Comparison of Effectiveness and Selectiveness of Baited Traps for the Capture of the Invasive Hornet Vespa velutina
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Work
2.2. Statistical Analyses
3. Results
3.1. Effectiveness and Selectiveness of Traps
3.2. Capture of Non-Target Taxa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rojas-Nossa, S.V.; O’Shea-Wheller, T.A.; Poidatz, J.; Mato, S.; Osborne, J.; Garrido, J. Predator and Pollinator? An invasive hornet alters the pollination dynamics of a native plant. Basic Appl. Ecol. 2023, 71, 119–128. [Google Scholar] [CrossRef]
- Lioy, S.; Bergamino, C.; Porporato, M. The invasive hornet Vespa velutina: Distribution, impacts and management options. CABI Rev. 2022, 1, 1–14. [Google Scholar] [CrossRef]
- Keller, R.P.; Geist, J.; Jeschke, J.M.; Kühn, I. Invasive species in Europe: Ecology, status, and policy. Environ. Sci. Eur. 2011, 23, 1–17. [Google Scholar] [CrossRef]
- Essl, F.; Dullinger, S.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Katsanevakis, S.; Kühn, I.; Lenzner, B.; Pauchard, A.; Pyšek, P.; et al. A conceptual framework for range-expanding species that track human-induced environmental change. Bioscience 2019, 69, 908–919. [Google Scholar] [CrossRef]
- Monceau, K.; Bonnard, O.; Thiéry, D. Vespa velutina: A new invasive predator of honeybees in Europe. J. Pest Sci. 2014, 87, 1–16. [Google Scholar] [CrossRef]
- Castro, L. Una nueva introducción accidental en el género Vespa Linnaeus, 1758: Vespa bicolor Fabricius, 1787 en la provincia de Málaga (España). Rev. Gadit. Entomol. 2019, 10, 47–56. [Google Scholar]
- Graziani, F.; Cianferoni, F. The northernmost record of Vespa orientalis Linnaeus, 1771 (Hymenoptera: Vespidae) in peninsular Italy. Rev. Gadit. Entomol. 2021, 12, 173–178. [Google Scholar]
- Kim, J.K.; Choi, M.; Moon, T.Y. Occurrence of Vespa velutina Lepeletier from Korea, and a revised key for Korean Vespa species (Hymenoptera: Vespidae). Entomol. Res. 2006, 36, 112–115. [Google Scholar] [CrossRef]
- Takeuchi, T.; Takahashi, R.; Kiyoshi, T.; Nakamura, M.; Minoshima, Y.N.; Takahashi, J. The origin and genetic diversity of the yellow-legged hornet, Vespa velutina introduced in Japan. Insectes Soc. 2017, 64, 313–320. [Google Scholar] [CrossRef]
- Rojas-Nossa, S.V.; Gil, N.; Mato, S.; Garrido, J. Vespa velutina: Características e impactos de una exitosa especie exótica invasora. Ecosistemas 2021, 30, 2159. [Google Scholar] [CrossRef]
- Archer, M.E. Vespine Wasps of the World. Behaviour, Ecology and Taxonomy of the Vespinae; Monograph Series; Siri Scientific Press: Manchester, UK, 2012. [Google Scholar]
- Rojas-Nossa, S.V.; Calviño-Cancela, M. The invasive hornet Vespa velutina affects pollination of a wild plant through changes in abundance and behaviour of floral visitors. Biol. Invasions 2020, 22, 2609–2618. [Google Scholar] [CrossRef]
- O’Shea-Wheller, T.A.; Curtis, R.J.; Kennedy, P.J.; Groom, E.K.; Poidatz, J.; Raffle, D.S.; Rojas-Nossa, S.V.; Bartolomé, C.; Dasilva-Martins, D.; Maside, X.; et al. Quantifying the impact of an invasive Hornet on Bombus terrestris colonies. Commun. Biol. 2023, 6, 990. [Google Scholar] [CrossRef] [PubMed]
- Requier, F.; Rome, Q.; Chiron, G.; Decante, D.; Marion, S.; Menard, M.; Muller, F.; Villemant, C.; Henry, M. Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe. J. Pest Sci. 2019, 92, 567–578. [Google Scholar] [CrossRef]
- Rojas-Nossa, S.V.; Dasilva-Martins, D.; Mato, S.; Bartolomé, C.; Maside, X.; Garrido, J. Effectiveness of electric harps in reducing Vespa velutina predation pressure and consequences for honey bee colony development. Pest Manag. Sci. 2022, 78, 5142–5149. [Google Scholar] [CrossRef] [PubMed]
- Requier, F.; Garnery, L.; Kohl, P.L.; Njovu, H.K.; Pirk, C.W.; Crewe, R.M.; Steffan-Dewenter, I. The conservation of native honey bees is crucial. Trends Ecol. Evol. 2019, 34, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Requier, F.; Fournier, A.; Pointeau, S.; Rome, Q.; Courchamp, F. Economic costs of the invasive Yellow-legged hornet on honey bees. Sci. Total Environ. 2023, 898, 165576. [Google Scholar] [CrossRef] [PubMed]
- Vidal, C. The Asian wasp Vespa velutina nigrithorax: Entomological and allergological characteristics. Clin. Exp. Allergy 2022, 52, 489–498. [Google Scholar] [CrossRef]
- Turchi, L.; Derijard, B. Options for the biological and physical control of Vespa velutina nigrithorax (Hym.: Vespidae) in Europe: A review. J. Appl. Entomol. 2018, 142, 553–562. [Google Scholar] [CrossRef]
- Lioy, S.; Manino, A.; Porporato, M.; Laurino, D.; Romano, A.; Capello, M.; Bertolino, S. Establishing surveillance areas for tackling the invasion of Vespa velutina in outbreaks and over the border of its expanding range. NeoBiota 2019, 46, 51–69. [Google Scholar] [CrossRef]
- Leza, M.; Herrera, C.; Picó, G.; Morro, T.; Colomar, V. Six years of controlling the invasive species Vespa velutina in a Mediterranean island: The promising results of an eradication plan. Pest Manag. Sci. 2021, 77, 2375–2384. [Google Scholar] [CrossRef]
- Monceau, K.; Thiéry, D. Vespa velutina nest distribution at a local scale: An 8-year survey of the invasive honeybee predator. Insect Sci. 2017, 24, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Nossa, S.V.; Novoa, N.; Serrano, A.; Calviño-Cancela, M. Performance of baited traps used as control tools for the invasive hornet Vespa velutina and their impact on non-target insects. Apidologie 2018, 49, 872–885. [Google Scholar] [CrossRef]
- Requier, F.; Rome, Q.; Villemant, C.; Henry, M. A biodiversity-friendly method to mitigate the invasive Asian hornet’s impact on European honey bees. J. Pest Sci. 2020, 93, 1–9. [Google Scholar] [CrossRef]
- Kennedy, P.J.; Ford, S.M.; Poidatz, J.; Thiéry, D.; Osborne, J.L. Searching for nests of the invasive Asian hornet (Vespa velutina) using radio-telemetry. Commun. Biol. 2018, 1, 88. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Nossa, S.V.; Álvarez, P.; Garrido, J.; Calviño-Cancela, M. Method for nest detection of the Yellow-Legged hornet in high density areas. Front. Insect Sci. 2022, 2, 851010. [Google Scholar] [CrossRef]
- Ruiz-Cristi, I.; Berville, L.; Darrouzet, E. Characterizing thermal tolerance in the invasive yellow-legged hornet (Vespa velutina nigrithorax): The first step toward a green control method. PLoS ONE 2020, 15, e0239742. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Salles, J.M.; Courchamp, F. The economic cost of control of the invasive yellow-legged Asian hornet. NeoBiota 2020, 55, 11–25. [Google Scholar] [CrossRef]
- Rome, Q.; Perrard, A.; Muller, F.; Villemant, C. Monitoring and control modalities of a honeybee predator, the yellow-legged hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Aliens 2011, 31, 7–15. [Google Scholar]
- Rodríguez-Flores, M.S.; Seijo-Rodríguez, A.; Escuredo, O.; Seijo-Coello, M.C. Spreading of Vespa velutina in northwestern Spain: Influence of elevation and meteorological factors and effect of bait trapping on target and non-target living organisms. J. Pest Sci. 2019, 92, 557–565. [Google Scholar] [CrossRef]
- Lioy, S.; Laurino, D.; Capello, M.; Romano, A.; Manino, A.; Porporato, M. Effectiveness and selectiveness of traps and baits for catching the invasive hornet Vespa velutina. Insects 2020, 11, 706. [Google Scholar] [CrossRef]
- Requier, F.; Pérez-Méndez, N.; Andersson, G.K.; Blareau, E.; Merle, I.; Garibaldi, L.A. Bee and non-bee pollinator importance for local food security. Trends Ecol. Evol. 2023, 38, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, G.; Habel, J.C.; Hallmann, C.A.; et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 2020, 242, 108426. [Google Scholar] [CrossRef]
- Bespalov, A.; Michel, M.C.; Steckler, T. Good Research Practice in Non-Clinical Pharmacology and Biomedicine; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Magnusson, A.; Skaug, H.; Nielsen, A.; Berg, C.; Kristensen, K.; Maechler, M.; van Bentham, K.; Sadat, N.; Bolker, B.; Brooks, M. Package ‘glmmTMB’; R Package Version 0.2.0. 2017. Available online: https://cran.r-project.org/web/packages/glmmTMB/index.html (accessed on 20 September 2023).
- Hartig, F.; Hartig, M.F. Package ‘DHARMa’ Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models; R Package Version 0.2.3. 2019. Available online: https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html (accessed on 20 September 2023).
- Lenth, R.V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Rome, Q.; Perrard, A.; Muller, F. Not just honeybees: Predatory habits of Vespa velutina (Hymenoptera: Vespidae) in France. Ann. Soc. Entomol. Fr. 2021, 57, 1–11. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species. Available online: www.iucnredlist.org/species/157554/5094499#assessment-information (accessed on 9 April 2023).
- Schmolz, E.; Lamprecht, I.; Schricker, B. Calorimetric investigations on social thermogenesis in the hornet Vespa crabro L. (Hymenoptera: Vespinae). Thermochim. Acta 1993, 229, 173–180. [Google Scholar] [CrossRef]
- Seastedt, T.R.; Crossley Jr, D.A. The influence of arthropods on ecosystems. Bioscience 1984, 34, 157–161. [Google Scholar] [CrossRef]
- Kehoe, R.; Frago, E.; Sanders, D. Cascading extinctions as a hidden driver of insect decline. Ecol. Entomol. 2021, 46, 743–756. [Google Scholar] [CrossRef]
- Monceau, K.; Bonnard, O.; Thiéry, D. Chasing the queens of the alien predator of honeybees: A water drop in the invasiveness ocean. Open J. Ecol. 2012, 2, 183–191. [Google Scholar] [CrossRef]
- Sánchez, O.; Arias, A. All that glitters is not gold: The other insects that fall into the Asian yellow-legged hornet Vespa velutina ‘specific’traps. Biology 2021, 10, 448. [Google Scholar] [CrossRef]
- Monceau, K.; Maher, N.; Bonnard, O.; Thiéry, D. Predation pressure dynamics study of the recently introduced honeybee killer Vespa velutina: Learning from the enemy. Apidologie 2013, 44, 209–221. [Google Scholar] [CrossRef]
- Carisio, L.; Cerri, J.; Lioy, S.; Bianchi, E.; Bertolino, S.; Porporato, M. Impacts of the invasive hornet Vespa velutina on native wasp species: A first effort to understand population-level effects in an invaded area of Europe. J. Insect Conserv. 2022, 26, 663–671. [Google Scholar] [CrossRef]
- Demichelis, S.; Manino, A.; Minuto, G.; Mariotti, M.; Porporato, M. Social wasp trapping in north west Italy: Comparison of different bait-traps and first detection of Vespa velutina. Bull. Insectology 2014, 67, 307–317. [Google Scholar]
- Porporato, M.; Manino, A.; Laurino, D.; Demichelis, S. Vespa velutina Lepeletier (Hymenoptera Vespidae): A first assessment two years after its arrival in Italy. Redia 2014, 97, 189–194. [Google Scholar]
- Pazos, T.; Álvarez-Figueiró, P.; Cortés-Vázquez, J.A.; Jácome, M.A.; Servia, M.J. Of fears and budgets: Strategies of control in Vespa velutina invasion and lessons for best management practices. Environ. Manag. 2022, 70, 605–617. [Google Scholar] [CrossRef]
- Arca, M.; Mougel, F.; Guillemaud, T.; Dupas, S.; Rome, Q.; Perrard, A.; Muller, F.; Fossoud, A.; Capdevielle-Dulac, C.; Torres-Leguizamon, M.; et al. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe. Biol. Invasions 2015, 17, 2357–2371. [Google Scholar] [CrossRef]
- Gabín-García, L.B.; Bartolomé, C.; Guerra-Tort, C.; Rojas-Nossa, S.V.; Llovo, J.; Maside, X. Identification of pathogens in the invasive hornet Vespa velutina and in native Hymenoptera (Apidae, Vespidae) from SW-Europe. Sci. Rep. 2021, 11, 11233. [Google Scholar] [CrossRef]
Trap | ||||
---|---|---|---|---|
Sampling | R | E | V | X |
1 (April—II) | 0 | 0 | 0.16 ± 0.30 | 0.11 ± 0.10 |
2 (May—I) | 0 | 0.52 ± 0.21 | 1.33 ± 1.31 | 1.84 ± 0.95 |
3 (May—II) | 0 | 1.25 ± 0.79 | 2.13 ± 1.44 | 2.29 ± 0.51 |
4 (June—I) | 0.01 ± 0.03 | 2.35 ± 1.74 | 4.43 ± 1.52 | 3.19 ± 1.84 |
5 (June—II) | 0.02 ± 0.05 | 0.17 ± 0.41 | 3.38 ± 1.34 | 2.32 ± 1.12 |
6 (July—I) | 0.02 ± 0.03 | 2.62 ± 2.07 | 2.18 ± 0.86 | 3.36 ± 2.14 |
Trap | ||||
---|---|---|---|---|
Captured Insects | R | E | V | X |
All insects | 81.62 ± 80.28 | 136.81 ± 147.47 | 1501.86 ± 1352.99 | 1643.58 ± 2326.26 |
Non-target insects | 76.89 ± 80.06 | 118.86 ± 132.81 | 1485.83 ± 1350.86 | 1612.11 ± 2309.68 |
Non-target/ V. velutina | 80.15 ± 80.38 | 9.98 ± 11.78 | 97.31 ± 112.69 | 64.61 ± 63.32 |
Vespidae | ||||
Vespa velutina | 0.21 ± 0.48 | 17.94 ± 19.80 | 32.06 ± 24.41 | 31.47 ± 24.55 |
Vespa crabro | 0 | 0.19 ± 0.40 | 1.74 ± 2.39 | 0.97 ± 1.79 |
Other vespids | 0 | 4.36 ± 6.29 | 16.83 ± 20.11 | 9.00 ± 10.65 |
Diptera | 49.77 ± 63.37 | 91.06 ± 117.96 | 1273.64 ± 1314.54 | 1350.64 ± 2267.52 |
Formicidae | 26.27 ± 137.31 | 12.75 ± 39.46 | 137.31 ± 260.41 | 156.56 ± 444.07 |
Coleoptera | 5.26 ± 7.37 | 5.67 ± 15.72 | 18.31 ± 31.40 | 42.47 ± 36.91 |
Lepidoptera | 0.03 ± 0.17 | 4.67 ± 5.79 | 19.72 ± 22.13 | 46.08 ± 36.42 |
Anthophila | 0 | 0.14 ± 0.35 | 0.39 ± 0.60 | 0.80 ± 2.01 |
Other groups | 0.09 ± 0.52 | 0.03 ± 0.17 | 1.92 ± 5.45 | 4.86 ± 16.96 |
Overall | 395.4 | 6.6 | 45.9 | 51.2 |
Country Type of Trap | Season | % of V. velutina | Year of Sampling [Reference] |
---|---|---|---|
Spain | [This study] | ||
Overall | 2.43 | ||
R | Spring | 0.19 | |
E | Spring | 16.21 | |
V | Spring | 3.31 | |
X | Spring | 2.50 | |
France | |||
Funnel trap | Spring | 1.70 | 2011 [44] |
Spain | |||
Avispa’clac, VétoPharma, and home-made trap | Spring | 0.9 | 2016 [23] |
Italy | |||
PET bottle with TapTrap and VespaCatch | Spring-autumn | 1.02 | 2018 [31] |
Spain | |||
VespaCatch | All seasons | 2.23 | 2020–2021 [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Nossa, S.V.; Mato, S.; Feijoo, P.; Lagoa, A.; Garrido, J. Comparison of Effectiveness and Selectiveness of Baited Traps for the Capture of the Invasive Hornet Vespa velutina. Animals 2024, 14, 129. https://doi.org/10.3390/ani14010129
Rojas-Nossa SV, Mato S, Feijoo P, Lagoa A, Garrido J. Comparison of Effectiveness and Selectiveness of Baited Traps for the Capture of the Invasive Hornet Vespa velutina. Animals. 2024; 14(1):129. https://doi.org/10.3390/ani14010129
Chicago/Turabian StyleRojas-Nossa, Sandra V., Salustiano Mato, Pilar Feijoo, Aarón Lagoa, and Josefina Garrido. 2024. "Comparison of Effectiveness and Selectiveness of Baited Traps for the Capture of the Invasive Hornet Vespa velutina" Animals 14, no. 1: 129. https://doi.org/10.3390/ani14010129
APA StyleRojas-Nossa, S. V., Mato, S., Feijoo, P., Lagoa, A., & Garrido, J. (2024). Comparison of Effectiveness and Selectiveness of Baited Traps for the Capture of the Invasive Hornet Vespa velutina. Animals, 14(1), 129. https://doi.org/10.3390/ani14010129