Growth Performance, Antioxidant and Immunity Capacity Were Significantly Affected by Feeding Fermented Soybean Meal in Juvenile Coho Salmon (Oncorhynchus kisutch)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Experimental Fish and Culture
2.3. Sampling
2.4. Calculations and Analytical Methods
2.4.1. Growth Performance
2.4.2. Determination of Feed and Whole Fish Composition
2.4.3. Determination of Serum Biochemical Parameters
2.4.4. Determination of Liver Antioxidant Capacity
2.4.5. Expression of Antioxidant and Immunity Genes
2.5. Statistical Analysis
3. Results
3.1. Effect of Replacing a Portion of Fish Meal with Unfermented and/or Fermented Soybean Meal on the Growth Performance of Juvenile Coho Salmon
3.2. Effect of Replacing a Portion of Fish Meal with Unfermented and/or Fermented Soybean Meal on the Whole-Body Composition of Juvenile Coho Salmon
3.3. Effect of Replacing a Portion of Fish Meal with Unfermented and/or Fermented Soybean Meal on the Physiological and Biochemical Indices in Serum of Juvenile Coho Salmon
3.4. Effect of Replacing a Portion of Fish Meal with Unfermented and/or Fermented Soybean Meal on the Antioxidant Capacity in the Liver of Juvenile Coho Salmon
3.5. Effect of Replacing a Portion of Fish Meal with Unfermented and/or Fermented Soybean Meal on the Expression of Antioxidant and Immune Genes in the Liver of Juvenile Coho Salmon
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, J.; Li, L.; Chen, B.; Shan, L.; Yuan, S.; Yu, H. Dietary copper requirements of postlarval coho salmon (Oncorhynchus kisutch). Aquac. Nutr. 2021, 27, 2084–2092. [Google Scholar] [CrossRef]
- Nakano, T.; Hayashi, S.; Nagamine, N. Effect of excessive doses of oxytetracycline on stress-related biomarker expression in coho salmon. Environ. Sci. Pollut. Res. 2018, 25, 7121–7128. [Google Scholar] [CrossRef]
- Gaffney, L.P.; Leggatt, R.A.; Muttray, A.F.; Dionne, S.; Biagi, C.A.; Devlin, R.H. Comparison of growth rates between growth hormone transgenic and selectively-bred domesticated strains of coho salmon (Oncorhynchus kisutch) assessed under different culture conditions. Aquaculture 2020, 528, 735468. [Google Scholar] [CrossRef]
- Olsen, R.L.; Hasan, M.R. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci. Technol. 2012, 27, 120–128. [Google Scholar] [CrossRef]
- Terova, G.; Gini, E.; Gasco, L.; Moroni, F.; Antonini, M.; Rimoldi, S. Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. J. Anim. Sci. Biotechnol. 2021, 12, 30. [Google Scholar] [CrossRef]
- Yao, Y.; Li, H.; Li, J.; Zhu, B.; Gao, T. Anaerobic solid-state fermentation of soybean meal with Bacillus sp. to improve nutritional quality. Front. Nutr. 2021, 8, 706977. [Google Scholar] [CrossRef]
- Sookying, D.; Davis, D.A.; Soller, D. A review of the development and application of soybean-based diets for Pacific white shrimp Litopenaeus vannamei. Aquac. Nutr. 2013, 19, 441–448. [Google Scholar] [CrossRef]
- Iwashita, Y.; Yamamoto, T.; Furuita, H.; Sugita, T.; Suzuki, N. Influence of certain soybean antinutritional factors supplemented to a casein-based semipurified diet on intestinal and liver morphology in fingerling rainbow trout Oncorhynchus mykiss. Fish. Sci. 2008, 74, 1075–1082. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.; De Boeck, G.; Becker, K. Phytate and phytase in fish nutrition. J. Anim. Physiol. Anim. Nutr. 2012, 96, 335–364. [Google Scholar] [CrossRef]
- Gemede, H.F.; Ratta, N. Antinutritional factors in plant foods: Potential health benefits and adverse effects. Int. J. Nutr. Food Sci. 2014, 3, 284. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Chang, J.; Yin, Q.; Lu, M.; Di, Y.; Wang, P.; Wang, Z.; Wang, E.; Lu, F. Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Anim. Nutr. 2017, 3, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhang, Y.; Lu, Z.; Wang, Y. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef]
- Röhe, I.; Göbel, T.W.; Goodarzi, B.F.; Zentek, J. Effect of feeding soybean meal and differently processed peas on the gut mucosal immune system of broilers. Poult. Sci. 2017, 96, 2064–2073. [Google Scholar] [CrossRef]
- Wang, C.; Shi, C.; Zhang, Y.; Song, D.; Lu, Z.; Wang, Y. Microbiota in fermented feed and swine gut. Appl. Microbiol. Biotechnol. 2018, 102, 2941–2948. [Google Scholar] [CrossRef]
- Mukherjee, R.; Chakraborty, R.; Dutta, A. Role of fermentation in improving nutritional quality of soybean meal—A review. Asian Australas. J. Anim. Sci. 2016, 29, 1523–1529. [Google Scholar] [CrossRef] [Green Version]
- Amadou, I.; Le, G.; Shi, Y.; Jin, S. Reducing, radical scavenging, and chelation properties of fermented soy protein meal hydrolysate by Lactobacillus plantarum LP6. Int. J. Food Prop. 2011, 14, 654–665. [Google Scholar] [CrossRef] [Green Version]
- Rodigues, M.L.; Damasceno, D.Z.; Gomes, R.L.M.; Sosa, B.D.S.; Moro, E.B.; Boscolo, W.R.; Bittencourt, F.; Signor, A. Probiotic effects (Bacillus cereus and Bacillus subtilis) on growth and physiological parameters of silver catfish (Rhamdia quelen). Aquac. Nutr. 2021, 27, 454–467. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Xu, H.; Sun, W.; Leng, X. Substitute of soy protein concentrate for fish meal in diets of white shrimp (Litopenaeus vannamei Boone). Aquac. Int. 2017, 25, 1303–1315. [Google Scholar] [CrossRef]
- He, M.; Li, X.; Poolsawat, L.; Guo, Z.; Yao, W.; Zhang, C.; Leng, X. Effects of fish meal replaced by fermented soybean meal on growth performance, intestinal histology and microbiota of largemouth bass (Micropterus salmoides). Aquac. Nutr. 2020, 26, 1058–1071. [Google Scholar] [CrossRef]
- He, M.; Yu, Y.; Li, X.; Poolsawat, L.; Yang, P.; Bian, Y.; Guo, Z.; Leng, X. An evaluation of replacing fish meal with fermented soybean meal in the diets of largemouth bass (Micropterus salmoides): Growth, nutrition utilization and intestinal histology. Aquac. Res. 2020, 51, 4302–4314. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Analytical Chemists; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Ding, Z.; Liu, Y.; Liu, X.; Han, J.; Zheng, Y.; Li, W.; Xu, Y. Growth performance, nucleic acids, leptin and adiponectin and their receptor gene expression were significantly affected by feeding different lipid supplementation in GIFT tilapia juveniles. Aquac. Res. 2021, 52, 1046–1062. [Google Scholar] [CrossRef]
- Schmittgen, T.; Livak, K. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, S.; Xie, J.; Dyce, P.W.; Cai, H.Y.; DeLange, K.; Zhang, H.; Li, J. Isolation of bacteria from fermented food and grass carp intestine and their efficiencies in improving nutrient value of soybean meal in solid state fermentation. J. Anim. Sci. Biotechnol. 2018, 9, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Uran, P.A.; Goncalves, A.A.; Taverne-Thiele, J.J.; Schrama, J.W.; Verreth, J.A.; Rombout, J.H. Soybean meal induces intestinal inflammation in common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2008, 25, 751–760. [Google Scholar] [CrossRef]
- Lim, S.J.; Kim, S.; Pham, M.A.; Song, J.; Cha, J.; Kim, J.; Kim, J.; Lee, K. Effects of fermented cottonseed and soybean meal with phytase supplementation on gossypol degradation, phosphorus availability, and growth performance of olive flounder (Paralichthys olivaceus). Fish. Aquat. Sci. 2010, 13, 284–293. [Google Scholar] [CrossRef]
- Rayaprolu, S.J.; Hettiarachchy, N.S.; Chen, P.; Kannan, A.; Mauromostakos, A. Peptides derived from high oleic acid soybean meals inhibit colon, liver and lung cancer cell growth. Food Res. Int. 2013, 50, 282–288. [Google Scholar] [CrossRef]
- Ding, Z.L.; Zhang, Y.X.; Ye, J.Y.; Du, Z.Y.; Kong, Y.Q. An evaluation of replacing fish meal with fermented soybean meal in the diet of Macrobrachium nipponense: Growth, nonspecific immunity, and resistance to Aeromonas hydrophila. Fish Shellfish Immunol. 2015, 44, 295–301. [Google Scholar] [CrossRef]
- Welker, T.L.; Congleton, J.L. Effect of dietary alpha-tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum). J. Anim. Physiol. Anim. Nutr. 2009, 93, 15–25. [Google Scholar] [CrossRef]
- Wang, F.; Wei, L.; Zheng, X.; Liu, H.; Sun, R.; Chao, Z.; Huang, L.; Fu, L.; Liu, Q. Effects of dietary concentrate to forage ratios on production performance and serum biochemical indicators in post-fattening Hainan yellow cattle. Anim. Husb. Feed Sci. 2020, 12, 17–20. [Google Scholar]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. Can. Med. Assoc. J. 2005, 172, 367–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frayn, K.N. Non-esterified fatty acid metabolism and postprandial lipaemia. Atherosclerosis 1998, 141, S41–S46. [Google Scholar] [CrossRef] [PubMed]
- Dan, Z.; Zhang, W.; Zheng, J.; Gong, Y.; Cui, K.; Mai, K.; Ai, Q. Effects of fishmeal substitution by four fermented soybean meals on growth, antioxidant capacity and inflammation responses of turbot juveniles (Scophthalmus maximus L.). Aquaculture 2022, 560, 738414. [Google Scholar] [CrossRef]
- Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 2011, 5, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Ercan, P.; El, S.N. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chem. 2016, 205, 163–169. [Google Scholar] [CrossRef]
- Tsai, P.J.; Huang, P.C. Effects of isoflavones containing soy protein isolate compared with fish protein on serum lipids and susceptibility of low-density lipoprotein and liver lipids to in vitro oxidation in hamsters. J. Nutr. Biochem. 1999, 10, 631–637. [Google Scholar] [CrossRef]
- Lin, Y.H.; Mui, J.J. Comparison of dietary inclusion of commercial and fermented soybean meal on oxidative status and non-specific immune responses in white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2017, 63, 208–212. [Google Scholar] [CrossRef]
- La Rosa, P.; Bertini, E.S.; Piemonte, F. The NRF2 signaling network defines clinical biomarkers and therapeutic opportunity in Friedreich’s Ataxia. Int. J. Mol. Sci. 2020, 21, 916. [Google Scholar] [CrossRef] [Green Version]
- Scuderi, S.A.; Ardizzone, A.; Paterniti, I.; Esposito, E.; Campolo, M. Antioxidant and anti-inflammatory effect of Nrf2 inducer dimethyl fumarate in neurodegenerative diseases. Antioxidants 2020, 9, 630. [Google Scholar] [CrossRef]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef]
- Jayawardena, T.U.; Wang, L.; Sanjeewa, K.A.; Kang, S.I.; Lee, J.; Jeon, Y. Antioxidant potential of sulfated polysaccharides from Padina boryana; Protective effect against oxidative stress in in vitro and in vivo zebrafish model. Mar. Drugs 2020, 18, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Cha, Y.; Surh, Y. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2010, 690, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.H.; Lin, C.M.; Chen, M.J.; Chen, T.T. Altered gene expression patterns of innate and adaptive immunity pathways in transgenic rainbow trout harboring Cecropin P1 transgene. BMC Genom. 2014, 15, 887. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Park, S.C.; Giri, S.S. Effect of Pandanus tectorius extract as food additive on oxidative stress, immune status, and disease resistance in Cyprinus carpio. Fish Shellfish Immunol. 2022, 120, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Hu, K.; Zhang, J.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.; Tang, L.; Tang, W. Soyabean glycinin depresses intestinal growth and function in juvenile Jian carp (Cyprinus carpio var Jian): Protective effects of glutamine. Br. J. Nutr. 2015, 114, 1569–1583. [Google Scholar] [CrossRef] [Green Version]
- Kokou, F.; Sarropoulou, E.; Cotou, E.; Rigos, G.; Henry, M.; Alexis, M.; Kentouri, M. Effects of fish meal replacement by a soybean protein on growth, histology, selected immune and oxidative status markers of gilthead sea bream, Sparus aurata. J. World Aquac. Soc. 2015, 46, 115–128. [Google Scholar] [CrossRef]
- Bu, T.; Xu, L.; Zhu, X.; Cheng, J.; Li, Y.; Liu, L.; Bao, L.; Chu, W. Influence of short-term fasting on oxidative stress, antioxidant-related signaling molecules and autophagy in the intestine of adult Siniperca chuatsi. Aquac. Rep. 2021, 21, 100933. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Ahmadi, Z.; Yaribeygi, H.; Sathyapalan, T.; Sahebkar, A. Astaxanthin and Nrf2 signaling pathway: A novel target for new therapeutic approaches. Mini Rev. Med. Chem. 2022, 22, 312–321. [Google Scholar] [CrossRef]
- Lee, S.M.; Azarm, H.M.; Chang, K.H. Effects of dietary inclusion of fermented soybean meal on growth, body composition, antioxidant enzyme activity and disease resistance of rockfish (Sebastes schlegeli). Aquaculture 2016, 459, 110–116. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Xu, W.; Jiang, G.; Lu, K.; Wang, L.; Liu, W. Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis). Fish Shellfish Immunol. 2013, 35, 1380–1386. [Google Scholar] [CrossRef]
- Zhu, J.J.; Gao, M.X.; Zhang, R.L.; Sun, Z.J.; Wang, C.M.; Yang, F.F.; Huang, T.T.; Qu, S.Q.; Zhao, L.; Li, Y.W. Effects of soybean meal fermented by L. plantarum, B. subtilis and S. cerevisieae on growth, immune function and intestinal morphology in weaned piglets. Microb. Cell Fact. 2017, 16, 191. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.Z.; Chen, X.; Chen, S.S.; Zhuo, J.L.; Huang, Z.; Niu, J.; Wu, K.C.; Lu, X. Replacement of fish meal with fermented soybean meal in practical diets for pompano Trachinotus ovatus. Aquac. Res. 2012, 44, 151–156. [Google Scholar] [CrossRef]
- Yu, H.; Shan, L.; Li, L.; Zhang, Q.; Liu, D. Effect of dietary lipid levels on the antioxidant responses, initial immunity, and mTOR signaling in the liver of coho salmon (Oncorhynchus kisutch). Aquac. Rep. 2022, 23, 101090. [Google Scholar] [CrossRef]
- Chiu, S.T.; Wong, S.L.; Shiu, Y.L.; Chiu, C.H.; Guei, W.C.; Liu, C.H. Using a fermented mixture of soybean meal and earthworm meal to replace fish meal in the diet of white shrimp, Penaeus vannamei (Boone). Aquac. Res. 2016, 47, 3489–3500. [Google Scholar] [CrossRef]
- Novriadi, R.; Rhodes, M.; Powell, M.; Hanson, T.; Davis, D. Effects of soybean meal replacement with fermented soybean meal on growth, serum biochemistry and morphological condition of liver and distal intestine of Florida pompano Trachinotus carolinus. Aquac. Nutr. 2017, 24, 1066–1075. [Google Scholar] [CrossRef]
- Liang, X.F.; Hu, L.; Dong, Y.C.; Wu, X.F.; Qin, Y.C.; Zheng, Y.H.; Shi, D.D.; Xue, M. Substitution of fish meal by fermented soybean meal affects the growth performance and flesh quality of Japanese seabass (Lateolabrax japonicus). Anim. Feed Sci. Technol. 2017, 229, 1–12. [Google Scholar] [CrossRef]
- Armando, G.O.; Kissinger, K.R.; Trushenski, J.T. Evaluation of fish meal and fish oil replacement by soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper Epinephelus lanceolatus. Aquaculture 2016, 452, 1–8. [Google Scholar]
Ingredients | G0 | G1 | G2 | G3 |
---|---|---|---|---|
Fish meal 1 | 401.00 | 258.00 | 258.00 | 258.00 |
Soybean meal 2 | 0.00 | 213.60 | 106.80 | 0.00 |
Fermented soybean meal 3 | 0.00 | 0.00 | 90.50 | 181.10 |
Chicken powder 4 | 100.00 | 100.00 | 100.00 | 100.00 |
Shrimp powder 5 | 100.00 | 100.00 | 100.00 | 100.00 |
Wheat middling 6 | 178.80 | 178.40 | 178.40 | 178.40 |
Starch | 30.20 | 30.20 | 30.20 | 30.20 |
Cellulose | 85.30 | 0.00 | 16.30 | 32.50 |
Fish oil | 40.10 | 55.30 | 55.30 | 55.30 |
Soybean oil | 40.10 | 40.00 | 40.00 | 40.00 |
Ca(H2PO4)2 | 10.10 | 10.10 | 10.10 | 10.10 |
Mineral premix 7 | 5.20 | 5.20 | 5.20 | 5.20 |
Vitamin premix 8 | 5.20 | 5.20 | 5.20 | 5.20 |
Choline | 3.00 | 3.00 | 3.00 | 3.00 |
Vitamin C | 1.00 | 1.00 | 1.00 | 1.00 |
Approximate composition | ||||
Crude protein | 41.78 | 41.42 | 41.38 | 41.26 |
Fish meal protein | 28.00 | 18.00 | 18.00 | 18.00 |
Soybean meal protein | 0.00 | 10.00 | 5.00 | 0.00 |
Fermented soybean meal protein | 0.00 | 0.00 | 5.00 | 10.00 |
Crude lipid | 15.21 | 15.22 | 15.21 | 15.20 |
Gene | Primer Sequence | GenBank | Tm (°C) | Size (bp) |
---|---|---|---|---|
β-actin 1 | F: CCAAAGCCAACAGGGAGAA R: AGGGACAACACTGCCTGGAT | BG933897 | 60 | 91 |
Sod 2 | F: CCGTTGGTGTTGTCTCCGAAGG R: GAGGGTGACAATGCTCCAGTGAAG | XM_014198383 | 60 | 101 |
gsh-px 3 | F: GATTCGTTCCAAACTTCCTGCTA R: GCTCCCAGAACAGCCTGTTG | BG934453 | 60 | 140 |
gst 4 | F: CGCATTGACATGATGTGTGA R: TGTCGAGGTGGTTAGGAAGG | DQ367889 | 60 | 121 |
cat 5 | F: GCGTTCGGGTACTTTGAGGTGAC R: TGGAGAAGCGGATGGCGATAGG | BG935638 | 60 | 103 |
nrf2 6 | F: TAGAGACGAGCAGCGAGCCAAG R: GTTGAAGTCATCCACAGGCAGGTC | NM_001139807 | 60 | 82 |
il-6 7 | F: GAGCTACGTAACTTCCTGGTTGAC R: GCAAGTTTCTACTCCAGGCCTGAT | XM_014143031 | 60 | 129 |
tnf-α 8 | F: GGCGAGCATACCACTCCTCT R: TCGGACTCAGCATCACCGTA | AY848945 | 60 | 124 |
G0 | G1 | G2 | G3 | |
---|---|---|---|---|
Initial weight (g) | 159.63 ± 9.54 | 159.63 ± 9.54 | 159.63 ± 9.54 | 159.63 ± 9.54 |
Final weight (g) | 583.49 ± 10.97 c | 473.01 ± 12.16 a | 545.08 ± 6.09 b | 617.07 ± 4.28 d |
SR 1 (%) | 93.2 ± 1.73 | 91.2 ± 2.11 | 92.2 ± 1.24 | 94.6 ± 1.21 |
WGR 2 (%) | 265.53 ± 6.87 c | 196.32 ± 7.68 a | 241.46 ± 3.81 b | 286.57 ± 2.68 d |
SGR 3 (%/d) | 1.54 ± 0.02 c | 1.29 ± 0.03 a | 1.46 ± 0.01 b | 1.60 ± 0.01 d |
CF 4 (%) | 1.91 ± 0.02 c | 1.42 ± 0.02 a | 1.67 ± 0.01 b | 2.07 ± 0.02 d |
HIS 5 (%) | 1.58 ± 0.03 b | 1.71 ± 0.03 c | 1.68 ± 0.02 c | 1.46 ± 0.02 a |
VSI 6 (%) | 11.67 ± 0.31 b | 12.75 ± 0.64 c | 12.51 ± 0.35 c | 10.24 ± 0.43 a |
FCR 7 | 1.64 ± 0.03 b | 1.95 ± 0.03 d | 1.86 ± 0.02 c | 1.53 ± 0.02 a |
PER 8 (%) | 231.31 ± 7.42 c | 181.93 ± 3.22 a | 208.44 ± 6.85 b | 252.19 ± 5.31 d |
G0 | G1 | G2 | G3 | |
---|---|---|---|---|
Moisture | 75.22 ± 0.19 | 75.27 ± 0.10 | 75.38 ± 0.68 | 75.04 ± 0.36 |
Crude protein | 18.25 ± 0.17 | 17.67 ± 0.57 | 17.89 ± 0.81 | 17.98 ± 0.44 |
Crude lipid | 5.36 ± 0.39 | 5.28 ± 0.34 | 5.30 ± 0.09 | 5.34 ± 0.13 |
Ash | 1.45 ± 0.07 | 1.50 ± 0.06 | 1.67 ± 0.10 | 1.52 ± 0.09 |
G0 | G1 | G2 | G3 | |
---|---|---|---|---|
TP 1 (g/L) | 54.46 ± 0.17 c | 36.21 ± 0.21 a | 44.98 ± 0.06 b | 60.28 ± 1.34 d |
GLU 2 (mmol/L) | 5.06 ± 0.35 c | 2.97 ± 0.14 a | 4.08 ± 0.33 b | 5.87 ± 0.12 d |
ALB 3 (g/L) | 38.79 ± 2.37 c | 19.23 ± 0.92 a | 30.3 ± 2.76 b | 44.27 ± 2.79 d |
AKP 4 (U/mL) | 20.36 ± 1.25 c | 8.26 ± 1.20 a | 13.19 ± 1.52 b | 23.69 ± 0.92 d |
T-CHO 5 (mmol/L) | 7.77 ± 0.33 c | 3.19 ± 0.07 a | 4.94 ± 0.87 b | 8.54 ± 0.11 d |
G0 | G1 | G2 | G3 | |
---|---|---|---|---|
SOD 1 (U/mg) | 822.5 ± 32.71 b | 627.12 ± 32.84 a | 642.77 ± 46.08 a | 977.36 ± 54.18 c |
CAT 2 (U/mg) | 318.75 ± 15.31 b | 221.77 ± 20.15 a | 257.31 ± 22.94 a | 365.02 ± 16.37 c |
GSH-PX 3 (U/mg) | 19.48 ± 2.48 c | 9.09 ± 1.5 a | 13.62 ± 1.44 b | 23.27 ± 1.81 d |
GSH 4 (U/mg) | 118.13 ± 9.42 c | 68.32 ± 4.35 a | 88.56 ± 11.77 b | 153.86 ± 16.24 d |
GST 5 (U/mg) | 41.86 ± 3.28 c | 26.62 ± 2.25 a | 34.71 ± 2.86 b | 50.52 ± 4.96 d |
MDA 6 (mmol/g) | 3.82 ± 0.25 b | 6.13 ± 0.33 d | 4.95 ± 0.27 c | 3.12 ± 0.27 a |
OH·-CR 7 (U/g) | 102.12 ± 9.15 c | 42.86 ± 3.98 a | 75.54 ± 6.21 b | 136.96 ± 11.75 d |
O2·-CR 8 (U/g) | 70.12 ± 3.18 c | 34.84 ± 1.75 a | 51.43 ± 2.37 b | 84.27 ± 4.41 d |
T-AOC 9 (mmol/g) | 2.26 ± 0.07 c | 1.27 ± 0.15 a | 1.67 ± 0.18 b | 2.73 ± 0.12 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, F.; Guo, M.; Qin, M.; Wang, J.; Yu, H.; Xu, J.; Liu, Y.; Tong, T. Growth Performance, Antioxidant and Immunity Capacity Were Significantly Affected by Feeding Fermented Soybean Meal in Juvenile Coho Salmon (Oncorhynchus kisutch). Animals 2023, 13, 945. https://doi.org/10.3390/ani13050945
Zhang Q, Li F, Guo M, Qin M, Wang J, Yu H, Xu J, Liu Y, Tong T. Growth Performance, Antioxidant and Immunity Capacity Were Significantly Affected by Feeding Fermented Soybean Meal in Juvenile Coho Salmon (Oncorhynchus kisutch). Animals. 2023; 13(5):945. https://doi.org/10.3390/ani13050945
Chicago/Turabian StyleZhang, Qin, Fanghui Li, Mengjie Guo, Meilan Qin, Jiajing Wang, Hairui Yu, Jian Xu, Yongqiang Liu, and Tong Tong. 2023. "Growth Performance, Antioxidant and Immunity Capacity Were Significantly Affected by Feeding Fermented Soybean Meal in Juvenile Coho Salmon (Oncorhynchus kisutch)" Animals 13, no. 5: 945. https://doi.org/10.3390/ani13050945
APA StyleZhang, Q., Li, F., Guo, M., Qin, M., Wang, J., Yu, H., Xu, J., Liu, Y., & Tong, T. (2023). Growth Performance, Antioxidant and Immunity Capacity Were Significantly Affected by Feeding Fermented Soybean Meal in Juvenile Coho Salmon (Oncorhynchus kisutch). Animals, 13(5), 945. https://doi.org/10.3390/ani13050945