Crocuta Crocuta). J. Comp. Psychol. 1998, 112, 107–118. [Google Scholar] [CrossRef]
- Ruis, M.A.W.; Te Brake, J.H.A.; Van De Burgwal, J.A.; De Jong, I.C.; Blokhuis, H.J.; Koolhaas, J.M. Personalities in female domesticated pigs: Behavioural and physiological indications. Appl. Anim. Behav. Sci. 2000, 66, 31–47. [Google Scholar] [CrossRef]
- Réale, D.; Gallant, B.Y.; Leblanc, M.; Festa-Bianchet, M. Consistency of temperament in bighorn ewes and correlates with behaviour and life history. Anim. Behav. 2000, 60, 589–597. [Google Scholar] [CrossRef]
- Dingemanse, N.J.; Van der Plas, F.; Wright, J.; Réale, D.; Schrama, M.; Roff, D.A.; Van der Zee, E.; Barber, I. Individual Experience and Evolutionary History of Predation Affect Expression of Heritable Variation in Fish Personality and Morphology. Proc. Biol. Sci. 2009, 276, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Dingemanse, N.J.; Both, C.; Van Noordwijk, A.J.; Rutten, A.L.; Drent, P.J. Natal dispersal and personalities in great tits (Parus major). Proc. Royal Soc. B 2003, 270, 741–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Réale, D.; Reader, S.M.; Sol, D.; McDougall, P.T.; Dingemanse, N.J. Integrating animal temperament within ecology and evolution. Biol. Rev. 2007, 82, 291–318. [Google Scholar] [CrossRef] [PubMed]
- Sih, A.; Bell, A.M.; Johnson, J.C.; Ziemba, R.E. Behavioral Syndromes: An Integrative Overview. Q. Rev. Biol. 2004, 79, 241–277. [Google Scholar] [CrossRef]
- Archard, G.A.; Braithwaite, V.A. The Importance of Wild Populations in Studies of Animal Temperament. J. Zool. 2010, 281, 149–160. [Google Scholar] [CrossRef]
- Johansen, I.B.; Höglund, E.; Øverli, Ø. Individual Variations and Coping Style. In Animal Welfare; Springer International Publishing: Cham, Switzerland, 2020; pp. 283–301. ISBN 9783030416744. [Google Scholar]
- MacKay, J.R.D.; Haskell, M.J. Consistent Individual Behavioral Variation: The Difference between Temperament, Personality and Behavioral Syndromes. Animals 2015, 5, 455–478. [Google Scholar] [CrossRef]
- Boissy, A.; Erhard, H.W. How studying interactions between animal emotions, cognition, and personality can contribute to improve farm animal welfare. In Genetics and the Behavior of Domestic Animals; Academic Press: Cambridge, MA, USA, 2014; pp. 81–113. [Google Scholar]
- Nicieza, A.G.; Metcalfe, N.B. Costs of rapid growth: The risk of aggression is higher for fast-growing salmon. Funct. Ecol. 1999, 13, 793–800. [Google Scholar] [CrossRef]
- Toms, C.N.; Echevarria, D.J.; Jouandot, D.J. A Methodological Review of Personality-Related Studies in Fish: Focus on the Shy-Bold Axis of Behavior. Int. J. Comp. Psychol. 2010, 23, 1–25. [Google Scholar]
- Sneddon, L.U. The Bold and the Shy: Individual Differences in Rainbow Trout. J. Fish Biol. 2003, 62, 971–975. [Google Scholar] [CrossRef]
- Brown, C.; Jones, F.; Braithwaite, V.A. Correlation between Boldness and Body Mass in Natural Populations of the Poeciliid Brachyrhaphis Episcopi. J. Fish Biol. 2007, 71, 1590–1601. [Google Scholar] [CrossRef]
- Jolles, J.W.; Briggs, H.D.; Araya-Ajoy, Y.G.; Boogert, N.J. Personality, Plasticity and Predictability in Sticklebacks: Bold Fish Are Less Plastic and More Predictable than Shy Fish. Anim. Behav. 2019, 154, 193–202. [Google Scholar] [CrossRef]
- Huntingford, F.; Mesquita, F.; Kadri, S. Personality Variation in Cultured Fish: Implications for Production and Welfare. In Animal Personalities; University of Chicago Press: Chicago, IL, USA, 2013; pp. 414–440. [Google Scholar]
- Huntingford, F.; Adams, C. Behavioural Syndromes in Farmed Fish: Implications for Production and Welfare. Behaviour 2005, 142, 1207–1221. [Google Scholar]
- Jones, H.A.C.; Noble, C.; Damsgård, B.; Pearce, G.P. Investigating the Influence of Predictable and Unpredictable Feed Delivery Schedules upon the Behaviour and Welfare of Atlantic Salmon Parr (Salmo Salar) Using Social Network Analysis and Fin Damage. Appl. Anim. Behav. Sci. 2012, 138, 132–140. [Google Scholar] [CrossRef]
- Øverli, Ø.; Sørensen, C.; Pulman, K.G.T.; Pottinger, T.G.; Korzan, W.; Summers, C.H.; Nilsson, G.E. Evolutionary Background for Stress-Coping Styles: Relationships between Physiological, Behavioral, and Cognitive Traits in Non-Mammalian Vertebrates. Neurosci. Biobehav. Rev. 2007, 31, 396–412. [Google Scholar] [CrossRef] [Green Version]
- Huntingford, F.A. Fish Behaviour: Determinants and Implications for Welfare. In The Welfare of Fish; Kristiansen, T.S., Fernö, A., Pavlidis, M.A., van de Vis, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 73–110. ISBN 9783030416751. [Google Scholar]
- Noble, C.; Kadri, S.; Mitchell, D.F.; Huntingford, F.A. The Impact of Environmental Variables on the Feeding Rhythms and Daily Feed Intake of Cage-Held 1+ Atlantic Salmon Parr (Salmo Salar L.). Aquaculture 2007, 269, 290–298. [Google Scholar] [CrossRef]
- Noble, C.; Kadri, S.; Mitchell, D.F.; Huntingford, F.A. The effect of feed regime on the growth and behaviour of 1+ Atlantic salmon post-smolts (Salmo salar L.) in semi-commercial sea cages. Aquac. Res. 2007, 38, 1686–1691. [Google Scholar] [CrossRef]
- Attia, J.; Millot, S.; Di-Poï, C.; Bégout, M.L.; Noble, C.; Sanchez-Vazquez, F.J.; Terova, G.; Saroglia, M.; Damsgård, B. Demand feeding and welfare in farmed fish. Fish Physiol. Biochem. 2012, 38, 107–118. [Google Scholar] [CrossRef]
- Martins, C.I.M.; Galhardo, L.; Noble, C.; Damsgård, B.; Spedicato, M.T.; Zupa, W.; Beauchaud, M.; Kulczykowska, E.; Massabuau, J.-C.; Carter, T.; et al. Behavioural indicators of welfare in farmed fish. Fish Physiol. Biochem. 2012, 38, 17–41. [Google Scholar] [CrossRef]
- Barreto, R.E.; Carvalho, G.G.A.; Volpato, G.L. The aggressive behavior of Nile tilapia introduced into novel environments with variation in enrichment. Zoology 2011, 114, 53–57. [Google Scholar] [CrossRef]
- Favero Neto, J.; Giaquinto, P.C. Environmental Enrichment Techniques and Tryptophan Supplementation Used to Improve the Quality of Life and Animal Welfare of Nile Tilapia. Aquac. Rep. 2020, 17, 100354. [Google Scholar] [CrossRef]
- Carere, C.; Locurto, C. Interaction between Animal Personality and Animal Cognition. Curr. Zool. 2011, 57, 491–498. [Google Scholar] [CrossRef]
- Sih, A.; Del Giudice, M. Linking Behavioural Syndromes and Cognition: A Behavioural Ecology Perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 2762–2772. [Google Scholar] [CrossRef]
- Griffin, A.S.; Guillette, L.M.; Healy, S.D. Cognition and Personality: An Analysis of an Emerging Field. Trends Ecol. Evol. 2015, 30, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Finkemeier, M.-A.; Langbein, J.; Puppe, B. Personality Research in Mammalian Farm Animals: Concepts, Measures, and Relationship to Welfare. Front. Vet. Sci. 2018, 5, 131. [Google Scholar] [CrossRef] [PubMed]
- Laland, K.; Krause, J.; Brown, C. Fish Cognition and Behavior; Wiley-Blackwell Publishing Ltd.: West Sussex, UK, 2011; ISBN 9781444342512. [Google Scholar]
- Brown, C.; Laland, K. Social Learning and Life Skills Training for Hatchery Reared Fish. J. Fish Biol. 2001, 59, 471–493. [Google Scholar] [CrossRef]
- Riege, W.H.; Cherkin, A. One-Trial Learning and Biphasic Time Course of Performance in the Goldfish. Science 1971, 172, 966–968. [Google Scholar] [CrossRef]
- Valente, A.; Huang, K.-H.; Portugues, R.; Engert, F. Ontogeny of Classical and Operant Learning Behaviors in Zebrafish. Learn. Mem. 2012, 19, 170–177. [Google Scholar] [CrossRef]
- Vila Pouca, C.; Brown, C. Contemporary Topics in Fish Cognition and Behaviour. Curr. Opin. Behav. Sci. 2017, 16, 46–52. [Google Scholar] [CrossRef]
- Bshary, R.; Brown, C. Fish cognition. Curr. Biol. 2014, 24, R947–R950. [Google Scholar] [CrossRef]
- Salena, M.G.; Turko, A.J.; Singh, A.; Pathak, A.; Hughes, E.; Brown, C. Understanding fish cognition: A review and appraisal of current practices. Anim. Cogn. 2021, 24, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.A.R.; Spence-Jones, H.C.; Webster, M.; Rendell, L. Individual Behavioural Traits Not Social Context Affects Learning about Novel Objects in Archerfish. Behav. Ecol. Sociobiol. 2021, 75, 58. [Google Scholar] [CrossRef]
- Raoult, V.; Trompf, L.; Williamson, J.E.; Brown, C. Stress Profile Influences Learning Approach in a Marine Fish. PeerJ 2017, 5, e3445. [Google Scholar] [CrossRef] [PubMed]
- Bensky, M.K.; Paitz, R.; Pereira, L.; Bell, A.M. Testing the Predictions of Coping Styles Theory in Threespined Sticklebacks. Behav. Process. 2017, 136, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.G.; Rodd, F.H. Hastiness, Brain Size and Predation Regime Affect the Performance of Wild Guppies in a Spatial Memory Task. Anim. Behav. 2008, 76, 911–922. [Google Scholar] [CrossRef]
- White, S.L.; Wagner, T.; Gowan, C.; Braithwaite, V.A. Can Personality Predict Individual Differences in Brook Trout Spatial Learning Ability? Behav. Process. 2017, 141, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Klemme, I.; Karvonen, A. Learned Parasite Avoidance Is Driven by Host Personality and Resistance to Infection in a Fish–trematode Interaction. Proc. Royal Soc. B 2016, 283, 20161148. [Google Scholar] [CrossRef] [PubMed]
- Lucon-Xiccato, T.; Montalbano, G.; Bertolucci, C. Personality Traits Covary with Individual Differences in Inhibitory Abilities in 2 Species of Fish. Curr. Zool. 2020, 66, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Colditz, I.G.; Hine, B.C. Resilience in Farm Animals: Biology, Management, Breeding and Implications for Animal Welfare. Anim. Produc. Sci. 2016, 56, 1961–1983. [Google Scholar] [CrossRef]
- Lee, C.; Colditz, I.G.; Campbell, D.L.M. A Framework to Assess the Impact of New Animal Management Technologies on Welfare: A Case Study of Virtual Fencing. Front. Vet. Sci. 2018, 5, 187. [Google Scholar] [CrossRef] [PubMed]
- Trompf, L.; Brown, C. Personality Affects Learning and Trade-Offs between Private and Social Information in Guppies, Poecilia Reticulata. Anim. Behav. 2014, 88, 99–106. [Google Scholar] [CrossRef]
- Magurran, A.E. Evolutionary Ecology: The Trinidadian Guppy; Oxford Series in Ecology and Evolution; Oxford Academic Press: Oxford, UK, 2005. [Google Scholar] [CrossRef]
- Barreto, R.E.; Volpato, G.L.; Pottinger, T.G. The Effect of Elevated Blood Cortisol Levels on the Extinction of a Conditioned Stress Response in Rainbow Trout. Horm. Behav. 2006, 50, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Colson, V.; Mure, A.; Valotaire, C.; Le Calvez, J.M.; Goardon, L.; Labbé, L.; Leguen, I.; Prunet, P. A Novel Emotional and Cognitive Approach to Welfare Phenotyping in Rainbow Trout Exposed to Poor Water Quality. Appl. Anim. Behav. Sci. 2019, 210, 103–112. [Google Scholar] [CrossRef]
- Duncan, I.J.; Petherick, J.C. The Implications of Cognitive Processes for Animal Welfare. J. Anim. Sci. 1991, 69, 5017–5022. [Google Scholar] [CrossRef] [PubMed]
- Boissy, A.; Manteuffel, G.; Jensen, M.B.; Moe, R.O.; Spruijt, B.; Keeling, L.J.; Winckler, C.; Forkman, B.; Dimitrov, I.; Langbein, J.; et al. Assessment of positive emotions in animals to improve their welfare. Physiol. Behav. 2007, 92, 375–397. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J. Animal Emotions, Behaviour and the Promotion of Positive Welfare States. N. Z. Vet. J. 2012, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Green, T.C.; Mellor, D.J. Extending Ideas about Animal Welfare Assessment to Include “Quality of Life” and Related Concepts. N. Z. Vet. J. 2011, 59, 263–271. [Google Scholar] [CrossRef]
- Edwards-Callaway, L.N.; Widowski, T.M. Others Animal Behavior and Emotions—On-Farm Considerations. In Improving Animal Welfare: A Practical Approach; CABI: Wallingford, UK, 2020; Volume 160. [Google Scholar]
- Désiré, L.; Boissy, A.; Veissier, I. Emotions in farm animals: A new approach to animal welfare in applied ethology. Behav. Process. 2002, 60, 165–180. [Google Scholar] [CrossRef]
- Berridge, K.; Winkielman, P. What Is an Unconscious emotion?(The Case for Unconscious “Liking”). Cogn. Emot. 2003, 17, 181–211. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T. Emotion and Decision-Making Explained: A Précis. Cortex 2014, 59, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.J.; Adolphs, R. A framework for studying emotions across species. Cell 2014, 157, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, V.A.; Boulcott, P. Pain perception, aversion and fear in fish. Dis. Aquat. Organ. 2007, 75, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Moccia, R.D.; Duncan, I.J.H. Investigating Fear in Domestic Rainbow Trout, Oncorhynchus Mykiss, Using an Avoidance Learning Task. Appl. Anim. Behav. Sci. 2004, 87, 343–354. [Google Scholar] [CrossRef]
- Schirmer, A.; Jesuthasan, S.; Mathuru, A.S. Tactile Stimulation Reduces Fear in Fish. Front. Behav. Neurosci. 2013, 7, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sneddon, L.U.; Braithwaite, V.A.; Gentle, M.J. Novel Object Test: Examining Nociception and Fear in the Rainbow Trout. J. Pain 2003, 4, 431–440. [Google Scholar] [CrossRef]
- Tatemoto, P.; Valença-Silva, G.; Queiroz, M.R.; Broom, D.M. Living with Low Environmental Complexity Increases Fear Indicators in Nile Tilapia. Anim. Behav. 2021, 174, 169–174. [Google Scholar] [CrossRef]
- Galhardo, L.; Oliveira, R.F. Psychological Stress and Welfare in Fish. Annu. Rev. Biomed. Sci. 2009, 11, 1–20. [Google Scholar]
- Cerqueira, M.; Millot, S.; Castanheira, M.F.; Félix, A.S.; Silva, T.; Oliveira, G.A.; Oliveira, C.C.; Martins, C.I.M.; Oliveira, R.F. Cognitive Appraisal of Environmental Stimuli Induces Emotion-like States in Fish. Sci. Rep. 2017, 7, 13181. [Google Scholar] [CrossRef] [PubMed]
- Espigares, F.; Abad-Tortosa, D.; Varela, S.A.M.; Ferreira, M.G.; Oliveira, R.F. Short Telomeres Drive Pessimistic Judgement Bias in Zebrafish. Biol. Lett. 2021, 17, 20200745. [Google Scholar] [CrossRef]
- Braithwaite, V.A.; Huntingford, F.; van den Bos, R. Variation in Emotion and Cognition Among Fishes. J. Agric. Environ. Ethics 2013, 26, 7–23. [Google Scholar] [CrossRef]
- D’Ettorre, P.; Carere, C.; Demora, L.; Le Quinquis, P.; Signorotti, L.; Bovet, D. Individual differences in exploratory activity relate to cognitive judgement bias in carpenter ants. Behav. Process. 2017, 134, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.; Rey, S.; Silva, T.; Featherstone, Z.; Crumlish, M.; MacKenzie, S. Thermal Preference Predicts Animal Personality in Nile Tilapia Oreochromis Niloticus. J. Anim. Ecol. 2016, 85, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.D.; Kemp, P.S.; Kennedy, G.J.A.; Ladle, M.; Milner, N.J. Habitat Requirements of Atlantic Salmon and Brown Trout in Rivers and Streams. Fish. Res. 2003, 62, 143–170. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Cultured Atlantic Salmon in Nature: A Review of Their Ecology and Interaction with Wild Fish. ICES J. Mar. Sci. 2006, 63, 1162–1181. [Google Scholar] [CrossRef]
- Papoutsoglou, S.E.; Mylonakis, G.; Miliou, H.; Karakatsouli, N.P.; Chadio, S. Effects of Background Color on Growth Performances and Physiological Responses of Scaled Carp (Cyprinus Carpio L.) Reared in a Closed Circulated System. Aquacult. Eng. 2000, 22, 309–318. [Google Scholar] [CrossRef]
- Pine, R.T.; Anderson, L.W.J. Others Plant Preferences of Triploid Grass Carp. J. Aquat. Plant Manag. 1991, 29, 80–82. [Google Scholar]
- Pine, R.T.; Anderson, L.W.J.; Hung, S.S.O. Effects of Static versus Flowing Water on Aquatic Plant Preferences of Triploid Grass Carp. Trans. Am. Fish. Soc. 1989, 118, 336–344. [Google Scholar] [CrossRef]
- Dabrowski, K.; Bardega, R. Mouth Size and Predicted Food Size Preferences of Larvae of Three Cyprinid Fish Species. Aquaculture 1984, 40, 41–46. [Google Scholar] [CrossRef]
- Maia, C.M.; Ferguson, B.; Volpato, G.L.; Braithwaite, V.A. Physical and Psychological Motivation Tests of Individual Preferences in Rainbow Trout. J. Zool. 2017, 302, 108–118. [Google Scholar] [CrossRef]
- Luchiari, A.C.; do Amaral Duarte, C.R.; de Morais Freire, F.A.; Nissinen, K. Hierarchical Status and Colour Preference in Nile Tilapia (Oreochromis niloticus). J. Ethol. 2007, 25, 169–175. [Google Scholar] [CrossRef]
- Maia, C.M.; Volpato, G.L. Correction: Preference Index Supported by Motivation Tests in Nile Tilapia. PLoS ONE 2018, 13, e0192283. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, J.M.; Bracke, M.B.M.; Midtlyng, P.J.; Folkedal, O.; Stien, L.H.; Steffenak, H.; Kristiansen, T.S. Salmon Welfare Index Model 2.0: An Extended Model for Overall Welfare Assessment of Caged Atlantic Salmon, Based on a Review of Selected Welfare Indicators and Intended for Fish Health Professionals. Rev. Aquac. 2014, 6, 162–179. [Google Scholar] [CrossRef]
- Stien, L.H.; Bracke, M.B.M.; Folkedal, O.; Nilsson, J.; Oppedal, F.; Torgersen, T.; Kittilsen, S.; Midtlyng, P.J.; Vindas, M.A.; Øverli, Ø.; et al. Salmon Welfare Index Model (SWIM 1.0): A semantic model for overall welfare assessment of caged Atlantic salmon: Review of the selected welfare indicators and model presentation. Rev. Aquac. 2013, 5, 33–57. [Google Scholar] [CrossRef]
- Stien, L.H.; Gytre, T.; Torgersen, T.; Sagen, H.; Kristiansen, T.S. A System for Online Assessment of Fish Welfare in Aquaculture; ICES: Toronto, ON, Canada, 2008. [Google Scholar]
- Relic, R.R.; Hristov, S.V.; Vucinic, M.M.; Poleksic, V.D.; Markovic, Z.Z. Principles of Fish Welfare Assessment in Farm Rearing Conditions. J. Agric. Sci. Belgrade 2010, 55, 273–282. [Google Scholar] [CrossRef]
- Pedrazzani, A.S.; Quintiliano, M.H.; Bolfe, F.; Sans, E.C.D.O.; Molento, C.F.M. Tilapia On-Farm Welfare Assessment Protocol for Semi-Intensive Production Systems. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- DePasquale, C.; Sturgill, J.; Braithwaite, V.A. A Standardized Protocol for Preference Testing to Assess Fish Welfare. J. Vis. Exp. 2020, 156, e60674. [Google Scholar] [CrossRef]
- Tschirren, L.; Bachmann, D.; Güler, A.C.; Blaser, O.; Rhyner, N.; Seitz, A.; Zbinden, E.; Wahli, T.; Segner, H.; Refardt, D. Myfishcheck: A model to assess fish welfare in aquaculture. Animals 2021, 11, 145. [Google Scholar] [CrossRef]
- Kristiansen, T.S.; Madaro, A.; Stien, L.H.; Bracke, M.B.M.; Noble, C. Theoretical Basis and Principles for Welfare Assessment of Farmed Fish. In Fish Physiology; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 193–236. [Google Scholar]
- Allen, P.J.; Steeby, J.A. Aquaculture: Challenges and Promise. Nat. Educ. 2012, 2, 12. [Google Scholar]
- Segner, H.; Sundh, H.; Buchmann, K.; Douxfils, J.; Sundell, K.S.; Mathieu, C.; Ruane, N.; Jutfelt, F.; Toften, H.; Vaughan, L. Health of farmed fish: Its relation to fish welfare and its utility as welfare indicator. Fish Physiol. Biochem. 2012, 38, 85–105. [Google Scholar] [CrossRef]
- Føre, M.; Frank, K.; Norton, T.; Svendsen, E.; Alfredsen, J.A.; Dempster, T.; Eguiraun, H.; Watson, W.; Stahl, A.; Sunde, L.M.; et al. Precision Fish Farming: A New Framework to Improve Production in Aquaculture. Biosyst. Eng. 2018, 173, 176–193. [Google Scholar] [CrossRef]
- Zion, B. The Use of Computer Vision Technologies in Aquaculture—A Review. Comput. Electron. Agric. 2012, 88, 125–132. [Google Scholar] [CrossRef]
- Jovanović, V.; Risojević, V.; Babić, Z.; Svendsen, E.; Stahl, A. Splash Detection in Surveillance Videos of Offshore Fish Production Plants. In Proceedings of the 2016 International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovakia, 23–25 May 2016; pp. 1–4. [Google Scholar]
- Eguiraun, H.; Martinez, I. Evolution of Shannon Entropy in a Fish System (European Seabass, Dicentrarchus Labrax) during Exposure to Sodium Selenite. In Proceedings of the 2nd International Electronic Conference on Entropy and Its Applications, Online, 15–30 November 2015. [Google Scholar]
- Eguiraun, H.; López-de-Ipiña, K.; Martinez, I. Shannon Entropy in a European Seabass (Dicentrarchus Labrax) System during the Initial Recovery Period after a Short-Term Exposure to Methylmercury. Entropy 2016, 18, 209. [Google Scholar] [CrossRef]
- Saberioon, M.; Gholizadeh, A.; Cisar, P.; Pautsina, A.; Urban, J. Application of Machine Vision Systems in Aquaculture with Emphasis on Fish: State-of-the-Art and Key Issues. Rev. Aquac. 2017, 9, 369–387. [Google Scholar] [CrossRef]
- Li, D.; Wang, Z.; Wu, S.; Miao, Z.; Du, L.; Duan, Y. Automatic Recognition Methods of Fish Feeding Behavior in Aquaculture: A Review. Aquaculture 2020, 528, 735508. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, D.; Lin, K.; Sun, C.; Yang, X. Intelligent Feeding Control Methods in Aquaculture with an Emphasis on Fish: A Review. Rev. Aquac. 2018, 10, 975–993. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, B.; Lin, K.; Xu, D.; Chen, C.; Yang, X.; Sun, C. Near-Infrared Imaging to Quantify the Feeding Behavior of Fish in Aquaculture. Comput. Electron. Agric. 2017, 135, 233–241. [Google Scholar] [CrossRef]
- An, D.; Huang, J.; Wei, Y. A Survey of Fish Behaviour Quantification Indexes and Methods in Aquaculture. Rev. Aquac. 2021, 13, 2169–2189. [Google Scholar] [CrossRef]
- Oppedal, F.; Dempster, T.; Stien, L.H. Environmental Drivers of Atlantic Salmon Behaviour in Sea-Cages: A Review. Aquaculture 2011, 311, 1–18. [Google Scholar] [CrossRef]
- Arrhenius, F.; Benneheij, B.J.A.M.; Rudstam, L.G.; Boisclair, D. Can Stationary Bottom Split-Beam Hydroacoustics Be Used to Measure Fish Swimming Speed in Situ? Fish. Res. 2000, 45, 31–41. [Google Scholar] [CrossRef]
- Huse, I.; Ona, E. Tilt Angle Distribution and Swimming Speed of Overwintering Norwegian Spring Spawning Herring. ICES J. Mar. Sci. 1996, 53, 863–873. [Google Scholar] [CrossRef]
- Knudsen, F.R.; Fosseidengen, J.E.; Oppedal, F.; Karlsen, Ø.; Ona, E. Hydroacoustic Monitoring of Fish in Sea Cages: Target Strength (TS) Measurements on Atlantic Salmon (Salmo salar). Fish. Res. 2004, 69, 205–209. [Google Scholar] [CrossRef]
- Kasumyan, A.O. Sounds and Sound Production in Fishes. J. Ichthyol. 2008, 48, 981–1030. [Google Scholar] [CrossRef]
- Kasumyan, A.O. Acoustic Signaling in Fish. J. Ichthyol. 2009, 49, 963–1020. [Google Scholar] [CrossRef]
- Føre, M.; Frank, K.; Dempster, T.; Alfredsen, J.A.; Høy, E. Biomonitoring Using Tagged Sentinel Fish and Acoustic Telemetry in Commercial Salmon Aquaculture: A Feasibility Study. Aquacult. Eng. 2017, 78, 163–172. [Google Scholar] [CrossRef]
- Dahlbom, S.J.; Lagman, D.; Lundstedt-Enkel, K. Boldness Predicts Social Status in Zebrafish (Danio Rerio). PLoS ONE 2011, 6, e23565. [Google Scholar] [CrossRef] [PubMed]
- Macaulay, G.; Warren-Myers, F.; Barrett, L.T.; Oppedal, F.; Føre, M.; Dempster, T. Tag Use to Monitor Fish Behaviour in Aquaculture: A Review of Benefits, Problems and Solutions. Rev. Aquac. 2021, 13, 1565–1582. [Google Scholar] [CrossRef]
- Brijs, J.; Føre, M.; Gräns, A.; Clark, T.D.; Axelsson, M.; Johansen, J.L. Bio-Sensing Technologies in Aquaculture: How Remote Monitoring Can Bring Us Closer to Our Farm Animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20200218. [Google Scholar] [CrossRef] [PubMed]
- Uglem, I.; Kristiansen, T.S.; Mejdell, C.M.; Basic, D.; Mortensen, S. Evaluation of Large-scale Marking Methods in Farmed Salmonids for Tracing Purposes: Impact on Fish Welfare. Rev. Aquac. 2020, 12, 600–625. [Google Scholar] [CrossRef]
- RSPCA. RSPCA Welfare Standards for Farmed Rainbow Trout; RSPCA: Wales, UK, 2020. [Google Scholar]
- Hampton, J.O.; MacKenzie, D.I.; Forsyth, D.M. How Many to Sample? Statistical Guidelines for Monitoring Animal Welfare Outcomes. PLoS ONE 2019, 14, e0211417. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D. Animal behaviour, animal welfare and the scientific study of affect. Appl. Anim. Behav. Sci. 2009, 118, 108–117. [Google Scholar] [CrossRef]
- Richter, S.H.; Hintze, S. From the Individual to the Population – and Back Again? Emphasising the Role of the Individual in Animal Welfare Science. Appl. Anim. Behav. Sci. 2019, 212, 1–8. [Google Scholar] [CrossRef]
- Hill, S.P.; Broom, D.M. Measuring zoo animal welfare: Theory and practice. Zoo Biol. 2009, 28, 531–544. [Google Scholar] [CrossRef]
- Maple, T.L.; Perdue, B.M. Wellness as Welfare. In Zoo Animal Welfare; Springer: New York, NY, USA, 2013. [Google Scholar]
- Watters, J.V.; Wielebnowski, N. Introduction to the Special Issue on Zoo Animal Welfare. Zoo Biol. 2009, 28, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Melfi, V.A. There Are Big Gaps in Our Knowledge, and Thus Approach, to Zoo Animal Welfare: A Case for Evidence-Based Zoo Animal Management. Zoo Biol. 2009, 28, 574–588. [Google Scholar] [CrossRef] [PubMed]
- Kagan, R.; Carter, S.; Allard, S. A Universal Animal Welfare Framework for Zoos. J. Appl. Anim. Welf. Sci. 2015, 18 (Suppl. 1), S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.; Watters, J. The Evolution of the Animal Welfare Movement in US Zoos and Aquariums. Der Zool. Garten. 2017, 86, 219–234. [Google Scholar] [CrossRef]
- Carlstead, K.; Mench, J.A.; Meehan, C.; Brown, J.L. An Epidemiological Approach to Welfare Research in Zoos: The Elephant Welfare Project. J. Appl. Anim. Welf. Sci. 2013, 16, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Greco, B.J.; Meehan, C.L.; Hogan, J.N.; Leighty, K.A.; Mellen, J.; Mason, G.J.; Mench, J.A. The Days and Nights of Zoo Elephants: Using Epidemiology to Better Understand Stereotypic Behavior of African Elephants (Loxodonta africana) and Asian Elephants (Elephas maximus) in North American Zoos. PLoS ONE 2016, 11, e0144276. [Google Scholar] [CrossRef] [PubMed]
- Maple, T.L. Strategic Collection Planning and Individual Animal Welfare. J. Am. Vet. Med. Assoc. 2003, 223, 966–969. [Google Scholar] [CrossRef]
- Shepherdson, D.J.; Mellen, J.D.; Hutchins, M. Second Nature: Environmental Enrichment for Captive Animals; Smithsonian Institution: Washington, DC, USA, 1999; ISBN 9781560983972. [Google Scholar]
- Barber, J.C.E. Programmatic Approaches to Assessing and Improving Animal Welfare in Zoos and Aquariums. Zoo Biol. 2009, 28, 519–530. [Google Scholar] [CrossRef]
- Butterworth, A.; Mench, J.; Wielebnowski, N. Practical Strategies to Assess (and Improve) Welfare. Anim. Welf. 2011, 2, 200–214. [Google Scholar]
- Siegford, J.M. Multidisciplinary Approaches and Assessment Techniques to Better Understand and Enhance Zoo Nonhuman Animal Welfare. J. Appl. Anim. Welf. Sci. 2013, 16, 300–318. [Google Scholar] [CrossRef] [PubMed]
- Clay, A.S.; Visseren-Hamakers, I.J. Individuals Matter: Dilemmas and Solutions in Conservation and Animal Welfare Practices in Zoos. Animals 2022, 12, 398. [Google Scholar] [CrossRef] [PubMed]
- Whitham, J.C.; Miller, L.J. Using Technology to Monitor and Improve Zoo Animal Welfare. Anim. Welf. 2016, 25, 395–409. [Google Scholar] [CrossRef]
- Sherwen, S.L.; Hemsworth, L.M.; Beausoleil, N.J.; Embury, A.; Mellor, D.J. An Animal Welfare Risk Assessment Process for Zoos. Animals 2018, 8, 130. [Google Scholar] [CrossRef] [PubMed]
- Wolfensohn, S.; Shotton, J.; Bowley, H.; Davies, S.; Thompson, S.; Justice, W.S.M. Assessment of Welfare in Zoo Animals: Towards Optimum Quality of Life. Animals 2018, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.R.; Schapiro, S.J.; Hau, J.; Lukas, K.E. Space Use as an Indicator of Enclosure Appropriateness: A Novel Measure of Captive Animal Welfare. Appl. Anim. Behav. Sci. 2009, 121, 42–50. [Google Scholar] [CrossRef]
- Carlstead, K.; Shepherdson, D. Constructing Behavioral Profiles for Zoo Animals: Incorporating Behavioral Information into Captive Population Management; Behavior and Husbandry Advisory Group, American Zoological Association: Silver Spring, MD, USA, 1999. [Google Scholar]
- Watters, J.V.; Margulis, S.W.; Atsalis, S. Behavioral Monitoring in Zoos and Aquariums: A Tool for Guiding Husbandry and Directing Research. Zoo Biol. 2009, 28, 35–48. [Google Scholar] [CrossRef]
- Miller, L.J.; Vicino, G.A.; Sheftel, J.; Lauderdale, L.K. Behavioral Diversity as a Potential Indicator of Positive Animal Welfare. Animals 2020, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Whitham, J.C.; Wielebnowski, N. Animal-Based Welfare Monitoring: Using Keeper Ratings as an Assessment Tool. Zoo Biol. 2009, 28, 545–560. [Google Scholar] [CrossRef]
- Meagher, R.K. Observer Ratings: Validity and Value as a Tool for Animal Welfare Research. Appl. Anim. Behav. Sci. 2009, 119, 1–14. [Google Scholar] [CrossRef]
- Torgerson-White, L.; Bennett, C. Rating Methodology, Personality Axes and Behavioral Plasticity: A Case Study in African Lions. Anim. Behav. Cogn. 2014, 1, 230–248. [Google Scholar] [CrossRef]
- Touma, C.; Palme, R. Measuring Fecal Glucocorticoid Metabolites in Mammals and Birds: The Importance of Validation. Ann. N. Y. Acad. Sci. 2005, 1046, 54–74. [Google Scholar] [CrossRef] [PubMed]
- Shepherdson, D.; Lewis, K.D.; Carlstead, K.; Bauman, J.; Perrin, N. Individual and Environmental Factors Associated with Stereotypic Behavior and Fecal Glucocorticoid Metabolite Levels in Zoo Housed Polar Bears. Appl. Anim. Behav. Sci. 2013, 147, 268–277. [Google Scholar] [CrossRef]
- Pirovino, M.; Heistermann, M.; Zimmermann, N.; Zingg, R.; Clauss, M.; Codron, D.; Kaup, F.-J.; Steinmetz, H.W. Fecal Glucocorticoid Measurements and Their Relation to Rearing, Behavior, and Environmental Factors in the Population of Pileated Gibbons (Hylobates Pileatus) Held in European Zoos. Int. J. Primatol. 2011, 32, 1161. [Google Scholar] [CrossRef]
- Fuller, G.; Murray, A.; Thueme, M.; McGuire, M.; Vonk, J.; Allard, S. Behavioral and Hormonal Responses to the Availability of Forage Material in Western Lowland Gorillas (Gorilla Gorilla Gorilla). Zoo Biol. 2018, 37, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Hosey, G.; Melfi, V. Human-Animal Bonds between Zoo Professionals and the Animals in Their Care. Zoo Biol. 2012, 31, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Wemelsfelder, F. How Animals Communicate Quality of Life: The Qualitative Assessment of Behaviour. Anim. Welf.-Potters Bar Wheathampstead 2007, 16, 25. [Google Scholar]
- Wemelsfelder, F. The Scientific Validity of Subjective Concepts in Models of Animal Welfare. Appl. Anim. Behav. Sci. 1997, 53, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Carlstead, K.; Mellen, J.; Kleiman, D.G. Black Rhinoceros (Diceros bicornis) in U.S. Zoos: I. Individual Behavior Profiles and Their Relationship to Breeding Success. Zoo Biol. 1999, 18, 17–34. [Google Scholar] [CrossRef]
- Brown, D.D.; Kays, R.; Wikelski, M.; Wilson, R.; Klimley, A.P. Observing the unwatchable through acceleration logging of animal behavior. Anim. Biotelemetry 2013, 1, 20. [Google Scholar] [CrossRef]
- Miller, L.J.; Andrews, J.; Anderson, M. Validating Methods to Determine Walking Rates of Elephants within a Zoological Institution. Anim. Welf. 2012, 21, 577–582. [Google Scholar] [CrossRef]
- Tomkiewicz, S.M.; Fuller, M.R.; Kie, J.G.; Bates, K.K. Global Positioning System and Associated Technologies in Animal Behaviour and Ecological Research. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2163–2176. [Google Scholar] [CrossRef] [PubMed]
- Føre, M.; Svendsen, E.; Alfredsen, J.A.; Uglem, I.; Bloecher, N.; Sveier, H.; Sunde, L.M.; Frank, K. Using Acoustic Telemetry to Monitor the Effects of Crowding and Delousing Procedures on Farmed Atlantic Salmon (Salmo Salar). Aquaculture 2018, 495, 757–765. [Google Scholar] [CrossRef]
- Castellote, M.; Fossa, F. Measuring Acoustic Activity as a Method to Evaluate Welfare in Captive Beluga Whales (Delphinapterus leucas). Aquat. Mamm. 2006, 32, 325. [Google Scholar] [CrossRef]
- Orban, D.A.; Soltis, J.; Perkins, L.; Mellen, J.D. Sound at the Zoo: Using Animal Monitoring, Sound Measurement, and Noise Reduction in Zoo Animal Management. Zoo Biol. 2017, 36, 231–236. [Google Scholar] [CrossRef]
- Less, E.H.; Kuhar, C.W.; Dennis, P.M.; Lukas, K.E. Assessing Inactivity in Zoo Gorillas Using Keeper Ratings and Behavioral Data. Appl. Anim. Behav. Sci. 2012, 137, 74–79. [Google Scholar] [CrossRef]
- Abrell, E. Saving Animals: Multispecies Ecologies of Rescue and Care; University of Minnesota Press: Minneapolis, MN, USA, 2021; ISBN 9781452961927. [Google Scholar]
- Ogden, L.A.; Hall, B.; Tanita, K. Animals, Plants, People, and Things: A Review of Multispecies Ethnography. Environ. Soc. 2013, 4, 5–24. [Google Scholar] [CrossRef]
- Dawkins, M.S. Time Budgets in Red Junglefowl as a Baseline for the Assessment of Welfare in Domestic Fowl. Appl. Anim. Behav. Sci. 1989, 24, 77–80. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torgerson-White, L.; Sánchez-Suárez, W. Looking beyond the Shoal: Fish Welfare as an Individual Attribute. Animals 2022, 12, 2592. https://doi.org/10.3390/ani12192592
Torgerson-White L, Sánchez-Suárez W. Looking beyond the Shoal: Fish Welfare as an Individual Attribute. Animals. 2022; 12(19):2592. https://doi.org/10.3390/ani12192592
Chicago/Turabian StyleTorgerson-White, Lauri, and Walter Sánchez-Suárez. 2022. "Looking beyond the Shoal: Fish Welfare as an Individual Attribute" Animals 12, no. 19: 2592. https://doi.org/10.3390/ani12192592
APA StyleTorgerson-White, L., & Sánchez-Suárez, W. (2022). Looking beyond the Shoal: Fish Welfare as an Individual Attribute. Animals, 12(19), 2592. https://doi.org/10.3390/ani12192592