Effect of Spirulina platensis Supplementation on Carcass Characteristics, Fatty Acid Profile, and Meat Quality of Omani Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals Management and Diets
2.3. Slaughtering Procedure
2.4. Carcass Measurements
2.5. Meat Quality Evaluation
2.6. Fatty Acid Analysis by Gas Chromatograph (GC)
2.7. Statistical Analysis
3. Results
3.1. Animal Performance and Carcass Characteristics
3.2. Meat Quality
3.3. Fatty Acid Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Faostat: Food and Agriculture Organization Statistical Database. 2023. Available online: https://www.fao.org/faostat/en/#compare (accessed on 10 August 2023).
- Pophiwa, P.; Webb, E.C.; Frylinck, L. A Review of Factors Affecting Goat Meat Quality and Mitigating Strategies. Small Rumin. Res. 2020, 183, 106035. [Google Scholar] [CrossRef]
- Juárez, M.; Lam, S.; Bohrer, B.M.; Dugan, M.E.; Vahmani, P.; Aalhus, J.; Juárez, A.; López-Campos, O.; Prieto, N.; Segura, J. Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods 2021, 10, 872. [Google Scholar] [CrossRef] [PubMed]
- Renand, G.; Picard, B.; Touraille, C.; Berge, P.; Lepetit, J. Relationships between Muscle Characteristics and Meat Quality Traits of Young Charolais Bulls. Meat Sci. 2001, 59, 49–60. [Google Scholar] [CrossRef]
- Adeyemi, K.D.; Shittu, R.M.; Sabow, A.B.; Ebrahimi, M.; Sazili, A.Q. Influence of Diet and Postmortem Ageing on Oxidative Stability of Lipids, Myoglobin and Myofibrillar Proteins and Quality Attributes of Gluteus Medius Muscle in Goats. PLoS ONE 2016, 11, e0154603. [Google Scholar] [CrossRef]
- Ding, Y.; Jiang, X.; Yao, X.; Zhang, H.; Song, Z.; He, X.; Cao, R. Effects of Feeding Fermented Mulberry Leaf Powder on Growth Performance, Slaughter Performance, and Meat Quality in Chicken Broilers. Animals 2021, 11, 3294. [Google Scholar] [CrossRef]
- Abouelezz, F. Evaluation of Spirulina Algae (Spirulina platensis) as a Feed Supplement for Japanese Quail: Nutiritional Effects on Growth Performance, Egg Production, Egg Quality, Blood Metabolites, Sperm-Egg Penetration and Fertility. Egypt. Poult. Sci. J. 2017, 37, 707–719. [Google Scholar] [CrossRef]
- Altmann, B.A.; Neumann, C.; Rothstein, S.; Liebert, F.; Mörlein, D. Do Dietary Soy Alternatives Lead to Pork Quality Improvements or Drawbacks? A Look into Micro-Alga and Insect Protein in Swine Diets. Meat Sci. 2019, 153, 26–34. [Google Scholar] [CrossRef]
- AlFadhly, N.K.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F.; Narayanankutty, A. Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules 2022, 27, 5584. [Google Scholar] [CrossRef]
- Kistanova, E.; Marchev, Y.; Nedeva, R.; Kacheva, D.; Shumkov, K.; Georgiev, B.; Shimkus, A. Effect of the Spirulina platensis Included in the Main Diet on the Boar Sperm Quality. Biotechnol. Anim. Husb. 2009, 25, 547–557. [Google Scholar] [CrossRef]
- Small, E. 37. Spirulina–Food for the Universe. Biodiversity 2011, 12, 255–265. [Google Scholar] [CrossRef]
- Wan, D.; Wu, Q.; Kuča, K. Chapter 42—Spirulina. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 569–583. ISBN 9780128021477. [Google Scholar]
- Habib, M.A.B. Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish: Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2008. [Google Scholar]
- Holman, B.; Kashani, A.; Malau-Aduli, A. Growth and Body Conformation Responses of Genetically Divergent Australian Sheep to Spirulina (Arthrospira Platensis) Supplementation. Am. J. Exp. Agric. 2012, 2, 160–173. [Google Scholar] [CrossRef]
- Khan, Z.; Bhadouria, P.; Bisen, P. Nutritional and Therapeutic Potential of Spirulina. Curr. Pharm. Biotechnol. 2005, 6, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Verma, D.; Kumar, A.; Kumar, N.; Ramamoorthy, D. Influence of Spirulina on Food Consumption and Efficiency of Bombyx Mori L. Bivoltive Hybrid Race (Csr2 X Csr4). Int. J. Res. Anal. Rev. 2019, 6, 722–740. [Google Scholar]
- Al-Yahyaey, F.; Shaat, I.; Hall, E.; Bush, R. Effect of Spirulina Platensis Supplementation on Growth, Performance and Body Conformation of Two Omani Goat Breeds. Anim. Prod. Sci. 2022, 63, 133–141. [Google Scholar] [CrossRef]
- Holman, B.; Malau-Aduli, A. Spirulina as a Livestock Supplement and Animal Feed. J. Anim. Physiol. Anim. Nutr. 2013, 97, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Peiretti, P.; Meineri, G. Effects of Diets with Increasing Levels of Spirulina Platensis on the Carcass Characteristics, Meat Quality and Fatty Acid Composition of Growing Rabbits. Livest. Sci. 2011, 140, 218–224. [Google Scholar] [CrossRef]
- MLA. Global Snapshot Goatmeat. 2022. Available online: https://www.mla.com.au/globalassets/mla-corporate/prices--markets/documents/trends--analysis/goat-industry-summary/mla-global-goatmeat-snapshot-march-2021.pdf (accessed on 6 January 2022).
- Mahgoub, O.; Kadim, I.; Al-Saqry, N.; Al-Busaidi, R. Potential of Omani Jebel Akhdar Goat for Meat Production under Feedlot Conditions. Small Rumin. Res. 2005, 56, 223–230. [Google Scholar] [CrossRef]
- Kadim, I.; Mahgoub, O.; Al-Ajmi, D.; Al-Maqbaly, R.; Al-Saqri, N.; Ritchie, A. An Evaluation of the Growth, Carcass and Meat Quality Characteristics of Omani Goat Breeds. Meat Sci. 2004, 66, 203–210. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Aoac; International 17th Edition; AOAC: Rockyville, MD, USA, 2000. [Google Scholar]
- Moxham, R.; Brownlie, L. Sheep Carcass Grading and Classification in Australia. Wool Technol. Sheep Breed. 1976, 23, 195–200. [Google Scholar]
- Hernández, B.; Sáenz, C.; Alberdi, C.; Diñeiro, J. Cielab Color Coordinates Versus Relative Proportions of Myoglobin Redox Forms in the Description of Fresh Meat Appearance. J. Food Sci. Technol. 2016, 53, 4159–4167. [Google Scholar] [CrossRef]
- Cross, H.; West, R.; Dutson, T. Comparison of Methods for Measuring Sarcomere Length in Beef Semitendinosus Muscle. Meat Sci. 1981, 5, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Kadim, I.; Mahgoub, O.; Al-Marzooqi, W.; Al-Ajmi, D.; Al-Maqbali, R.; Al-Lawati, S. The Influence of Seasonal Temperatures on Meat Quality Characteristics of Hot-Boned, M. Psoas Major and Minor, from Goats and Sheep. Meat Sci. 2008, 80, 210–215. [Google Scholar] [CrossRef] [PubMed]
- SAS. Statistical Analysis System, Version 9; SAS Institute: Cary, NC, USA, 2002.
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A. Microalgae as Feed Ingredients for Livestock Production and Meat Quality: A Review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Panjaitan, T.; Quigley, S.P.; McLennan, S.R.; Poppi, D.P. Effect of the Concentration of Spirulina (Spirulina Platensis) Algae in the Drinking Water on Water Intake by Cattle and the Proportion of Algae Bypassing the Rumen. Anim. Prod. Sci. 2010, 50, 405–409. [Google Scholar] [CrossRef]
- Salmeán, G.G.; Castillo, L.H.F.; Chamorro-Cevallos, G. Nutritional and Toxicological Aspects of Spirulina (Arthrospira). Nutr. Hosp. Organo Of. Soc. Española Nutr. Parenter. Enter. 2015, 32, 34–40. [Google Scholar]
- Moury, S.N.; Sarker, M.T.; Prabakusuma, A.S.; Russel, M.I.H.; Islam, M.S. Replacement of Vitamin-Mineral Premix by Spirulina and Its Effect on the Performance of Broiler. J. Sci. Agric. 2018, 2, 39–51. [Google Scholar] [CrossRef]
- Dikeman, M. Effects of Metabolic Modifiers on Carcass Traits and Meat Quality. Meat Sci. 2007, 77, 121–135. [Google Scholar] [CrossRef]
- Tovar, D.; Zambonino, J.; Cahu, C.; Gatesoupe, F.; Vázquez-Juárez, R.; Lésel, R. Effect of Live Yeast Incorporation in Compound Diet on Digestive Enzyme Activity in Sea Bass (Dicentrarchus labrax) Larvae. Aquaculture 2002, 204, 113–123. [Google Scholar] [CrossRef]
- Kalbe, C.; Priepke, A.; Nürnberg, G.; Dannenberger, D. Effects of Long-Term Microalgae Supplementation on Muscle Microstructure, Meat Quality and Fatty Acid Composition in Growing Pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 574–582. [Google Scholar] [CrossRef]
- Mahgoub, O.; Lu, C. Growth, Body Composition and Carcass Tissue Distribution in Goats of Large and Small Sizes. Small Rumin. Res. 1998, 27, 267–278. [Google Scholar] [CrossRef]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat Meat Quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Jia, W.; Wang, X.; Zhang, R.; Shi, Q.; Shi, L. Irradiation Role on Meat Quality Induced Dynamic Molecular Transformation: From Nutrition to Texture. Food Rev. Int. 2023, 39, 4442–4464. [Google Scholar] [CrossRef]
- Kadim, I.; Mahgoub, O.; Al-Marzooqi, W.; Khalaf, S.; Al-Sinawi, S.; Al-Amri, I. Effects of Transportation During the Hot Season, Breed and Electrical Stimulation on Histochemical and Meat Quality Characteristics of Goat Longissimus Muscle. Anim. Sci. J. 2010, 81, 352–361. [Google Scholar] [CrossRef]
- Abd El-Hakim, Y.M.; Mohamed, W.A.; El-Metwally, A.E. Spirulina Platensis Attenuates Furan Reprotoxicity by Regulating Oxidative Stress, Inflammation, and Apoptosis in Testis of Rats. Ecotoxicol. Environ. Saf. 2018, 161, 25–33. [Google Scholar] [CrossRef]
- Soni, R.A.; Sudhakar, K.; Rana, R. Comparative Study on the Growth Performance of Spirulina Platensis on Modifying Culture Media. Energy Rep. 2019, 5, 327–336. [Google Scholar] [CrossRef]
- Gawat, M.; Boland, M.; Singh, J.; Kaur, L. Goat Meat: Production and Quality Attributes. Foods 2023, 12, 3130. [Google Scholar] [CrossRef]
- Pratiwi, N.W.; Murray, P.; Taylor, D. Feral Goats in Australia: A Study on the Quality and Nutritive Value of Their Meat. Meat Sci. 2007, 75, 168–177. [Google Scholar] [CrossRef]
- Dhanda, J.; Taylor, D.; Murray, P. Part 1. Growth, Carcass and Meat Quality Parameters of Male Goats: Effects of Genotype and Liveweight at Slaughter. Small Rumin. Res. 2003, 50, 57–66. [Google Scholar] [CrossRef]
- Webb, E.C. Goat Meat Production, Composition, and Quality. Anim. Front. 2014, 4, 33–37. [Google Scholar] [CrossRef]
- Cimmino, R.; Barone, C.; Claps, S.; Varricchio, E.; Rufrano, D.; Caroprese, M.; Albenzio, M.; De Palo, P.; Campanile, G.; Neglia, G. Effects of Dietary Supplementation with Polyphenols on Meat Quality in Saanen Goat Kids. BMC Vet. Res. 2018, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.; Martins, S.; Chizzotti, M.; Busato, K.; Oliveira, I.; Neto, O.M.; Paulino, P.V.R.; Lanna, D.P.D.; Ladeira, M. Meat Quality and Fatty Acid Profile of Brazilian Goats Subjected to Different Nutritional Treatments. Meat Sci. 2014, 97, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Remize, M.; Brunel, Y.; Silva, J.L.; Berthon, J.-Y.; Filaire, E. Microalgae N-3 Pufas Production and Use in Food and Feed Industries. Mar. Drugs 2021, 19, 113. [Google Scholar] [CrossRef] [PubMed]
- Čítek, J.; Stupka, R.; Okrouhlá, M.; Vehovský, K.; Brzobohatý, L.; Šprysl, M.; Stádník, L. Effects of Dietary Linseed and Corn Supplement on the Fatty Acid Content in the Pork Loin and Back Fat Tissue. Czech J. Anim. Sci. 2015, 60, 319–326. [Google Scholar] [CrossRef]
- Jiang, J.; Tang, X.; Xue, Y.; Lin, G.; Xiong, Y.L. Dietary Linseed Oil Supplemented with Organic Selenium Improved the Fatty Acid Nutritional Profile, Muscular Selenium Deposition, Water Retention, and Tenderness of Fresh Pork. Meat Sci. 2017, 131, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Briolay, A.; Jaafar, R.; Nemoz, G.; Bessueille, L. Myogenic Differentiation and Lipid-Raft Composition of L6 Skeletal Muscle Cells Are Modulated by Pufas. Biochim. Biophys. Acta BBA-Biomembr. 2013, 1828, 602–613. [Google Scholar] [CrossRef]
- Jeromson, S.; Mackenzie, I.; Doherty, M.K.; Whitfield, P.D.; Bell, G.; Dick, J.; Shaw, A.; Rao, F.V.; Ashcroft, S.P.; Philp, A.; et al. Lipid Remodeling and an Altered Membrane-Associated Proteome May Drive the Differential Effects of Epa and Dha Treatment on Skeletal Muscle Glucose Uptake and Protein Accretion. Am. J. Physiol.-Endocrinol. Metab. 2018, 314, E605–E619. [Google Scholar] [CrossRef]
- Wei, H.-K.; Zhou, Y.; Jiang, S.; Tao, Y.-X.; Sun, H.; Peng, J.; Jiang, S. Feeding a Dha-Enriched Diet Increases Skeletal Muscle Protein Synthesis in Growing Pigs: Association with Increased Skeletal Muscle Insulin Action and Local Mrna Expression of Insulin-Like Growth Factor 1. Br. J. Nutr. 2013, 110, 671–680. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Z.; Ma, Y.; Qu, Y.; Lu, X.; Guo, H.; Luo, H. Effect of Dietary Lycopene Supplementation on Growth Performance, Meat Quality, Fatty Acid Profile and Meat Lipid Oxidation in Lambs in Summer Conditions. Small Rumin. Res. 2015, 131, 99–106. [Google Scholar] [CrossRef]
Nutrients (In Dry Matter) | Concentrate | SP | Rhodes Grass Hay | Unit |
---|---|---|---|---|
Dry matter % (DM) | 90.0 | 95.1 | 89.70 | g/100 g Fresh Wt. |
Crude protein (CP) | 14.0 | 62.48 | 7.22 | g/100 g DM |
Crude fiber (CF) | 9.8 | 2.9 | 34.3 | g/100 g DM |
Ether extract (EE) | 2.5 | 1.05 | 1.00 | g/100 g DM |
Ash | 9.2 | 7.55 | 9.80 | g/100 g DM |
Nitrogen free extract (NFE) | 64.5 | 26.02 | 47.7 | g/100 g DM |
Neutral detergent fiber (NDF) | 28.60 | 1.92 | 74.00 | g/100 g DM |
Acid detergent fiber (ADF) | 11.42 | 0.37 | 46.7 | g/100 g DM |
Metabolisable energy (ME; MJ/kg DM) 1 | 11.97 | 11.63 | 8.30 | kJ/100 g DM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Yahyaey, F.; Al-Marzooqi, W.; Shaat, I.; Smith, M.A.; Al-Sabahi, J.; Melak, S.; Bush, R.D. Effect of Spirulina platensis Supplementation on Carcass Characteristics, Fatty Acid Profile, and Meat Quality of Omani Goats. Animals 2023, 13, 2976. https://doi.org/10.3390/ani13182976
Al-Yahyaey F, Al-Marzooqi W, Shaat I, Smith MA, Al-Sabahi J, Melak S, Bush RD. Effect of Spirulina platensis Supplementation on Carcass Characteristics, Fatty Acid Profile, and Meat Quality of Omani Goats. Animals. 2023; 13(18):2976. https://doi.org/10.3390/ani13182976
Chicago/Turabian StyleAl-Yahyaey, Fahad, Waleed Al-Marzooqi, Ihab Shaat, Melanie A. Smith, Jamal Al-Sabahi, Sherif Melak, and Russell D. Bush. 2023. "Effect of Spirulina platensis Supplementation on Carcass Characteristics, Fatty Acid Profile, and Meat Quality of Omani Goats" Animals 13, no. 18: 2976. https://doi.org/10.3390/ani13182976
APA StyleAl-Yahyaey, F., Al-Marzooqi, W., Shaat, I., Smith, M. A., Al-Sabahi, J., Melak, S., & Bush, R. D. (2023). Effect of Spirulina platensis Supplementation on Carcass Characteristics, Fatty Acid Profile, and Meat Quality of Omani Goats. Animals, 13(18), 2976. https://doi.org/10.3390/ani13182976