Genetic Variability and Conservation Challenges in Lithuanian Dairy Cattle Populations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- The number of founders in each population at different periods: The number of reproductive males, reproductive females, founders with unknown parents, founders with only females’ known parents and founders with only males’ known parents in each period.
- Pedigree completeness: The following formula was used to compute pedigree completeness by MacCluer et al. [25]:
- The number of males and females in reproduction by the year of offspring birth (births/select), where “births” is the number of males/females with offspring in a given year. ”Select“ represents animals born in a given year that became parents later on and determined the subset. ”Select“ represents the number of males and females represented in this subset.
- Age distribution of males and females in reproduction by the year of birth of their offspring presents the average age of all male/ female parents.
- Generation interval: According to Falconer and Mackay [26], the generation interval is defined as the average age of the parents at the birth of their selected offspring. It was calculated by taking the age of each of the parents at the birth of its offspring and averaging it over the age of all parents [24]. In the calculation of generation interval, an offspring is considered selected if it has produced at least one progeny. The generation intervals of males and females in the pedigree were calculated for each respective breed.
- The inbreeding coefficient was calculated according to Wright’s [27] formula:
3. Results
3.1. Number of Cows and Milk Performance Data
3.2. Number of Founders
3.3. Composition of Pedigree, Pedigree Completeness and Generation Intervals
3.4. Inbreeding
3.5. Effective Population Size
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayes, B.J.; Daetwyler, H.D. Annual Review of Animal Biosciences 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. Annu. Rev. Anim. Biosci. 2019, 7, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, M.; Eriksson, S.; Mikko, S.; Strandberg, E.; Stålhammar, H.; Groenen, M.A.M.; Crooijmans, R.P.M.A.; Andersson, G.; Johansson, A.M. Genomic relatedness and diversity of Swedish native cattle breeds. Genet. Sel. Evol. 2019, 51, 56. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, K.; Felenczak, A.; Jamrozy, J.; Szarek, J.; Bulla, J. Conservation of Polish Red cattle. Slovak J. Anim. Sci. 2008, 41, 72–76. Available online: http://www.cvzv.sk/slju/08_2/Adamczyk.pdf (accessed on 25 January 2023).
- Jarnecka, O.; Bauer, E.A.; Jagusiak, W. Pedigree analysis in the Polish Red cattle population. Animal 2021, 15, 10023. [Google Scholar] [CrossRef] [PubMed]
- Makanjuola, B.M.; Miglior, F.; Abdalla, E.A.; Maltecca, C.; Schenkel, F.S.; Baes, C.F. Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations. J. Dairy Sci. 2020, 103, 5183–5199. [Google Scholar] [CrossRef]
- Wang, J.; Santiago, E.E.; Caballero, A. REVIEW Prediction and estimation of effective population size. Heredity 2016, 117, 193–206. [Google Scholar] [CrossRef]
- Ajmone-Marsan, P.; Boettcher, P.J.; Colli, L.; Ginja, C.; Kantanen, J.; Lenstra, J.A. Genomic Characterization of Animal Genetic Resources—Practical Guide; FAO Animal Production and Health Guidelines No. 32; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Gutiérrez-Reinoso, M.A.; Aponte, P.M.; García-Herreros, M. A review of inbreeding depression in dairy cattle: Current status, emerging control strategies, and future prospects. J. Dairy Res. 2022, 89, 3–12. [Google Scholar] [CrossRef]
- Stachowicz, K.; Sargolzaei, M.; Miglior, F.; Schenkel, F.S. Rates of inbreeding and genetic diversity in Canadian Holstein and Jersey cattle. J. Dairy Sci. 2011, 94, 5160–5175. [Google Scholar] [CrossRef]
- Sørensen, A.C.; Sørensen, M.K.; Berg, P. Inbreeding in Danish Dairy Cattle Breeds. J. Dairy Sci. 2005, 88, 1865–1872. [Google Scholar] [CrossRef]
- Sonesson, A.K.; Meuwissen, T.H.E. Minimization of rate of inbreeding for small populations with overlapping generations. Genet. Res. Camb. 2001, 77, 285–292. Available online: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/A7DF3B134973BF5C210BAEBBDD285590/S0016672301005079a.pdf/div-class-title-minimization-of-rate-of-inbreeding-for-small-populations-with-overlapping-generations-div.pdf (accessed on 10 February 2023). [CrossRef]
- Drobik, W.; Martyniuk, E. Practical aspects of genetic management of small populations—The Olkuska sheep example. Acta Agric. Scand. 2014, 64, 36–48. [Google Scholar] [CrossRef]
- Reig, M.; Vecino, X.; Cortina, J.L. Use of Membrane Technologies in Dairy Industry: An Overview. Foods 2021, 10, 2768. [Google Scholar] [CrossRef] [PubMed]
- SE Agricultural Information & Rural Business Centre. Lithuanian Agriculture Facts and Figures, Semiannual Statistical Report. 2022, 1. Available online: https://www.vic.lt/leidiniai/lietuvos-zemes-ukis-faktai-ir-skaiciai-2007-m/ (accessed on 15 February 2023).
- Annual Report of Milk Recording of Lithuanian Breeds 2020–2021; LAMMC: Vilnius, Lithuania, 2021; Available online: https://www.vic.lt/leidiniai/apyskaita/ (accessed on 10 November 2022).
- Lapickis, R.; Griciuvienė, L.; Aleksandravičienė, A.; Lipatova, A.; Paulauskas, A. Genetic variability of dairy cattle breeds in Lithuania. Biologija 2021, 67, 188–195. Available online: https://www.lmaleidykla.lt/ojs/index.php/biologija/article/view/4513/3683 (accessed on 1 February 2023). [CrossRef]
- Šveistienė, R.; Razmaitė, V. Animal genetic resources in Lithuania. Slovak J. Anim. Sci. 2023, 46, 131–136. Available online: http://www.cvzv.sk/slju/13_4/13_4_3.pdf (accessed on 7 February 2023).
- Paulauskas, A.; Griciuviene, L.; Lapickis, R.; Lipatova, I.; Aleksandravičienė, A.; Ražanskė, I.; Jurgelevičius, V. Genetic variability in Lithuanian Black and White cattle with different proportions of Holstein Bloodline. Indian J. Anim. Res. 2023, 1, 6. [Google Scholar] [CrossRef]
- Petrakova, L.; Kerzienė, S.; Razmaitė, V. Contribution of different breeds to Lithuanian Red cattle using pedigree information with only a fraction of the population analyzed. Vet. Ir Zootech. 2012, 57, 62–66. Available online: https://vetzoo.lsmuni.lt/data/vols/2012/57/pdf/petrakova.pdf (accessed on 10 February 2023).
- Petrakova, L.; Kerzienė, S.; Razmaitė, V. Productivity traits of Lithuanian red dairy cows having different pedigree completeness. Gyvulinink. Moksl. Darb. 2011, 57, 3–17. [Google Scholar]
- Makštutienė, N.; Liucvaikienė, K.; Baltrėnaitė, L.; Morkūnienė, K.; Morkūnas, P.; Ramanauskienė, A.; Miceikienė, I. Lietuvoje veisiamų pieninių galvijų veislių mikrosatelitų įvairovės tyrimas. Biologija 2013, 20, 57–63. [Google Scholar] [CrossRef]
- Viinalass, H.; Väry, S.; Boveiniene, B.; Bekere, R. Characterisation of cattle breeds in Baltic countries by genetic markers. Biologija 2002, 3, 16–19. Available online: https://www.researchgate.net/profile/Sirje-Vaerv/publication/266609445_Characterisation_of_cattle_breeds_in_Baltic_countries_by_genetic_markers/links/54b91c7a0cf269d8cbf731a3/Characterisation-of-cattle-breeds-in-Baltic-countries-by-genetic-markers.pdf (accessed on 15 February 2023).
- Kaurynienė, E.K.; Šveistienė, R.; Jatkauskienė, V. Differentiation between Lithuanian White-Backed and Lithuanian Black-and-White (old genotype) cattle using blood groups. Biologija 2014, 60, 175–182. Available online: https://www.lmaleidykla.lt/ojs/index.php/biologija/article/view/3036/1863 (accessed on 10 February 2023). [CrossRef]
- Groeneveld, E.; Van der Westhuizen, B.; Maiwashe, A.; Voordewind, F.; Ferraz, J.B.S. POPREP: A generic report for population management. Genet Mol Res. 2009, 8, 1158–1178. Available online: https://www.researchgate.net/profile/Norman-Maiwashe/publication/38044970_POPREP_A_generic_report_for_population_management/links/565c035208aefe619b25183c/POPREP-A-generic-report-for-population-management.pdf (accessed on 1 April 2023). [CrossRef]
- MacCluer, J.W.; Boyce, A.J.; Dyke, B.; Weitkamp, L.R.; Pfennig, D.W.; Parsons, C.J. Inbreeding and pedigree structure in Standardbred horses. J. Hered. 1983, 74, 394–399. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longman Scientific and Technical: Harlow, UK, 1996. [Google Scholar]
- Rehfeld, C.E.; Bacus, J.W.; Pagels, J.A.; Dipert, M.H. Computer Calculation of Wright’s Inbreeding Coefficient. J. Hered. 1967, 58, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Dell, A.; Curry, M.; Hunter, E.; Dalton, R.; Yarnell, K.; Starbuck, G.; Wilson, P.B. 16 Years of breed management brings substantial improvement in population genetics of the endangered Cleveland Bay Horse. Ecol. Evol. 2021, 11, 14555–14572. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.P.; Cervantes, I.I.; Goyache, F. Improving the estimation of realized effective population sizes in farm animals J. Anim. Breed. Genet. 2009, 126, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. Mendelian analysis of the pure breeds of livestock. J. Hered. 1923, 14, 339–348. [Google Scholar] [CrossRef]
- Groeneveld, L.F.; Lenstra, J.A.; Eding, H.; Toro, M.A.; Pilling, D.; Negrini, R.; Finlay, E.K.; Jianlin, H.; Groeneveld, E.; Weigend, S.; et al. Genetic diversity in farm animals—A review. Anim. Genet. 2010, 41, 6–31. [Google Scholar] [CrossRef] [PubMed]
- Paura, L.; Jonkus, D. Inbreeding evaluation in Latvia local cattle breeds. Acta Fytotechn Zootech. 2020, 23, 52–57. [Google Scholar] [CrossRef]
- Bieber, A.; Wallenbeck, A.; Leiber, F.; Fuerst-Waltl, B.; Winckler, C.; Gullstrand, P.; Walczak, J.; Wójcik, P.; Neff, A.S. Production level, fertility, health traits, and longevity in local and commercial dairy breeds under organic production conditions in Austria, Switzerland, Poland, and Sweden. J. Dairy Sci. 2019, 102, 5330–5341. [Google Scholar] [CrossRef]
- Buonaiuto, G.; Lopez-Villalobos, N.; Costa, A.; Niero, G.; Degano, L.; Mammi, L.M.E.; Cavallini, D.; Palmonari, A.; Formigoni, A.; Visentin, G. Stayability in Simmental cattle as affected by muscularity and body condition score between calvings. Front. Vet. Sci. 2023, 10, 1141286. [Google Scholar] [CrossRef]
- Buonaiuto, G.; Lopez-Villalobos, N.; Niero, G.; Degano, L.; Dadati, E.; Formigoni, A.; Visentin, G. The application of Legendre Polynomials to model muscularity and body condition score in primiparous Italian Simmental cattle. Ital. J. Anim. Sci. 2022, 21, 350–360. [Google Scholar] [CrossRef]
- Marašinskienė, Š.; Šveistienė, R.; Kosińska-Selbi, B.; Schmidtmann, C.; Ettema, J.F.; Juškienė, V.; Kargo, M. Application of a Bio-Economic Model to Demonstrate the Importance of Health Traits in Herd Management of Lithuanian Dairy Breeds. Animals 2022, 12, 1926. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, K.; Szarek, J.; Majewska, A.; Jagusiak, W.; Gil, Z. Factors affecting longevity of cows with high share of Polish local breeds’ genes. Anim. Sci. Pap. Rep. 2017, 35, 35–46. Available online: https://www.igbzpan.pl/uploaded/FSiBundleContentBlockBundleEntityTranslatableBlockTranslatableFilesElement/filePath/663/str35-46.pdf (accessed on 5 April 2023).
- Schuster, J.C.; Barkema, H.W.; De Vries, A.; Kelton, D.F.; Orsel, K. Invited review: Academic and applied approach to evaluating longevity in dairy cows. J. Dairy Sci. 2020, 103, 11008–11024. [Google Scholar] [CrossRef] [PubMed]
- Annual Report of Milk Recording of Lithuanian Breeds 2007–2008; IAEA: Vilnius, Lithuania, 2009.
- European Union. Regulation (EU) 2016/1012 of the European Parliament and of the council. Off. J. Eur. Union 2016, 171, 66–143. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R1012&rid=2 (accessed on 5 April 2023).
- González-Cano, R.; González-Martínez, A.; Muñoz-Mejías, M.E.; Valera, P.; Rodero, E. Analyses of Genetic Diversity in the Endangered “Berrenda” Spanish Cattle Breeds Using Pedigree Data. Animals 2022, 12, 249. [Google Scholar] [CrossRef] [PubMed]
- Addo, S.; Schäler, J.; Hinrichs, D.; Thaller, G. Genetic Diversity and Ancestral History of the German Angler and the Red-and-White Dual-Purpose Cattle Breeds Assessed through Pedigree Analysis. Agric. Sci. 2017, 8, 1033–1047. [Google Scholar] [CrossRef]
- Parland, S.M.; Kearney, J.F.; Rath, M.; Berry, D.P. Inbreeding trends and pedigree analysis of Irish dairy and beef cattle populations. J. Anim. Sci. 2007, 85, 322–331. [Google Scholar] [CrossRef]
- Cassell, B.G.; Adamec, V.; Pearson, R.E. Effect of Incomplete Pedigrees on Estimates of Inbreeding and Inbreeding Depression for Days to First Service and Summit Milk Yield in Holsteins and Jerseys. J. Dairy Sci. 2003, 86, 2967–2976. [Google Scholar] [CrossRef]
- Cervantes, I.; Gutiérrez, J.P.; Molina, A.; Goyache, F.; Valera, M. Genealogical analyses in open populations: The case of three Arab-derived Spanish horse breeds. J. Anim. Breed. Genet. 2009, 126, 335–347. [Google Scholar] [CrossRef]
- Leroy, G.; Mary-Huard, T.; Verrier, E.; Danvy, S.; Charvolin, E.; Danchin-Burge, C. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse. Genet. Sel. Evol. 2013, 45, 1. [Google Scholar] [CrossRef]
- Hiemstra, S.J.; de Haas, Y.; Mäki-Tanila, A.; Gandini, G. Local Cattle Breeds in Europe. Development of Policies and Strategies for Self-Sustaining Breeds; Wageningen Academic Publishers: Wageningen, The Netherlands, 2010. [Google Scholar]
Methods | Cascade | Formula | Description |
---|---|---|---|
Ne-∆Fp | Animals and their parents born in generation t | ∆Fp = (Ft − Ft−1)/(1 − Ft−1) | Ft = inbreeding coefficient of offspring, Ft−1 = inbreeding coefficient of direct parents [26] |
Ne-Cens | Parents of animals born in generation t | Ne = 4Nm × Nf/(Nm + Nf) × 0.7 | Nm = number of males per generation, Nf = number of females per generation [30], |
Ne-Coan | Animals born in generation t + 1 and t | ∆fg = (ft − ft−1)/(1 − ft−1) | ft = additive genetic relationship (AGR), ft−1 = AGR of parents [26] |
Ne-Ecg | Animals with their complete ancestors born in generation t | ∆Fi = 1 − | Ecg = sum of all known ancestors with (½)n, Fi = individual inbreeding coefficient [28] |
Breed | Production Data | Milk, kg | Fat, % | Protein, % | Number of Cows |
---|---|---|---|---|---|
LRWP | Herd book | 8651 | 4.32 | 3.5 | 34,256 |
LBWP | Herd book | 8284 | 4.34 | 3.41 | 94,272 |
LR | Herd book | 8330 | 4.60 | 3.60 | 50 |
LR_pure | in main section * | 5440 | 4.19 | 3.49 | 10 |
LBW | Herd book | 7004 | 4.49 | 3.42 | 995 |
LBW_pure | in main section * | 6344 | 4.41 | 3.38 | 564 |
Breeds | Time Period | Number of Animals in Pedigree | Pedigree Completeness Index | |||||
---|---|---|---|---|---|---|---|---|
PCI1 | PCI2 | PCI3 | PCI4 | PCI5 | PCI6 | |||
LRWP | 1946–2021 | 313,214 | 1.0 | 0.944 | 0.908 | 0.881 | 0.841 | 0.8 |
LBWP | 1944–2021 | 354,201 | 1.0 | 0.967 | 0.946 | 0.932 | 0.908 | 0.88 |
LR | 1959–2022 | 1266 | 0.938 | 0.938 | 0.925 | 0.904 | 0.818 | 0.725 |
LR_pure | 1959–2021 | 974 | 1.0 | 1.0 | 0.962 | 0.902 | 0.79 | 0.684 |
LBW | 1961–2022 | 9058 | 1.0 | 0.918 | 0.864 | 0.814 | 0.758 | 0.693 |
LBW_pure | 1961–2022 | 5260 | 1.0 | 1.0 | 0.980 | 0.942 | 0.89 | 0.815 |
Year | Breed | |||||
---|---|---|---|---|---|---|
LRWP | LBWP | LR | LR_pure | LBW | LBW_pure | |
Male | ||||||
2005 | 382/354 | 908/831 | 19/17 | 12/10 | 61/60 | 33/31 |
2009 | 388/359 | 764/706 | 10/10 | 4/4 | 47/45 | 24/23 |
2015 | 517/457 | 789/738 | 18/15 | 12/7 | 94/76 | 30/14 |
2020 | 528/183 | 670/295 | 9/4 | 3/3 | 71/13 | 9/4 |
2021 | 508/- | 694/- | 14/- | 5/- | 80/- | 11/- |
Female | ||||||
2005 | 11,279/6298 | 7498/6795 | 41/20 | 32/11 | 167/161 | 105/95 |
2009 | 9945/6145 | 9751/8575 | 15/12 | 9/6 | 216/170 | 140/107 |
2015 | 12,255/7175 | 17,623/13132 | 32/21 | 20/8 | 479/287 | 245/108 |
2020 | 16,889/1468 | 31,417/3367 | 36/6 | 10/3 | 498/27 | 183/6 |
2021 | 18,338/- | 39,804/- | 45/- | 15/- | 537/- | 130/- |
Year | LRWP | LBWP | LR | LR_pure | LBW | LBW_pure | |
---|---|---|---|---|---|---|---|
Male | 2005 | 7.7 | 6.0 | 9.4 | 9.5 | 7.3 | 8.3 |
2009 | 8.0 | 6.6 | 11.5 | 14.0 | 7.7 | 8.3 | |
2015 | 6.5 | 5.6 | 8.7 | 10.9 | 4.9 | 7.5 | |
2020 | 5.7 | 5.2 | 14.7 | 31.0 | 5.6 | 7.9 | |
2021 | 5.5 | 5.2 | 13.0 | 27.8 | 5.1 | 8.5 | |
Female | 2005 | 4.1 | 3.7 | 5.1 | 5.0 | 4.2 | 4.4 |
2009 | 3.9 | 3.7 | 7.3 | 7.2 | 5.3 | 6.0 | |
2015 | 3.5 | 3.4 | 3.4 | 3.5 | 3.7 | 4.1 | |
2020 | 3.3 | 3.2 | 3.8 | 4.5 | 4.4 | 4.9 | |
2021 | 3.3 | 3.2 | 3.3 | 3.7 | 4.5 | 5.2 |
Year | LRWP | LBWP | LR | LR_pure | LBW | LBW_pure | |
---|---|---|---|---|---|---|---|
Male | 2005 | 9.4 | 8.2 | 8.9 | 8.6 | 9.3 | 10.1 |
2009 | 8.5 | 8.7 | 14.2 | 16.6 | 9.7 | 10.7 | |
2015 | 7.8 | 7.4 | 10.1 | 15.5 | 4.7 | 5.5 | |
2020 | 5.8 | 5.1 | - | - | - | - | |
Female | 2005 | 4.6 | 4.2 | 4.4 | 4.0 | 4.6 | 4.7 |
2009 | 4.4 | 4.3 | 7.8 | 7.7 | 5.6 | 6.3 | |
2015 | 4.0 | 4.0 | 3.8 | 4.0 | 3.8 | 4.5 | |
2020 | 3.4 | 3.4 | - | - | - | - |
Year | LRWP | LBWP | LR | LR_pure | LBW | LBW_pure | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | F | N | F | N | F | N | F | N | F | N | F | ||
F of all animals by year | 2005 | 11,541 | 0.0098 | 7726 | 0.0143 | 41 | 0.0008 | 32 | 0.0010 | 170 | 0.0044 | 170 | 0.0042 |
2009 | 10,097 | 0.0105 | 9972 | 0.0191 | 15 | 0.0333 | 9 | 0.0556 | 221 | 0.0065 | 143 | 0.0061 | |
2015 | 12,510 | 0.0173 | 18,011 | 0.0266 | 33 | 0.0055 | 20 | 0.0088 | 489 | 0.0187 | 249 | 0.0171 | |
2020 | 17,441 | 0.0269 | 32,470 | 0.0352 | 38 | 0.0045 | 10 | 0.0018 | 516 | 0.0336 | 188 | 0.0349 | |
2021 | 19,010 | 0.0265 | 41,226 | 0.0369 | 48 | 0.0129 | 15 | 0.0370 | 551 | 0.0416 | 135 | 0.0507 | |
F of inbred animals by year | 2005 | 6463 | 0.0175 | 5235 | 0.0212 | 1 | 0.0313 | 1 | 0.0313 | 43 | 0.0173 | 30 | 0.0148 |
2009 | 7187 | 0.0148 | 8417 | 0.0226 | 2 | 0.2500 | 2 | 0.2500 | 73 | 0.0198 | 48 | 0.0181 | |
2015 | 11,141 | 0.0194 | 17,088 | 0.0280 | 6 | 0.0304 | 4 | 0.0439 | 393 | 0.0233 | 215 | 0.0198 | |
2020 | 16,773 | 0.0280 | 32,046 | 0.0357 | 12 | 0.0142 | 1 | 0.0176 | 465 | 0.0373 | 181 | 0.0362 | |
2021 | 18,595 | 0.0271 | 40,820 | 0.0372 | 26 | 0.0238 | 6 | 0.0924 | 504 | 0.0455 | 128 | 0.0535 |
LRWP | LBWP | LR | LR_pure | LBW | LBW_pure | ||
---|---|---|---|---|---|---|---|
Ne (∆F) | 2005 | 90 | - | - | −1158 | 171 | 100 |
2009 | - | - | 195 | 168 | 659 | 219 | |
2015 | 100 | 217 | 253 | 95 | 46 | 42 | |
2020 | 67 | 211 | 106 | 70 | 25 | 27 | |
2021 | 68 | 462 | 103 | 59 | 23 | 23 | |
Ne | 2005 | 2857 | 6209 | 164 | 138 | 468 | 305 |
2009 | 2985 | 5585 | 156 | 107 | 442 | 298 | |
2015 | 3954 | 4962 | 150 | 71 | 746 | 342 | |
2020 | 3923 | 4640 | 117 | 50 | 659 | 204 | |
2021 | 3855 | 4449 | 107 | 42 | 633 | 163 |
Years | LRWP * | LBWP | LR * | LR_pure * | LBW * | LBW_pure |
---|---|---|---|---|---|---|
2017 | 231 | 60 | 155 | 54 | 125 | 34 |
2018 | 142 | 45 | 118 | 35 | 53 | 15 |
2019 | 120 | 41 | 71 | 22 | 33 | 12 |
2020 | 120 | 43 | 42 | 13 | 30 | 10 |
2021 | 121 | 58 | 29 | 10 | 28 | 10 |
Data history | 2018–2027 | 2019–2026 | 2016–2029 | 2016–2029 | 2018–2027 | 2017–2028 |
Years | LRWP | LBWP | LR | LR_pure | LBW | LBW_pure |
---|---|---|---|---|---|---|
2017 | 67 | 98 | 457 | 277 | 56 | 73 |
2018 | 59 | 93 | 280 | 181 | 47 | 68 |
2019 | 54 | 89 | 219 | 128 | 38 | 64 |
2020 | 48 | 83 | 224 | 124 | 34 | 60 |
2021 | 44 | 79 | 168 | 79 | 31 | 53 |
Data history | 1946–2022 | 1944–2022 | 1959–2022 | 1959–2022 | 1961–2022 | 1961–2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marašinskienė, Š.; Šveistienė, R.; Razmaitė, V.; Račkauskaitė, A.; Juškienė, V. Genetic Variability and Conservation Challenges in Lithuanian Dairy Cattle Populations. Animals 2023, 13, 3506. https://doi.org/10.3390/ani13223506
Marašinskienė Š, Šveistienė R, Razmaitė V, Račkauskaitė A, Juškienė V. Genetic Variability and Conservation Challenges in Lithuanian Dairy Cattle Populations. Animals. 2023; 13(22):3506. https://doi.org/10.3390/ani13223506
Chicago/Turabian StyleMarašinskienė, Šarūnė, Rūta Šveistienė, Violeta Razmaitė, Alma Račkauskaitė, and Violeta Juškienė. 2023. "Genetic Variability and Conservation Challenges in Lithuanian Dairy Cattle Populations" Animals 13, no. 22: 3506. https://doi.org/10.3390/ani13223506
APA StyleMarašinskienė, Š., Šveistienė, R., Razmaitė, V., Račkauskaitė, A., & Juškienė, V. (2023). Genetic Variability and Conservation Challenges in Lithuanian Dairy Cattle Populations. Animals, 13(22), 3506. https://doi.org/10.3390/ani13223506