Atipamezole Reverses Cardiovascular Changes Induced by High-Dose Medetomidine in Cats Undergoing Sedation for Semen Collection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. First Part of Study (Semen Collection, Epididymectomy and Echocardiography)
2.3. Second Part of the Study (Semen Collection)
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinclair, M.D. A Review of the Physiological Effects of A2-Agonists Related to the Clinical Use of Medetomidine in Small Animal Practice. Can. Vet. J. 2003, 44, 885–897. [Google Scholar]
- Romagnoli, N.; Lambertini, C.; Zambelli, D.; Cunto, M.; Ballotta, G.; Barbarossa, A. Plasma Concentration Rise after the Intramuscular Administration of High Dose Medetomidine (0.13 Mg/Kg) for Semen Collection in Cats. Vet. Sci. 2020, 7, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansah, O.B.; Raekallio, M.; Vainio, O. Comparison of Three Doses of Dexmedetomidine with Medetomidine in Cats Following Intramuscular Administration. J. Vet. Pharmacol. Ther. 1998, 21, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, D.; Cunto, M.; Prati, F.; Merlo, B. Effects of Ketamine or Medetomidine Administration on Quality of Electroejaculated Sperm and on Sperm Flow in the Domestic Cat. Theriogenology 2007, 68, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Cunto, M.; Küster, D.G.; Bini, C.; Cartolano, C.; Pietra, M.; Zambelli, D. Influence of Different Protocols of Urethral Catheterization after Pharmacological Induction (Ur.Ca.P.I.) on Semen Quality in the Domestic Cat. Reprod. Domest. Anim. 2015, 50, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Savola, J.-M. Cardiovascular Actions of Medetomidine and Their Reversal by Atipamezole. Acta Vet. Scand. 1989, 85, 39–47. [Google Scholar]
- Golden, A.L.; Bright, J.M.; Daniel, G.B.; Fefee, D.; Schmidt, D.; Harvey, R.C. Cardiovascular Effects of the A2-Adrenergic Receptor Agonist Medetomidine in Clinically Normal Cats Anesthetized with Isoflurane. Am. J. Vet. Res. 1998, 59, 509–513. [Google Scholar]
- Lamont, L.A.; Bulmer, B.J.; Grimm, K.A.; Tranquili, W.J.; Sisson, D.D. Cardiopulmonary Evaluation of the Use of Medetomidine Hydrochloride in Cats. Am. J. Vet. Res. 2001, 62, 1745–1762. [Google Scholar] [CrossRef]
- Romagnoli, N.; Zambelli, D.; Cunto, M.; Lambertini, C.; Ventrella, D.; Baron Toaldo, M. Non-Invasive Evaluation of the Haemodynamic Effects of High-Dose Medetomidine in Healthy Cats for Semen Collection. J. Feline Med. Surg. 2016, 18, 337–343. [Google Scholar] [CrossRef]
- Granholm, M.; McKusick, B.C.; Westerholm, F.C.; Aspegrén, J.C. Evaluation of the Clinical Efficacy and Safety of Dexmedetomidine or Medetomidine in Cats and Their Reversal with Atipamezole. Vet. Anaesth. Analg. 2006, 33, 214–223. [Google Scholar] [CrossRef]
- Mair, J.; Lindahl, B.; Hammarsten, O.; Müller, C.; Giannitsis, E.; Huber, K.; Möckel, M.; Plebani, M.; Thygesen, K.; Jaffe, A.S. How Is Cardiac Troponin Released from Injured Myocardium? Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 553–560. [Google Scholar] [CrossRef]
- Serra, M.; Papakonstantinou, S.; Adamcova, M.; O’Brien, P.J. Veterinary and Toxicological Applications for the Detection of Cardiac Injury Using Cardiac Troponin. Vet. J. 2010, 185, 50–57. [Google Scholar] [CrossRef]
- Collinson, P.O.; Boa, F.G.; Gaze, D.C. Measurement of Cardiac Troponins. Ann. Clin. Biochem. 2001, 38, 423–449. [Google Scholar] [CrossRef]
- Sleeper, M.M.; Clifford, C.A.; Laster, L.L. Cardiac Troponin I in the Normal Dog and Cat. J. Vet. Intern. Med. 2001, 15, 501. [Google Scholar] [CrossRef]
- Wells, S.M.; Shofer, F.S.; Walters, P.C.; Stamoulis, M.E.; Cole, S.G.; Sleeper, M.M. Evaluation of Blood Cardiac Troponin I Concerntration Concentrations Obtained with a Cage-Side Analyzer and Noncardiac Causes of Dyspnea. JAVMA Sci. Rep. 2014, 15, 425–430. [Google Scholar] [CrossRef]
- Langhorn, R.; Willesen, J.L. Cardiac Troponins in Dogs and Cats. J. Vet. Intern. Med. 2016, 30, 36–50. [Google Scholar] [CrossRef]
- Mair, J. Tissue Release of Cardiac Markers: From Physiology to Clinical Applications. Clin. Chem. Lab. Med. 1999, 37, 1077–1084. [Google Scholar] [CrossRef]
- Wells, S.M.; Sleeper, M. Cardiac Troponins. J. Vet. Emerg. Crit. Care 2008, 18, 235–245. [Google Scholar] [CrossRef]
- Rishniw, M.; Barr, S.C.; Simpson, K.W.; Winand, N.J.; Wootton, J.A.M. Cloning and Sequencing of the Canine and Feline Cardiac Troponin I Genes. Am. J. Vet. Res. 2004, 65, 53–58. [Google Scholar] [CrossRef]
- Oyama, M.A. Using Cardiac Biomarkers in Veterinary Practice. In Clinics in Laboratory Medicine; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 555–566. [Google Scholar] [CrossRef]
- Furthner, E.; Fabian, R.; Kipar, A.; Schuler, G.; Janett, F.; Nudelmann, N.; Kutter, A.P.N.; Reichler, I.M. Theriogenology Epididymectomy as a Novel Surgical Procedure; Application in the Domestic Cat. Theriogenology 2023, 200, 168–178. [Google Scholar] [CrossRef]
- Baron Toaldo, M.; Pollesel, M.; Diana, A. Effect of Pimobendan on Left Atrial Function: An Echocardiographic Pilot Study in 11 Healthy Cats. J. Vet. Cardiol. 2020, 28, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Kost, L.V.; Glaus, T.M.; Diana, A.; Baron Toaldo, M. Effect of a Single Dose of Pimobendan on Right Ventricular and Right Atrial Function in 11 Healthy Cats. J. Vet. Cardiol. 2021, 37, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Cote, E.; Zwicker, L.A.; Anderson, E.L.; Stryhn, H.; Yu, J.; Andersen, E. Effects of Dexmedetomidine and Its Reversal with Atipamezole on Echocardiographic Measurements and Circulating Cardiac Biomarker Concentrations in Normal Cats. J. Am. Vet. Med. Assoc. 2022, 260, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Autran de Morais, H.S.; Muir, W.W. The Effects of Medetomidine on Cardiac Contractility in Autonomically Blocked Dogs. Vet. Surg. 1995, 24, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Schober, K.E.; Chetboul, V. Echocardiographic Evaluation of Left Ventricular Diastolic Function in Cats: Hemodynamic Determinants and Pattern Recognition. J. Vet. Cardiol. 2015, 17, S102–S133. [Google Scholar] [CrossRef]
- Vaha-Vahe, A.T. Clinical Effectiveness of Atipamezole as a Medetomidine Antagonist in Cats. J. Small Anim. Pract. 1990, 31, 193–197. [Google Scholar] [CrossRef]
- Murrell, J.C.; Hellebrekers, L.J. Medetomidine and Dexmedetomidine: A Review of Cardiovascular Effects and Antinociceptive Properties in the Dog. Vet. Anaesth. Analg. 2005, 32, 117–127. [Google Scholar] [CrossRef]
- Kei Hayashi, R.N. Cardiopulmonary Effects of Medetomidine, Medetomidine-Midazolam and Medetomidine-Midazolam-Atipamezole in Dogs. J. Vet. Med. Sci. 1995, 57, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Flacke, W.E.; Flacke, J.W.; Bloor, B.C.; McIntee, D.F.; Sagan, M. Effects of Dexmedetomidine on Systemic and Coronary Hemodynamics in the Anesthetized Dog. J. Cardiothorac. Vasc. Anesth. 1993, 7, 41–49. [Google Scholar] [CrossRef]
- Pypendop, B.H.; Verstegen, J.P. Hemodynamic Effects of Medetomidine in the Dog: A Dose Titration Study. Vet. Surg. 1998, 27, 612–622. [Google Scholar] [CrossRef]
- Larenza, M.P.; Althaus, H.; Conrot, A.; Balmer, C.; Schatzmann, U. Anaesthesia Recovery and Quality. Schweiz. Arch. Tierheilk. 2003, 150, 599–607. [Google Scholar] [CrossRef]
- Brodbelt, D.C.; Pfeiffer, D.U.; Young, L.E.; Wood, J.L.N. Risk Factors for Anaesthetic-Related Death in Cats: Results from the Confidential Enquiry into Perioperative Small Animal Fatalities (CEPSAF). Br. J. Anaesth. 2007, 99, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Lamont, L.A.; Bulmer, B.J.; Sisson, D.D.; Grimm, K.A.; Tranquilli, W.J. Doppler Echocardiographic Effects of Medetomidine on Dynamic Left Ventricular Outflow Obstruction in Cats. J. Am. Vet. Med. Assoc. 2002, 221, 1276–1281. [Google Scholar] [CrossRef]
Baseline | MED | ATI | |
---|---|---|---|
Heart rate n | 182 (150–230) | 105 (81–143) *** | 221 (127–260) |
M-Mode- and 2D-derived variables | |||
Ejection fraction (%) n | 66 (61–79) | 29 (22–64) *** | 62 (50–73) |
End-diastolic volume (mL) n | 4.7 (3–5.8) | 6.3 (3.6–7.6) ** | 4.8 (3.5–6.9) |
End-systolic volume (mL) n | 1.6 (0.6–2.3) | 3.6 (2.4–5.1) *** | 1.9 (1.3–2.4) |
Right ventricular fractional area change (%) n | 61 (52–71) | 46 (35–61) * | 61 (51–67) |
Left atrial fractional shortening (%) n | 33 (29–38) | 16 (11–19) *** | 31 (22–38) |
MAPSE (mm) n | 5.5 (3.5–7.4) | 2.9 (1.9–4.4) *** | 4.2 (3.2–6) |
LA:Ao n | 1.3 (1.2–1–5) | 1.4 (1.2–1.4) | 1.4 (1.2–1.5) |
Doppler-derived variables | |||
Stroke volume left ventricle (mL) | 2.1 (1.4–2.9) | 0.9 (0.7–1.9) ** | 1.7 (0.8–3.2) |
IVRT (ms) | 56 (49–60) | 76 (54–88) ** | 48 (47–53) |
Mitral valve E wave peak velocity (m/s) | 0.62 (0.52–0.87) | 0.45 (0.25–0.6) * | 0.77 (0.62–1) |
Tissue Doppler-derived variables | |||
MV s peak velocity (cm/s)n | 6.6 (5.4–8.8) | 4.2 (3.7–4.3) ** | 7.2 (6.3–10) |
MV e peak velocity (cm/s) n | 8.9 (6–16) | 6 (3.1–7.7) | 13 (9.6–15) |
Baseline | MED | ATI | |
---|---|---|---|
Heart rate | 182 (150–230) | 105 (81–143) | 221 (127–260) |
M-Mode- and 2D-derived variables | |||
Interventricular septal thickness in diastole (mm) | 4 (3–4) | 4 (3–4) | 4 (3–5) |
Left ventricular internal diameter in diastole (mm) | 19 (12–20) | 19 (14–19) | 16 (14–20) |
Left ventricular posterior wall thickness in diastole (mm) | 4 (3–4) | 4 (3–5) | 4 (4–5) |
Interventricular septal thickness in systole (mm) | 6.5 (5–8) | 6 (3–6) | 7 (5–8) |
Left ventricular internal diameter in systole (mm) | 9.5 (6–13) | 14 (11–17) | 9.5 (7–12) |
Left ventricular posterior wall thickness in systole (mm) | 7.5 (6–8) | 6 (4–7) | 7.5 (6–8) |
Fractional shortening (%) | 46 (34–50) | 26 (13–29) | 40 (32–54) |
Ejection fraction (%) | 66 (61–79) | 29 (22–64) | 62 (50–73) |
End-diastolic volume (mL) | 4.7 (3–5.8) | 6.3 (3.6–7.6) | 4.8 (3.5–6.9) |
End-systolic volume (mL) | 1.6 (0.6–2.3) | 3.6 (2.4–5.1) | 1.9 (1.3–2.4) |
Right ventricular internal diameter in diastole (mm) | 9 (6–11) | 9 (7–11) | 8.5 (8–12) |
Right ventricular area in diastole (cm2) | 1.9 (1.4–2.3) | 1.4 (1–2.2) | 1.6 (1.2–2.3) |
Right ventricular area in systole (cm2) | 0.69 (0.44–1.1) | 0.69 (0.45–1.3) | 0.57 (0.45–1.2) |
Right ventricular fractional area change (%) | 61 (52–71) | 46 (35–61) | 61 (51–67) |
Left atrial maximal diameter (mm) | 15 (13–16) | 17 (13–21) | 15 (13–17) |
Left atrial minimal diameter (mm) | 9.8 (8–11) | 14 (11–17) | 10 (9.4–11) |
Left atrial fractional shortening (%) | 33 (29–38) | 16 (11–19) | 31 (22–38) |
Right atrial maximal diameter (mm) | 12 (10–16) | 13 (12–14) | 13 (12–13) |
Doppler-derived variables | |||
Aortic velocity (m/s) | 0.9 (0.7–1.1) | 0.45 (0.35–0.73) | 0.91 (0.48–1.4) |
Aortic velocity time integral (cm3) | 9.2 (7–10) | 4.6 (3.5–8.6) | 7.2 (4–13) |
Aorta diameter (mm) | 8.7 (7.9–9.6) | 8 (8–9) | 8.4 (7.4–9.8) |
Aortic area (cm2) | 2.4 (2–2.9) | 2 (2–2.5) | 2.2 (1.7–3) |
Stroke volume left ventricle (mL) | 2.1 (1.4–2.9) | 0.9 (0.7–1.9) | 1.7 (0.8–3.2) |
Cardiac output left ventricle (L/minute) | 0.4 (0.2–0.5) | 0.1 (0.1–0.2) | 0.4 (0.2–0.4) |
Left ventricular ejection time (s) | 143 (113–151) | 157 (132–178) | 122 (115–142) |
Pulmonic valve velocity time integral (cm3) | 6.8 (4.9–9.6) | 3.5 (2.8–4.8) | 5.8 (5.1–8.2) |
Pulmonic valve diameter (mm) | 9.1 (9–10) | 9 (8.1–9.5) | 8.8 (8–9.7) |
Pulmonic valve area (cm2) | 2.6 (2.5–3.1) | 2.5 (2.1–2.8) | 2.4 (2–3) |
Stroke volume right ventricle (mL) | 1.8 (1.2–3) | 0.85 (0.6–1.4) | 1.5 (1–1.9) |
Cardiac output right ventricle (mL/minute) | 0.3 (0.3–0.6) | 0.1 | 0.3 (0.2–0.5) |
Mitral valve E wave peak velocity (m/s) | 0.62 (0.52–0.87) | 0.45 (0.25–0.6) | 0.77 (0.62–1) |
Mitral valve velocity time integral (cm3) | 5.5 (3.6–7) | 4.5 (3–6.7) | 5.3 (4.1–8) |
E wave deceleration time (ms) | 73 (55–86) | 75 (55–88) | 65 (50–72) |
Isovolumic relaxation time (ms) | 56 (49–60) | 76 (54–88) | 48 (47–53) |
Left atrial area (cm2) | 3.3 (2.7–3.9) | 3.6 (2.7–4.5) | 3.2 (2–4.2) |
LA:Ao | 1.3 (1.2–1–5) | 1.4 (1.2–1.4) | 1.4 (1.2–1.5) |
MAPSE (mm) | 5.5 (3.5–7.4) | 2.9 (1.9–4.4) | 4.2 (3.2–6) |
TAPSE (mm) | 9 (7–10) | 6.5 (5–9) | 7 (6–10) |
Tissue Doppler-derived variables | |||
MV s peak velocity (cm/s) | 6.6 (5.4–8.8) | 4.2 (3.7–4.3) | 7.2 (6.3–10) |
MV e peak velocity (cm/s) | 8.9 (6–16) | 6 (3.1–7.7) | 13 (9.6–15) |
TV s peak velocity (cm/s) (n = 5) | 11 (9.7–17) | 6.3 (5.6–8.4) | 14 (11–17) |
TV e peak velocity (cm/s) (n = 5) | 14 (11–23) | 9.9 (7.0–10) | 24 (11–29) |
E:e | 6.8 (5.4–9.5) | 7.9 (6.5–8.4) | 6.4 (4.4–7.3) |
Day 0 | Day 7 | Day 14 | Day 21 | Day 28 | |
---|---|---|---|---|---|
BL | 182 (150–230) | 204 (162–240) * | 197 (186–268) | 204 (180–262) | 220 (160–280) |
MED | 105 (81–143) | 96 (77–136) | 103 (80–160) | 99 (81–125) | 101 (74–129) |
ATI | 221 (127–260) | 182 (118–264) | 202 (172–246) | 186 (132–240) | n.a. |
cat | Day 0 | Day 7 | Day 14 | Day 21 | Day 28 | |
---|---|---|---|---|---|---|
1 # | BL | VPC | n.a. | n.a. | n.a. | n.a. |
MED | - | - | - | - | - | |
ATI | VPC | - | - | - | - | |
2 * | BL | - | n.a. | n.a. | n.a. | n.a. |
MED | - | - | VPC | - | - | |
ATI | - | VPC | - | - | - | |
3 # | BL | - | n.a. | n.a. | n.a. | n.a. |
MED | VPC, IVR | IVR | VPC, IVR | IVR | IVR | |
ATI | - | SA | VPC | IVR | - | |
4 ** | BL | - | n.a. | n.a. | n.a. | n.a. |
MED | - | - | VPC | - | SA | |
ATI | - | - | - | - | - | |
5 # § | BL | - | n.a. | n.a. | n.a. | n.a. |
MED | VPC | - | - | - | VPC, SA | |
ATI | - | - | - | - | - | |
6 | BL | - | n.a. | n.a. | n.a. | n.a. |
MED | IVR | IVR | - | IVR | SA | |
ATI | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diggelmann, A.-L.R.; Baron Toaldo, M.; Bektas, R.N.; Furthner, E.; Reichler, I.M.; Kutter, A.P.N. Atipamezole Reverses Cardiovascular Changes Induced by High-Dose Medetomidine in Cats Undergoing Sedation for Semen Collection. Animals 2023, 13, 1909. https://doi.org/10.3390/ani13121909
Diggelmann A-LR, Baron Toaldo M, Bektas RN, Furthner E, Reichler IM, Kutter APN. Atipamezole Reverses Cardiovascular Changes Induced by High-Dose Medetomidine in Cats Undergoing Sedation for Semen Collection. Animals. 2023; 13(12):1909. https://doi.org/10.3390/ani13121909
Chicago/Turabian StyleDiggelmann, Anna-Lea R., Marco Baron Toaldo, Rima N. Bektas, Etienne Furthner, Iris M. Reichler, and Annette P. N. Kutter. 2023. "Atipamezole Reverses Cardiovascular Changes Induced by High-Dose Medetomidine in Cats Undergoing Sedation for Semen Collection" Animals 13, no. 12: 1909. https://doi.org/10.3390/ani13121909
APA StyleDiggelmann, A.-L. R., Baron Toaldo, M., Bektas, R. N., Furthner, E., Reichler, I. M., & Kutter, A. P. N. (2023). Atipamezole Reverses Cardiovascular Changes Induced by High-Dose Medetomidine in Cats Undergoing Sedation for Semen Collection. Animals, 13(12), 1909. https://doi.org/10.3390/ani13121909