Conventional Feed-Grade or Slow-Release Coated Urea as Sources of Dietary Nitrogen for Fattening Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Experimental Procedure
2.3. Slaughter, Carcass, and Meat Quality Measurements
2.4. Ruminal Fermentation
2.5. Protein Degradability
2.6. Analytical Procedures
2.7. Calculations and Statistical Analysis
3. Results
3.1. Feed Intake, Animal Performance, and Ruminal Fermentation Parameters
3.2. Blood Acid-Base Status and Biochemical Profile
3.3. Carcass and Meat Characteristics
4. Discussion
4.1. Feed Intake, Growth Rate, Ruminal Fermentation, and Metabolic Blood Profile
4.2. Carcass and Meat Quality and Feeding Costs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Reid, J.T. Urea as a Protein Replacement for Ruminants: A Review. J. Dairy Sci. 1953, 36, 955–996. [Google Scholar] [CrossRef]
- Loosli, J.K.; McDonald, I.W. Nonprotein Nitrogen in the Nutrition of Ruminants; FAO Agricultural Studies; FAO: Rome, Italy, 1968; Volume 73. [Google Scholar]
- Kertz, A.F. Urea Feeding to Dairy Cattle: A Historical Perspective and Review. Prof. Anim. Sci. 2010, 26, 257–272. [Google Scholar] [CrossRef]
- Salami, S.A.; Moran, C.A.; Warren, H.E.; Taylor-Pickard, J. A Meta-Analysis of the Effects of Slow-Release Urea Supplementation on the Performance of Beef Cattle. Animals 2020, 10, 657. [Google Scholar] [CrossRef]
- Reddy, P.R.K.; Kumar, D.S.; Rao, E.R.; Seshiah, C.V.; Sateesh, K.; Reddy, Y.P.K.; Hyder, I.; Lehuger, S.; Gabrielle, B.; Gagnaire, N. Assessment of Eco-Sustainability Vis-à-Vis Zoo-Technical Attributes of Soybean Meal (SBM) Replacement with Varying Levels of Coated Urea in Nellore Sheep (Ovis aries). PLoS ONE 2019, 14, 616–624. [Google Scholar] [CrossRef]
- Salami, S.A.; Devant, M.; Apajalahti, J.; Holder, V.; Salomaa, S.; Keegan, J.D.; Moran, C.A. Slow-Release Urea as a Sustainable Alternative to Soybean Meal in Ruminant Nutrition. Sustainability 2021, 13, 2464. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Wachirapakorn, C. Effects of Urea–Calcium Mixture in Concentrate Containing High Cassava Chip on Feed Intake, Rumen Fermentation and Performance of Lactating Dairy Cows Fed on Rice Straw. Livest. Sci. 2011, 136, 76–84. [Google Scholar] [CrossRef]
- Forero, O. A Slow Urea Compound for Winter Supplementation of Beef Cows and Heifers Consuming Low Quality Forages. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 1979. [Google Scholar]
- Mahmoudi-Abyane, M.; Alipour, D.; Moghimi, H.R. Effects of Different Sources of Nitrogen on Performance, Relative Population of Rumen Microorganisms, Ruminal Fermentation and Blood Parameters in Male Feedlotting Lambs. Animal 2020, 14, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Alves, E.M.; Magalhães, D.R.; Freitas, M.A.; dos Santos, E.D.J.; Pereira, M.L.A.; Pedreira, M.D.S. Nitrogen Metabolism and Microbial Synthesis in Sheep Fed Diets Containing Slow Release Urea to Replace the Conventional Urea. Acta Sci. Anim. Sci. 2014, 36, 55. [Google Scholar] [CrossRef]
- Taylor-Edwards, C.C.; Hibbard, G.; Kitts, S.E.; McLeod, K.R.; Axe, D.E.; Vanzant, E.S.; Kristensen, N.B.; Harmon, D.L. Effects of Slow-Release Urea on Ruminal Digesta Characteristics and Growth Performance in Beef Steers. J. Anim. Sci. 2009, 87, 200–208. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Baker, M.J.; Ketchen, D.J.; Fox, D.G. Performance of Growing and Finishing Cattle Supplemented with a Slow-Rlease Urea Product and Urea. Can. J. Anim. Sci. 2002, 82, 567–573. [Google Scholar] [CrossRef]
- Bourg, B.M.; Tedeschi, L.O.; Wickersham, T.A.; Tricarico, J.M. Effects of a Slow-Release Urea Product on Performance, Carcass Characteristics, and Nitrogen Balance of Steers Fed Steam-Flaked Corn. J. Anim. Sci. 2012, 90, 3914–3923. [Google Scholar] [CrossRef] [PubMed]
- Savafi, S.; Chaji, M. The Effect of Slow-Release Urea Sources on Digestibility of Nutrients and Growth Performance of Fattening Lambs Fed Rations Containing Low-Quality Forage. Iran. J. Anim. Sci. Res. 2022, 14, 189–200. [Google Scholar] [CrossRef]
- Alves, E.M.; Pedreira, M.d.S.; Moreira, B.S.; Freire, L.D.R.; Lima, T.R.; dos Santos-Cruz, C.L. Características de Carcaça de Ovinos Alimentados Com Dietas Contendo Ureia de Liberação Lenta Em Substituição à Ureia Convenciona. Acta Sci.-Anim. Sci. 2014, 36, 303–310. [Google Scholar] [CrossRef]
- Gardinal, R.; Calomeni, G.D.; Cônsolo, N.R.B.; Takiya, C.S.; Freitas, J.E.; Gandra, J.R.; Vendramini, T.H.A.; Souza, H.N.; Rennó, F.P. Influence of Polymer-Coated Slow-Release Urea on Total Tract Apparent Digestibility, Ruminal Fermentation and Performance of Nellore Steers. Asian-Australas. J. Anim. Sci. 2017, 30, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Mashayekhi, M.; Sari, M.; Erfani Majd, N.; Rezaei, M. Effects of Dietary Slow Release Urea and Molasses on Growth Performance, Digestibility, Ruminal Fermentation and Carcass Traits of Fattening Lambs. Iran. J. Anim. Sci. Res. 2019, 11, 273–291. [Google Scholar] [CrossRef]
- Pacheco, R.F.; Machado, D.S.; Viana, A.F.P.; Teixeira, J.S.; Milani, L. Comparison of the Effects of Slow-Release Urea vs Conventional Urea Supplementation on Some Finishing Cattle Parameters: A Meta-Analysis. Livest. Sci. 2021, 250, 104549. [Google Scholar] [CrossRef]
- Colomer-Rocher, F.; Morand-Fehr, P.; Delfa, R.; Sierra Alfranca, I. Metodos Normalizados Para El Estudio de Los Caracteres Cuantitativos y Cualitativos de Las Canales Caprinas y Ovinas. Cuad. INIA 1988, 17, 19–41. [Google Scholar]
- Fisher, A.V.; de Boer, H. The EAAP Standard Method of Sheep Carcass Assessment. Carcass Measurements and Dissection Procedures Report of the EAAP Working Group on Carcass Evaluation, in Cooperation with the CIHEAM Instituto Agronomico Mediterraneo of Zaragoza and the CEC Directora. Livest. Prod. Sci. 1994, 38, 149–159. [Google Scholar] [CrossRef]
- AMSA. AMSA Guidelines for Meat Color Evaluation; AMSA: Champaign, IL USA, 2012. [Google Scholar]
- Nam, K.C.; Ahn, D.U. Use of Antioxidants to Reduce Lipid Oxidation and Off-Odor Volatiles of Irradiated Pork Homogenates and Patties. Meat Sci. 2003, 63, 1–8. [Google Scholar] [CrossRef]
- Santos, A.; Giráldez, F.J.; Mateo, J.; Frutos, J.; Andrés, S. Programming Merino Lambs by Early Feed Restriction Reduces Growth Rates and Increases Fat Accretion during the Fattening Period with No Effect on Meat Quality Traits. Meat Sci. 2018, 135, 20–26. [Google Scholar] [CrossRef]
- Goering, M.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications). In Agricultural Handbook No. 379; USDA: Washington, DC, USA, 1970. [Google Scholar]
- Dougherty, R.W. Experimental Surgery in Farm Animals; Iowa State University Press: Ames, IA, USA, 1981. [Google Scholar]
- ISO 6496:1999; ISO Animal Feeding Stuffs—Determination of Moisture and Other Volatile Matter Content, No. 6496. International Organization for Standarization (ISO): Geneva, Switzerland, 1999.
- ISO 5984:2002; ISO Animal Feeding Stuffs—Determination of Crude Ash, No. 5984. International Organization for Standarization (ISO): Geneva, Switzerland, 2002.
- ISO 5983:2009; ISO Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method, No. 5983. International Organization for Standarization (ISO): Geneva, Switzerland, 2009.
- ISO 6493:2000; ISO Animal Feeding Stuffs—Determination of Starch Content—Polarimetric Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2000.
- AOCS (Ed.) AOCS Official Methods and Recommended Practices of the American Oil Chemistry Society, 5th ed.; AOCS Press: Urbana, IL, USA, 2008. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Carro, M.D.; Ranilla, M.J.; Giráldez, F.J.; Mantecón, A.R. Effects of Malate on Diet Digestibility, Microbial Protein Synthesis, Plasma Metabolites, and Performance of Growing Lambs Fed a High-Concentrate Diet. J. Anim. Sci. 2006, 84, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Weatherburn, M.W. Phenol-Hypocloryte Reaction for Determination of Ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Orskov, E.R.; Mcdonald, I. The Estimation of Protein Degradability in the Rumen from Incubation Measurements Weighted According to Rate of Passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Bodas, R.; Frutos, P.; Giráldez García, F.J.; Hervás, G.; López, S.; López, S. Effect of Sodium Bicarbonate Supplementation on Feed Intake, Digestibility, Digesta Kinetics, Nitrogen Balance and Ruminal Fermentation in Young Fattening Lambs. Span. J. Agric. Res. 2009, 7, 330–341. [Google Scholar] [CrossRef]
- Abo Omar, J.M.; Naser, O. Effects of Crude Protein Contents and Sources on the Growth Performance and the Visceral Organ Mass in Fattening Assaf Lambs. Rev. Med. Vet. 2011, 162, 377–383. [Google Scholar]
- Saro, C.; Mateo, J.; Andrés, S.; Mateos, I.; Ranilla, M.J.; López, S.; Martín, A.; Giráldez, F.J. Replacing Soybean Meal with Urea in Diets for Heavy Fattening Lambs: Effects on Growth, Metabolic Profile and Meat Quality. Animals 2019, 9, 974. [Google Scholar] [CrossRef] [PubMed]
- Saro, C.; Mateo, J.; Caro, I.; Carballo, D.E.; Fernández, M.; Valdés, C.; Bodas, R.; Giráldez, F.J. Effect of Dietary Crude Protein on Animal Performance, Blood Biochemistry Profile, Ruminal Fermentation Parameters and Carcass and Meat Quality of Heavy Fattening Assaf Lambs. Animals 2020, 10, 2177. [Google Scholar] [CrossRef]
- Puga, D.C.; Galina, H.M.; Peréz-Gil, R.F.; Sangines, G.L.; Aguilera, B.A.; Haenlein, G.F.W.; Barajas, C.R.; Herrera, H.J.G. Effect of a Controlled-Release Urea Supplementation on Feed Intake, Digestibility, Nitrogen Balance and Ruminal Kinetics of Sheep Fed Low Quality Tropical Forage. Small Rumin. Res. 2001, 41, 9–18. [Google Scholar] [CrossRef]
- Giallongo, F.; Hristov, A.N.; Oh, J.; Frederick, T.; Weeks, H.; Werner, J.; Lapierre, H.; Patton, R.A.; Gehman, A.; Parys, C. Effects of Slow-Release Urea and Rumen-Protected Methionine and Histidine on Performance of Dairy Cows. J. Dairy Sci. 2015, 98, 3292–3308. [Google Scholar] [CrossRef]
- Ahmed, Z.; Khan, S.A.; Nawaz, M.; Shamim, A.; Waqas, M.; Mohi-Uddin, I.; Ahmed, I.; Kuthu, Z.H.; Rasool, F. Effect of Slow Release Urea Supplementation (Optigen®) on the Production Performance of Kaghani Sheep. Adv. Anim. Vet. Sci. 2017, 5, 155–159. [Google Scholar]
- Xin, H.; Schaefer, D.; Liu, Q.; Axe, D.; Meng, Q. Effects of Polyurethane Coated Urea Supplement on In Vitro Ruminal Fermentation, Ammonia Release Dynamics and Lactating Performance of Holstein Dairy Cows Fed a Steam-Flaked Corn-Based Diet. Asian-Australas. J. Anim. Sci. 2010, 23, 491–500. [Google Scholar] [CrossRef]
- Reis, I.A.; Souza, M.G.; Granja-Salcedo, Y.T.; Carvalho, I.P.; Porcionato, M.A.; Prados, L.F.; Siqueira, G.R.; De Resende, F.D. Effect of Post-Ruminal Urea Supply on Growth Performance of Grazing Nellore Young Bulls at Dry Season. Animals 2023, 13, 207. [Google Scholar] [CrossRef]
- Alipour, D.; Saleem, A.M.; Sanderson, H.; Brand, T.; Santos, L.V.; Mahmoudi-Abyane, M.; Marami, M.R.; McAllister, T.A. Effect of Combinations of Feed-Grade Urea and Slow-Release Urea in a Finishing Beef Diet on Fermentation in an Artificial Rumen System. Transl. Anim. Sci. 2021, 4, 839–847. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.G.; Reis, I.A.; de Carvalho, I.P.C.; Porcionato, M.A.D.F.; Prados, L.F.; Granja-Salcedo, Y.T.; Siqueira, G.R.; Resende, F.D. de Effects of Post-Ruminal Urea Supplementation during the Seasonal Period on Performance and Rumen Microbiome of Rearing Grazing Nellore Cattle. Animals 2022, 12, 3463. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Aschenbach, J.R. Ureases in the Gastrointestinal Tracts of Ruminant and Monogastric Animals and Their Implication in Urea-N/Ammonia Metabolism: A Review. J. Adv. Res. 2018, 13, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Wahyono, T.; Sholikin, M.M.; Konca, Y.; Obitsu, T.; Sadarman, S.; Jayanegara, A. Effects of Urea Supplementation on Ruminal Fermentation Characteristics, Nutrient Intake, Digestibility, and Performance in Sheep: A Meta-Analysis. Vet. World 2022, 15, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Satter, L.D.; Slyter, L.L. Effect of Ammonia Concentration on Rumen Microbial Protein Production In Vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef]
- Rodríguez, A.B.; Bodas, R.; Prieto, N.; Landa, R.; Mantecón, A.R.; Giráldez, F.J. Effect of Sex and Feeding System on Feed Intake, Growth, and Meat and Carcass Characteristics of Fattening Assaf Lambs. Livest. Sci. 2008, 116, 118–125. [Google Scholar] [CrossRef]
- Zhang, C.; Li, M.M.; Al-Marashdeh, O.; Gan, L.P.; Zhang, C.Y.; Zhang, G.G. Performance, Rumen Fermentation, and Gastrointestinal Microflora of Lambs Fed Pelleted or Unpelleted Total Mixed Ration. Anim. Feed Sci. Technol. 2019, 253, 22–31. [Google Scholar] [CrossRef]
- Alvarez Almora, E.G.; Huntington, G.B.; Burns, J.C. Effects of Supplemental Urea Sources and Feeding Frequency on Ruminal Fermentation, Fiber Digestion, and Nitrogen Balance in Beef Steers. Anim. Feed Sci. Technol. 2012, 171, 136–145. [Google Scholar] [CrossRef]
- Valadares, R.F.D.; Gonçalves, L.C.; Rodriguez, N.M.; Valadares Filho, S.C.; Sampaio, I.B. Protein Levels in Cattle Diets. 4. Ruminal Ammonia N Concentration, Plasma Urea N, and Urea and Creatinine Excretions. Rev. Bras. Zootec. 1997, 26, 1270–1278. [Google Scholar]
- Oliveira, A.S.; Valadares, R.F.D.; Valadares Filho, S.C.; Cecon, P.R.; Rennó, L.N.; Queiroz, A.C.; Chizzotti, M.L. Microbial Protein Production, Purine Derivatives and Urea Excretion Estimate in Lactating Dairy Cows Fed Isoprotein Diets with Different Non Protein Nitrogen Compounds Levels. Rev. Bras. Zootec. 2001, 30, 1621–1629. [Google Scholar] [CrossRef]
- Gonçalves, A.P.; do Nascimento, C.F.M.; Ferreira, F.A.; Gomes, R.d.C.; Manella, M.d.Q.; Marino, C.T.; Demarchi, J.J.A.d.A.; Rodrigues, P.H.M. Slow-Release Urea in Supplement Fed to Beef Steers. Braz. Arch. Biol. Technol. 2015, 58, 22–30. [Google Scholar] [CrossRef]
- Gonzalez-Munoz, S.; Sanchez, J.; Lopez-Aguirre, S.; Vicente, J.; Pinos-Rodriguez, J. Ruminal Fermentation and Digestion of Cattle Diets with Total and Partial Replacement of Soybean Meal by a Slow-Release Urea Product. Vet. Med. 2019, 64, 294–301. [Google Scholar] [CrossRef]
- Kardaya, D.; Sudrajat, D.; Dihansih, E. Efficacy of Dietary Urea-Impregnated Zeolite in Improving Rumen Fermentation Characteristics of Local Lamb. Media Peternak. 2012, 35, 207–213. [Google Scholar] [CrossRef]
- Mentz, A.M.; van Niekerk, W.A.; Hassen, A.; Coertze, R.J.; Gemeda, B.S. Effect of Diets Differing in Rumen Soluble Nitrogen on Utilization of Poor-Quality Roughage by Sheep. S. Afr. J. Anim. Sci. 2015, 45, 528–537. [Google Scholar] [CrossRef]
- Males, J.R.; Purser, D.B. Relationship between Rumen Ammonia Levels and the Microbial Population and Volatile Fatty Acid Proportions in Faunated and Defaunated Sheep. Appl. Microbiol. 1970, 19, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Giráldez, F.J.; Valdés, C.; Peláez, R.; Frutos, P.; Mantecón, A.R. The Influence of Digestible Organic Matter and Nitrogen Intake on Faecal and Urinary Nitrogen Losses in Sheep. Livest. Prod. Sci. 1997, 51, 183–190. [Google Scholar] [CrossRef]
- Agarwal, U.; Hu, Q.; Baldwin, R.L., VI; Bequette, B.J. Role of Rumen Butyrate in Regulation of Nitrogen Utilization and Urea Nitrogen Kinetics in Growing Sheep. J. Anim. Sci. 2015, 93, 2382–2390. [Google Scholar] [CrossRef]
- Eyal, E.; Lawi, A.; Shimshony, A. Contemporary Performance Comparisons of Chios and Assaf Sheep and of Their Crosses under Intensive Indoor Management. Preliminary Results. Ann. Zootech. 1986, 35, 219–230. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current Research in Meat Color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Vieira, C.; Fernández, A.M. Effect of Ageing Time on Suckling Lamb Meat Quality Resulting from Different Carcass Chilling Regimes. Meat Sci. 2014, 96, 682–687. [Google Scholar] [CrossRef]
- Cardoso, G.d.S.; Rodrigues, L.d.S.; Machado, D.S.; Domingues, C.C.; da Silva, M.B.; Martini, P.M.; Adams, S.M.; Borchate, D.; Brondani, I.L.; Alves Filho, D.C. Substituição Do Farelo de Soja Por Ureia Protegida Ou Comum Sobre as Características de Carcaça e Da Carne de Novilhos Confinados. Semin. Ciênc. Agrár. 2019, 40, 353–364. [Google Scholar] [CrossRef]
- Cohen-Zinder, M.; Orlov, A.; Trofimyuk, O.; Agmon, R.; Kabiya, R.; Shor-Shimoni, E.; Wagner, E.K.; Hussey, K.; Leibovich, H.; Miron, J.; et al. Dietary Supplementation of Moringa Oleifera Silage Increases Meat Tenderness of Assaf Lambs. Small Rumin. Res. 2017, 151, 110–116. [Google Scholar] [CrossRef]
Control | SRU | |
---|---|---|
Ingredients, g/kg | ||
Barley straw | 150.0 | 150.0 |
Barley | 490.5 | 490.5 |
Corn | 189.0 | 190.0 |
Soybean meal | 115.0 | 115.0 |
Molasses | 10.0 | 10.0 |
Feed-grade urea | 9.5 | - |
Slow-release coated urea 1 | - | 10.5 |
Soybean oil | 6.0 | 4.0 |
Vitamin mineral premix | 25.0 | 25.0 |
Sodium bicarbonate | 5.0 | 5.0 |
Composition, g/kg dry matter (DM) | ||
DM, g/kg | 881 | 886 |
Neutral detergent fiber (NDF) 2 | 242 | 223 |
Acid detergent fiber (ADF) 1 | 72 | 69 |
Crude protein (CP) | 177 | 179 |
Rumen degradable protein (RDP) 3 | 115 | 101 |
Rumen undegradable protein (RUDP) 4 Crude fat | 62 30 | 78 31 |
Starch | 406 | 410 |
Ash | 78 | 64 |
Metabolizable energy, Mcal/kg DM | 2.80 | 2.79 |
Cost, EUR/kg DM | 0.379 | 0.392 |
Control | SRU | SED 1 | p-Value | |
---|---|---|---|---|
Dry matter intake, g/day | 1440 | 1350 | 62.4 | 0.17 |
Crude protein intake, g/day | 259 | 246 | 10.7 | 0.26 |
Average daily gain, g/day | 295 | 277 | 16.2 | 0.27 |
Final body weight, kg | 49.6 | 48.1 | 1.72 | 0.54 |
Feed conversion ratio, g/g | 4.92 | 4.91 | 0.193 | 0.80 |
Control | SRU | SED 1 | p-Value | |
---|---|---|---|---|
In vivo parameters | ||||
pH | 6.18 | 6.22 | 0.566 | 0.9236 |
Ammonia-N, mg/L | 120 | 109 | 55.54 | 0.7814 |
VFA concentration, mmol/L | 165 | 133 | 53.07 | 0.4369 |
Acetate, % | 57.8 | 51.3 | 2.60 | 0.0124 |
Propionate, % | 18.8 | 36.5 | 3.58 | 0.0004 |
Butyrate, % | 18.5 | 7.3 | 4.39 | 0.0111 |
Branched fatty acids, % | 3.18 | 2.66 | 1.237 | 0.5741 |
Valerate + caproate, % | 1.76 | 2.23 | 0.859 | 0.4709 |
Acetate/propionate | 3.13 | 1.42 | 0.383 | 0.0007 |
In vitro fermentation using experimental diets as a substrate | ||||
pH | 6.49 | 6.66 | 0.097 | 0.1163 |
Gas production, mmol | 1.87 | 1.64 | 0.106 | 0.0711 |
Ammonia-N, mg/L | 292 | 246 | 36.41 | 0.2428 |
VFA production, mmol | 3.38 | 3.08 | 0.299 | 0.3455 |
Acetate, % | 47.0 | 49.0 | 3.95 | 0.6294 |
Propionate, % | 29.3 | 37.5 | 2.72 | 0.0236 |
Butyrate, % | 20.0 | 7.93 | 3.39 | 0.0121 |
Branched fatty acids, % | 1.88 | 2.78 | 0.727 | 0.1306 |
Valerate + caproate, % | 1.88 | 2.76 | 0.483 | 0.1181 |
Acetate/propionate | 1.63 | 1.33 | 0.233 | 0.2385 |
Dietary Treatment | SED 1 | Sampling Day | SED 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Control | SRU | 35 | 70 | Diet | Time | Diet × Time | |||
Acid-base status | |||||||||
pH | 7.42 | 7.43 | 0.017 | 7.42 | 7.43 | 0.013 | 0.5459 | 0.5681 | 0.6141 |
pCO3, mm Hg | 44.6 | 44.2 | 1.75 | 46.3 | 42.5 | 1.68 | 0.8175 | 0.0359 | 0.9786 |
HCO3¯, mmol/L | 26.9 | 27.2 | 0.53 | 27.9 | 26.1 | 0.294 | 0.5486 | 0.0001 | 0.1497 |
Anion gap, mmol/L | 15.4 | 15.4 | 0.67 | 14.4 | 16.4 | 0.672 | 0.9681 | 0.0087 | 0.3165 |
tCO2, mmol/L | 28.2 | 28.7 | 0.50 | 29.5 | 27.4 | 0.35 | 0.3971 | 0.0001 | 0.1011 |
Na, mmol/L | 148 | 148 | 0.53 | 149 | 147 | 0.5 | 0.2450 | 0.0057 | 0.8470 |
K, mmol/K | 5.55 | 5.38 | 0.233 | 5.75 | 5.18 | 0.154 | 0.4561 | 0.0014 | 0.5048 |
Cl, mmol/L | 111 | 111 | 0.67 | 112 | 110 | 0.7 | 0.9465 | 0.0096 | 0.8361 |
Biochemical profile | |||||||||
Urea, mg/dL | 37.88 | 48.42 | 1.605 | 40.69 | 45.61 | 1.604 | 0.0001 | 0.0066 | 0.2503 |
Protein, g/L | 62.90 | 62.69 | 1.557 | 60.17 | 65.43 | 1.557 | 0.8920 | 0.0001 | 0.6922 |
Albumin, g/L | 37.31 | 37.77 | 0.862 | 36.60 | 38.47 | 0.631 | 0.5980 | 0.0077 | 0.1532 |
ALT, U/L | 18.21 | 17.44 | 1.168 | 17.51 | 18.15 | 0.544 | 0.5176 | 0.2586 | 0.5242 |
AST, U/L | 93.02 | 94.78 | 6.008 | 90.55 | 96.95 | 3.065 | 0.8110 | 0.0499 | 0.3371 |
Creatinine, mg/dL | 1.07 | 1.05 | 0.034 | 1.03 | 1.09 | 0.014 | 0.7850 | 0.0004 | 0.4117 |
Glucose, mg/dL | 110 | 105 | 2.698 | 109 | 106 | 2.248 | 0.0740 | 0.2742 | 0.9443 |
LD, mg/dL | 18.97 | 20.14 | 3.841 | 20.85 | 18.27 | 2.345 | 0.7641 | 0.2860 | 0.1961 |
Cholesterol, mg/dL | 70.88 | 74.63 | 3.901 | 73.14 | 74.63 | 3.901 | 0.3481 | 0.8088 | 0.3785 |
Triglycerides, mmol/L | 46.67 | 43.19 | 3.863 | 45.58 | 44.29 | 2.578 | 0.3790 | 0.6226 | 0.1314 |
Ca, mg/dL | 11.57 | 11.57 | 0.190 | 11.45 | 11.70 | 3.130 | 0.9998 | 0.1271 | 0.0317 |
P, mg/dL | 8.49 | 8.51 | 0.353 | 8.72 | 8.27 | 0.289 | 0.9564 | 0.1357 | 0.7403 |
Dietary Treatment | Time after Feeding | SED 1 | SED 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 h | 2 h | 4 h | Diet | Time | Diet × Time | ||||
Urea, mg/dL | Control | 42.5 a | 46.7 b | 44.3 a | 2.342 | 0.711 | 0.0140 | 0.0051 | 0.0053 |
SRU | 51.6 c | 51.5 c | 49.3 b | ||||||
Protein, g/L | Control | 64.6 | 62.3 | 62.8 | 2.043 | 0.303 | 0.8801 | 0.0001 | 0.7422 |
SRU | 65.2 | 62.5 | 63.0 | ||||||
Albumin, g/L | Control | 38.0 | 36.7 | 37.4 | 1.297 | 1.369 | 0.0570 | 0.6684 | 0.3595 |
SRU | 39.8 | 41.6 | 38.6 | ||||||
ALT, U/L | Control | 16.3 b | 15.0 a | 15.0 a | 1.275 | 0.416 | 0.7622 | 0.7245 | 0.0440 |
SRU | 16.6 b | 15.9 ab | 15.0 a | ||||||
AST, U/L | Control | 91.3 | 86.9 | 89.7 | 7.527 | 1.263 | 0.4319 | 0.0003 | 0.5864 |
SRU | 98.7 | 91.8 | 95.5 | ||||||
Creatinine, mg/dL | Control | 1.09 | 1.07 | 1.08 | 0.038 | 0.008 | 0.8591 | 0.0014 | 0.3790 |
SRU | 1.10 | 1.06 | 1.05 | ||||||
Glucose, mg/dL | Control | 110 | 108 | 105 | 4.166 | 0.953 | 0.2114 | 0.0493 | 0.6101 |
SRU | 105 | 103 | 105 | ||||||
LD, mg/dL | Control | 18.6 | 14.1 | 13.4 | 3.208 | 1.975 | 0.8284 | 0.0451 | 0.5830 |
SRU | 18.0 | 17.2 | 13.0 | ||||||
Cholesterol, mg/dL | Control | 70.2 | 67.1 | 67.4 | 4.927 | 0.576 | 0.7801 | 0.0002 | 0.3873 |
SRU | 70.7 | 68.8 | 69.4 | ||||||
Triglycerides, mmol/L | Control | 44.1 b | 39.2 b | 27.2 b | 2.525 | 1.875 | 0.3389 | 0.0001 | 0.2070 |
SRU | 44.2 b | 39.4 b | 26.9 a | ||||||
Ca, mg/dL | Control | 12.0 | 11.6 | 11.9 | 0.172 | 0.146 | 0.8976 | 0.0005 | 0.2686 |
SRU | 12.3 | 11.5 | 11.8 | ||||||
P, mg/dL | Control | 8.83 | 8.44 | 7.86 | 0.537 | 0.172 | 0.6875 | 0.0001 | 0.2796 |
SRU | 8.93 | 8.03 | 7.50 |
Control | SRU | SED 1 | p-Value | |
---|---|---|---|---|
Cold carcass weight, kg | 25.6 | 24.2 | 1.28 | 0.2956 |
Dressing percentage, % | 51.7 | 50.4 | 0.660 | 0.0694 |
Chilling losses, % | 1.03 | 0.99 | 0.025 | 0.1207 |
pH, 24 h | 5.75 | 5.77 | 0.06 | 0.6819 |
Pelvic and renal fat, % | 326 | 267 | 60.3 | 0.3314 |
Proportion of cuts 2, % | ||||
Higher-priced joints | 61.1 | 60.3 | 0.4 | 0.4018 |
Medium-priced joints | 18.7 | 18.6 | 0.34 | 0.8289 |
Lower-priced joints | 20.2 | 21.1 | 0.43 | 0.0913 |
Morphological parameters | ||||
L, cm | 65.6 | 65.5 | 1.12 | 0.9173 |
F, cm | 42.6 | 42.3 | 0.60 | 0.6254 |
TH, cm | 28.2 | 28.2 | 0.46 | 0.9378 |
ICC, g/cm | 292 | 280 | 14.4 | 0.4192 |
Subcutaneous fat color | ||||
L* | 68.0 | 66.8 | 1.70 | 0.5072 |
a* | 2.76 | 3.00 | 0.52 | 0.6639 |
b* | 8.17 | 7.86 | 0.79 | 0.6941 |
Leg tissue composition, % | ||||
Muscle | 60.0 | 59.3 | 1.208 | 0.5573 |
Fat | 17.7 | 16.9 | 1.209 | 0.5405 |
Bone | 20.8 | 21.8 | 0.353 | 0.0596 |
Others | 1.49 | 1.98 | 0.250 | 0.0667 |
Loin rib characteristics | ||||
Weight, g | 602 | 570 | 27.6 | 0.2627 |
Area, cm2 | 58.6 | 54.5 | 4.28 | 0.3551 |
Fat over rib, cm | 0.89 | 0.96 | 0.132 | 0.5930 |
Dietary Treatment | SED 1 | Storage Day | SED 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Control | SRU | 1 | 7 | Diet | Time | Diet × Time | |||
Chemical composition (g/kg) | |||||||||
Water | 75.5 | 76.6 | 0.80 | - | - | - | 0.2154 | - | - |
Crude protein | 16.2 | 14.5 | 1.77 | - | - | - | 0.1778 | - | - |
Crude fat | 2.32 | 2.51 | 0.189 | - | - | - | 0.3271 | - | - |
Ash | 0.98 | 0.91 | 0.080 | - | - | - | 0.3671 | - | - |
TBARS (µg MDA 3/g sample) | 3.23 | 3.05 | 0.270 | - | - | - | 0.5015 | - | - |
Cooking losses, % | 21.2 | 20.5 | 1.58 | 19.5 | 22.2 | 0.96 | 0.6925 | 0.0121 | 0.8282 |
Texture, shearing force, N | 83.0 | 85.4 | 6.25 | 92.5 | 76.0 | 2.97 | 0.7041 | <0.0001 | 0.2367 |
L* | 38.2 | 38.2 | 0.71 | 37.7 | 39.2 | 0.46 | 0.5770 | 0.0036 | 0.6459 |
a* | 8.26 | 8.58 | 0.323 | 7.71 | 9.14 | 0.222 | 0.3310 | <0.0001 | 0.0465 |
b* | 9.61 | 9.71 | 0.479 | 8.44 | 10.88 | 0.453 | 0.8392 | <0.0001 | 0.3637 |
630/580 4 | 2.63 | 2.72 | 0.093 | 3.03 | 2.32 | 0.083 | 0.3338 | <0.0001 | 0.1313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saro, C.; Degeneffe, M.A.; Andrés, S.; Mateo, J.; Caro, I.; López-Ferreras, L.; Horst, E.H.; López, S.; Giráldez, F.J. Conventional Feed-Grade or Slow-Release Coated Urea as Sources of Dietary Nitrogen for Fattening Lambs. Animals 2023, 13, 3465. https://doi.org/10.3390/ani13223465
Saro C, Degeneffe MA, Andrés S, Mateo J, Caro I, López-Ferreras L, Horst EH, López S, Giráldez FJ. Conventional Feed-Grade or Slow-Release Coated Urea as Sources of Dietary Nitrogen for Fattening Lambs. Animals. 2023; 13(22):3465. https://doi.org/10.3390/ani13223465
Chicago/Turabian StyleSaro, Cristina, Miguel Alonso Degeneffe, Sonia Andrés, Javier Mateo, Irma Caro, Lorena López-Ferreras, Egon Henrique Horst, Secundino López, and Francisco Javier Giráldez. 2023. "Conventional Feed-Grade or Slow-Release Coated Urea as Sources of Dietary Nitrogen for Fattening Lambs" Animals 13, no. 22: 3465. https://doi.org/10.3390/ani13223465
APA StyleSaro, C., Degeneffe, M. A., Andrés, S., Mateo, J., Caro, I., López-Ferreras, L., Horst, E. H., López, S., & Giráldez, F. J. (2023). Conventional Feed-Grade or Slow-Release Coated Urea as Sources of Dietary Nitrogen for Fattening Lambs. Animals, 13(22), 3465. https://doi.org/10.3390/ani13223465