CSN1S1, CSN3 and LPL: Three Validated Gene Polymorphisms Useful for More Sustainable Dairy Production in the Mediterranean River Buffalo
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Isolation
2.2. Genotyping
2.3. Phenotypes Collection and Dataset Editing
2.4. Statistical Analyses
2.5. Allelic Model
2.6. Genotypic Model
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations. Statistics of Live Animals. 2021. Available online: http://www.fao.org/faostat/en/#data/QA (accessed on 6 May 2024).
- Zhang, Y.; Colli, L.; Barker, J. Asian water buffalo: Domestication, history and genetics. Anim. Genet. 2020, 51, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; King, W.; Di Berardino, D. Chromosome evolution in domestic bovids as revealed by chromosome banding and FISH-mapping techniques. Cytogenet. Genome Res. 2009, 126, 49–62. [Google Scholar] [CrossRef]
- MacGregor, R. The Domestic Buffalo. Vet. Rec. 1941, 53, 443–450. [Google Scholar]
- Pauciullo, A.; Versace, C.; Perucatti, A.; Gaspa, G.; Li, L.-Y.; Yang, C.-Y.; Zheng, H.-Y.; Liu, Q.; Shang, J.-H. Oocyte aneuploidy rates in river and swamp buffalo types (Bubalus bubalis) determined by Multi-color Fluorescence In Situ Hybridization (M-FISH). Sci. Rep. 2022, 12, 8440. [Google Scholar] [CrossRef]
- Tong, F.; Wang, T.; Gao, N.L.; Liu, Z.; Cui, K.; Duan, Y.; Wu, S.; Luo, Y.; Li, Z.; Yang, C. The microbiome of the buffalo digestive tract. Nat. Commun. 2022, 13, 823. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Shi, W.; Jiang, J.; Li, Z.; Fu, P.; Yang, C.; Rehman, S.u.; Pauciullo, A.; Liu, Q.; Shi, D. Comparative metabolomics analysis of milk components between Italian Mediterranean buffaloes and Chinese Holstein cows based on LC-MS/MS technology. PLoS ONE 2022, 17, e0262878. [Google Scholar] [CrossRef]
- Low, W.Y.; Tearle, R.; Bickhart, D.M.; Rosen, B.D.; Kingan, S.B.; Swale, T.; Thibaud-Nissen, F.; Murphy, T.D.; Young, R.; Lefevre, L. Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity. Nat. Commun. 2019, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Iamartino, D.; Nicolazzi, E.L.; Van Tassell, C.P.; Reecy, J.M.; Fritz-Waters, E.R.; Koltes, J.E.; Biffani, S.; Sonstegard, T.S.; Schroeder, S.G.; Ajmone-Marsan, P.; et al. Design and validation of a 90K SNP genotyping assay for the water buffalo (Bubalus bubalis). PLoS ONE 2017, 12, e0185220. [Google Scholar] [CrossRef]
- Cesarani, A.; Biffani, S.; Garcia, A.; Lourenco, D.; Bertolini, G.; Neglia, G.; Misztal, I.; Macciotta, N.P.P. Genomic investigation of milk production in Italian buffalo. Ital. J. Anim. Sci. 2021, 20, 539–547. [Google Scholar] [CrossRef]
- Deng, T.; Liang, A.; Liang, S.; Ma, X.; Lu, X.; Duan, A.; Pang, C.; Hua, G.; Liu, S.; Campanile, G. Integrative analysis of transcriptome and GWAS data to identify the hub genes associated with milk yield trait in buffalo. Front. Genet. 2019, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Deng, T.; Zhou, Y.; Ye, T.; Zhou, Z.; Zhang, S.; Shao, B.; Wei, P.; Sun, H.; Khan, F. Systematic analyses for candidate genes of milk production traits in water buffalo (Bubalus Bubalis). Anim. Genet. 2019, 50, 207–216. [Google Scholar] [CrossRef]
- Liu, J.; Liang, A.; Campanile, G.; Plastow, G.; Zhang, C.; Wang, Z.; Salzano, A.; Gasparrini, B.; Cassandro, M.; Yang, L. Genome-wide association studies to identify quantitative trait loci affecting milk production traits in water buffalo. J. Dairy Sci. 2018, 101, 433–444. [Google Scholar] [CrossRef]
- Pauciullo, A.; Cosenza, G.; Steri, R.; Coletta, A.; Jemma, L.; Feligini, M.; Di Berardino, D.; Macciotta, N.P.; Ramunno, L. An association analysis between OXT genotype and milk yield and flow in Italian Mediterranean river buffalo. J. Dairy Res. 2012, 79, 150–156. [Google Scholar] [CrossRef]
- Pauciullo, A.; Cosenza, G.; Steri, R.; Coletta, A.; La Battaglia, A.; Di Berardino, D.; Macciotta, N.P.; Ramunno, L. A single nucleotide polymorphism in the promoter region of river buffalo stearoyl CoA desaturase gene (SCD) is associated with milk yield. J. Dairy Res. 2012, 79, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Pauciullo, A.; Ramunno, L.; Macciotta, N.P.; Gaspa, G.; Coletta, A.; Apicella, E.; Gallo, D.; Cosenza, G. Genetic variability detected at the lactoferrin locus (LTF) in the Italian Mediterranean river buffalo. Anim. Prod. Sci. 2016, 56, 102–107. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Tingzhu, Y.; Pasandideh, M.; Liang, A.; Hua, G.; Schreurs, N.M.; Raza, S.H.A.; Salzano, A.; Campanile, G.; Gasparrini, B. Genetic Association of PPARGC1A Gene Single Nucleotide Polymorphism with Milk Production Traits in Italian Mediterranean Buffalo. BioMed Res. Int. 2021, 2021, 3653157. [Google Scholar] [CrossRef]
- Li, J.; Liang, A.; Li, Z.; Du, C.; Hua, G.; Salzano, A.; Campanile, G.; Gasparrini, B.; Yang, L. An association analysis between PRL genotype and milk production traits in Italian Mediterranean river buffalo. J. Dairy Res. 2017, 84, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Bonfatti, V.; Giantin, M.; Gervaso, M.; Coletta, A.; Dacasto, M.; Carnier, P. Effect of CSN1S1-CSN3 (αS1-κ-casein) composite genotype on milk production traits and milk coagulation properties in Mediterranean water buffalo. J. Dairy Sci. 2012, 95, 3435–3443. [Google Scholar] [CrossRef]
- Cosenza, G.; Iannaccone, M.; Auzino, B.; Macciotta, N.; Kovitvadhi, A.; Nicolae, I.; Pauciullo, A. Remarkable genetic diversity detected at river buffalo prolactin receptor (PRLR) gene and association studies with milk fatty acid composition. Anim. Genet. 2018, 49, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, G.; Pauciullo, A.; Macciotta, N.; Apicella, E.; Steri, R.; La Battaglia, A.; Jemma, L.; Coletta, A.; Di Berardino, D.; Ramunno, L. Mediterranean river buffalo CSN1S1 gene: Search for polymorphisms and association studies. Anim. Prod. Sci. 2015, 55, 654–660. [Google Scholar] [CrossRef]
- Pauciullo, A.; Martorello, S.; Carku, K.; Versace, C.; Coletta, A.; Cosenza, G. A novel duplex ACRS-PCR for composite CSN1S1–CSN3 genotype discrimination in domestic buffalo. Ital. J. Anim. Sci. 2021, 20, 1264–1269. [Google Scholar] [CrossRef]
- Zicarelli, L.; Di Palo, R.; Napolano, R.; Tonhati, H.; De Carlo, E.; Gagliardi, R.; Di Luccia, A.; la Gatta, B. Influence of αS1-casein and κ-casein polymorphism on the curd yield of Italian Mediterranean buffalo (Bubalus bubalis L.) milk. Int. Dairy J. 2020, 100, 104559. [Google Scholar] [CrossRef]
- Correddu, F.; Serdino, J.; Manca, M.G.; Cosenza, G.; Pauciullo, A.; Ramunno, L.; Macciotta, N.P. Use of multivariate factor analysis to characterize the fatty acid profile of buffalo milk. J. Food Compos. Anal. 2017, 60, 25–31. [Google Scholar] [CrossRef]
- Cosenza, G.; Gallo, D.; Auzino, B.; Gaspa, G.; Pauciullo, A. Complete CSN1S2 Characterization, Novel Allele Identification and Association With Milk Fatty Acid Composition in River Buffalo. Front. Genet. 2021, 11, 622494. [Google Scholar] [CrossRef]
- Cosenza, G.; Macciotta, N.P.; Nudda, A.; Coletta, A.; Ramunno, L.; Pauciullo, A. A novel polymorphism in the oxytocin receptor encoding gene (OXTR) affects milk fatty acid composition in Italian Mediterranean river buffalo. J. Dairy Res. 2017, 84, 170–180. [Google Scholar] [CrossRef]
- Gu, M.; Cosenza, G.; Gaspa, G.; Iannaccone, M.; Macciotta, N.; Chemello, G.; Di Stasio, L.; Pauciullo, A. Sequencing of lipoprotein lipase gene in the Mediterranean river buffalo identified novel variants affecting gene expression. J. Dairy Sci. 2020, 103, 6374–6382. [Google Scholar] [CrossRef]
- Gu, M.; Cosenza, G.; Iannaccone, M.; Macciotta, N.; Guo, Y.; Di Stasio, L.; Pauciullo, A. The single nucleotide polymorphism g. 133A> C in the stearoyl CoA desaturase gene (SCD) promoter affects gene expression and quali-quantitative properties of river buffalo milk. J. Dairy Sci. 2019, 102, 442–451. [Google Scholar] [CrossRef]
- Gu, M.; Cosenza, G.; Nicolae, I.; Bota, A.; Guo, Y.; Di Stasio, L.; Pauciullo, A. Transcript analysis at DGAT1 reveals different mRNA profiles in river buffaloes with extreme phenotypes for milk fat. J. Dairy Sci. 2017, 100, 8265–8276. [Google Scholar] [CrossRef] [PubMed]
- Pauciullo, A.; Cosenza, G.; D’avino, A.; Colimoro, L.; Nicodemo, D.; Coletta, A.; Feligini, M.; Marchitelli, C.; Di Berardino, D.; Ramunno, L. Sequence analysis and genetic variability of stearoyl CoA desaturase (SCD) gene in the Italian Mediterranean river buffalo. Mol. Cell. Probes 2010, 24, 407–410. [Google Scholar] [CrossRef]
- Goossens, M.; Kan, Y.Y. DNA analysis in the diagnosis of hemoglobin disorders. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1981; Volume 76, pp. 805–817. [Google Scholar]
- Ali, A.; Shook, G. An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- Grisart, B.; Coppieters, W.; Farnir, F.; Karim, L.; Ford, C.; Berzi, P.; Cambisano, N.; Mni, M.; Reid, S.; Simon, P. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002, 12, 222–231. [Google Scholar] [CrossRef]
- Costa, A.; Negrini, R.; De Marchi, M.; Campanile, G.; Neglia, G. Phenotypic characterization of milk yield and quality traits in a large population of water buffaloes. Animals 2020, 10, 327. [Google Scholar] [CrossRef]
- Rosati, A.; Van Vleck, L.D. Estimation of genetic parameters for milk, fat, protein and mozzarella cheese production for the Italian river buffalo Bubalus bubalis population. Livest. Prod. Sci. 2002, 74, 185–190. [Google Scholar] [CrossRef]
- AIA. Italian Breeders Association (Associazione Italiana Allevatori, AIA) Bollettino Online. Statistiche ufficiali. 2022. Available online: http://bollettino.aia.it/Contenuti.aspx?CD_GruppoStampe=RS&CD_Specie=C4 (accessed on 6 May 2024).
- Chen, Y.; Atashi, H.; Vanderick, S.; Mota, R.; Soyeurt, H.; Hammami, H.; Gengler, N. Genetic analysis of milk urea concentration and its genetic relationship with selected traits of interest in dairy cows. J. Dairy Sci. 2021, 104, 12741–12755. [Google Scholar] [CrossRef]
- Samoré, A.; Romani, C.; Rossoni, A.; Frigo, E.; Pedron, O.; Bagnato, A. Genetic parameters for casein and urea contentin the Italian Brown Swiss dairy cattle. Ital. J. Anim. Sci. 2007, 6, 201–203. [Google Scholar] [CrossRef]
- Ariyarathne, H.B.; Correa-Luna, M.; Blair, H.T.; Garrick, D.J.; Lopez-Villalobos, N. Genetic parameters for efficiency of crude protein utilisation and its relationship with production traits across lactations in grazing dairy cows. New Zealand J. Agric. Res. 2021, 64, 62–82. [Google Scholar] [CrossRef]
- Lopez-Villalobos, N.; Correa-Luna, M.; Burke, J.; Sneddon, N.; Schutz, M.; Donaghy, D.; Kemp, P. Genetic parameters for milk urea concentration and milk traits in New Zealand grazing dairy cattle. NZJ Anim. Sci. Prod 2018, 78, 56–61. [Google Scholar]
- Badaoui, B.; Serradilla, J.; Tomas, A.; Urrutia, B.; Ares, J.; Carrizosa, J.; Sanchez, A.; Jordana, J.; Amills, M. Identification of two polymorphisms in the goat lipoprotein lipase gene and their association with milk production traits. J. Dairy Sci. 2007, 90, 3012–3017. [Google Scholar] [CrossRef]
- Brzáková, M.; Rychtářová, J.; Čítek, J.; Sztankóová, Z. A candidate gene association study for economically important traits in Czech dairy goat breeds. Animals 2021, 11, 1796. [Google Scholar] [CrossRef]
- Crepaldi, P.; Nicoloso, L.; Coizet, B.; Milanesi, E.; Pagnacco, G.; Fresi, P.; Dimauro, C.; Macciotta, N.P.P. Associations of acetyl-coenzyme A carboxylase α, stearoyl-coenzyme A desaturase, and lipoprotein lipase genes with dairy traits in Alpine goats. J. Dairy Sci. 2013, 96, 1856–1864. [Google Scholar] [CrossRef]
- Marchitelli, C.; Contarini, G.; De Matteis, G.; Crisà, A.; Pariset, L.; Scatà, M.C.; Catillo, G.; Napolitano, F.; Moioli, B. Milk fatty acid variability: Effect of some candidate genes involved in lipid synthesis. J. Dairy Res. 2013, 80, 165–173. [Google Scholar] [CrossRef]
- Legarra, A.; Garcia-Baccino, C.A.; Wientjes, Y.C.; Vitezica, Z.G. The correlation of substitution effects across populations and generations in the presence of nonadditive functional gene action. Genetics 2021, 219, iyab138. [Google Scholar] [CrossRef]
- Jollès, P.; Loucheux-Lefebvre, M.-H.; Henschen, A. Structural relatedness of κ-casein and fibrinogen γ-chain. J. Mol. Evol. 1978, 11, 271–277. [Google Scholar] [CrossRef]
- Luyendyk, J.P.; Schoenecker, J.G.; Flick, M.J. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood J. Am. Soc. Hematol. 2019, 133, 511–520. [Google Scholar] [CrossRef]
- Córdova-Dávalos, L.E.; Jiménez, M.; Salinas, E. Glycomacropeptide bioactivity and health: A review highlighting action mechanisms and signaling pathways. Nutrients 2019, 11, 598. [Google Scholar] [CrossRef]
- Olsen, W.; Liang, N.; Dallas, D.C. Macrophage-Immunomodulatory Actions of Bovine Whey Protein Isolate, Glycomacropeptide, and Their In Vitro and In Vivo Digests. Nutrients 2023, 15, 4942. [Google Scholar] [CrossRef]
- Qu, Y.; Park, S.H.; Dallas, D.C. The Role of Bovine Kappa-Casein Glycomacropeptide in Modulating the Microbiome and Inflammatory Responses of Irritable Bowel Syndrome. Nutrients 2023, 15, 3991. [Google Scholar] [CrossRef]
- Viale, E.; Tiezzi, F.; Maretto, F.; De Marchi, M.; Penasa, M.; Cassandro, M. Association of candidate gene polymorphisms with milk technological traits, yield, composition, and somatic cell score in Italian Holstein-Friesian sires. J. Dairy Sci. 2017, 100, 7271–7281. [Google Scholar] [CrossRef]
- Čítek, J.; Brzáková, M.; Hanusová, L.; Hanuš, O.; Večerek, L.; Samková, E.; Jozová, E.; Hoštičková, I.; Trávníček, J.; Klojda, M. Somatic cell score: Gene polymorphisms and other effects in Holstein and Simmental cows. Anim. Biosci. 2022, 35, 13. [Google Scholar] [CrossRef]
- Prinzenberg, E.-M.; Brandt, H.; Bennewitz, J.; Kalm, E.; Erhardt, G. Allele frequencies for SNPs in the αS1-casein gene (CSN1S1) 5′ flanking region in European cattle and association with economic traits in German Holstein. Livest. Prod. Sci. 2005, 98, 155–160. [Google Scholar] [CrossRef]
Genotype | Records | Buffaloes (%) | Lactations | NLbuffalo ± sd | TDbuffalo ± sd | TDlact ± sd |
---|---|---|---|---|---|---|
αs1-CN | ||||||
CC | 6527 | 280 (41.2) | 1043 | 3.8 ± 1.7 | 23.3 ± 15.2 | 6.1 ± 1.6 |
CT | 6638 | 291 (42.8) | 1054 | 3.6 ± 1.7 | 22.8 ± 14.4 | 6.1 ± 1.5 |
TT | 2257 | 109 (16.0) | 399 | 3.3 ± 1.7 | 23.6 ± 12.9 | 6.4 ± 1.8 |
κ-CN | ||||||
CC | 7229 | 314 (46.2) | 1171 | 3.7 ± 1.7 | 23.0 ± 14.7 | 6.0 ± 1.5 |
CT | 6294 | 282 (41.5) | 991 | 3.7 ± 1.7 | 22.2 ± 14.5 | 6.3 ± 1.6 |
TT | 2219 | 84 (12.3) | 334 | 3.4 ± 1.7 | 26.4 ± 12.3 | 6.7 ± 1.7 |
SCD | ||||||
AA | 9920 | 425 (62.5) | 1570 | 3.7 ± 1.7 | 23.3 ± 14.6 | 6.2 ± 1.6 |
AC | 4781 | 211 (31.0) | 765 | 3.6 ± 1.7 | 22.7 ± 13.8 | 6.1 ± 1.6 |
CC | 1041 | 44 (6.50) | 161 | 3.7 ± 1.7 | 23.7 ± 16.0 | 6.1 ± 1.6 |
LPL | ||||||
AA | 1943 | 94 (13.9) | 303 | 3.1 ± 1.7 | 20.7 ± 12.9 | 6.3 ± 1.7 |
AG | 7450 | 319 (46.9) | 1190 | 3.5 ± 1.7 | 23.4 ± 14.3 | 6.1 ± 1.5 |
GG | 6349 | 267 (39.2) | 1003 | 3.9 ± 1.7 | 23.8 ± 15.1 | 6.2 ± 1.6 |
Total | 15,742 | 680 (100) | 2496 | 3.6 ± 1.7 | 23.2 ± 14.5 | 6.1 ± 1.2 |
Gene | Product | SNP | Position (Nucleotide) | Alleles | Genotypes | MAF |
---|---|---|---|---|---|---|
CSN1S1 | αs1-casein | AJ005430:c.578C>T | Exon 17 (89) | C/T | A/B | 0.37 |
CSN3 | κ-casein | HQ677596:c.536C>T | Exon 4 (377) | C/T | A/B | 0.33 |
SCD | Stearoyl CoA Desaturase | FM876222:g.133A>C | Promoter (−461) | A/C | A/B | 0.21 |
LPL | Lipoprotein Lipase | AWWX01438720.1:g14229A>G | Exon 1 (107) | A/G | A/B | 0.37 |
Descriptive | Pearson Correlation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Trait 1 | Records (TD ± sd) 2 | N Buffaloes 3 | Mean ± sd | Min | Max | dFY | dPY | dFP | dPP | SCS | Urea |
dMY (kg/d) | 14,219 (22.5 ± 14.0) | 645 | 8.81 ± 4.15 | 0.20 | 26.8 | 0.90 | 0.97 | −0.21 | −0.24 | −0.18 | 0.08 |
dFY (kg/d) | 14,222 (22.1 ± 13.5) | 645 | 0.74 ± 0.35 | 0.02 | 3.27 | 0.90 | 0.18 | −0.12 | −0.16 | 0.06 | |
dPY (kg/d) | 14,303 (22.2 ± 13.6) | 645 | 0.40 ± 0.19 | 0.01 | 1.27 | −0.16 | −0.06 | −0.17 | 0.09 | ||
dFP (g/100 g) | 14,222 (22.1 ± 13.5) | 645 | 8.52 ± 1.68 | 3.52 | 15.42 | 0.31 | 0.04 | −0.05 | |||
dPP (g/100 g) | 14,306 (22.2 ± 13.6) | 645 | 4.70 ± 0.42 | 3.02 | 6.85 | 0.06 | 0.03 | ||||
SCS (log) | 13,738 (22.1 ± 13.5) | 645 | 3.18 ± 1.90 | −3.64 | 10.86 | 0.04 | |||||
Urea (mg/dL) | 12,212 (19.8 ± 12.3) | 616 | 37.16 ± 13.46 | 0.12 | 145.2 | ||||||
DIM | 14,519 (22.5 ± 14.0) | 645 | 152.69 ± 92.67 | 5.00 | 679 |
Additive | Dominance | ||||||||
---|---|---|---|---|---|---|---|---|---|
Trait 1 | Gene | α | s.e. | p | d | s.e. | p | ||
dMY (kg/d) | CSN1S1 | 0.237 | 0.104 | 0.022 | * | 0.224 | 0.148 | 0.131 | |
CSN3 | 0.078 | 0.106 | 0.463 | −0.002 | 0.149 | 0.988 | |||
SCD | −0.106 | 0.120 | 0.374 | 0.087 | 0.159 | 0.585 | |||
LPL | −0.238 | 0.108 | 0.028 | * | 0.177 | 0.147 | 0.229 | ||
dFY (kg/d) | CSN1S1 | 0.018 | 0.008 | 0.029 | * | 0.015 | 0.012 | 0.210 | |
CSN3 | 0.005 | 0.009 | 0.595 | −0.004 | 0.012 | 0.718 | |||
SCD | −0.012 | 0.010 | 0.213 | 0.008 | 0.013 | 0.512 | |||
LPL | −0.012 | 0.009 | 0.183 | 0.010 | 0.012 | 0.399 | |||
dPY (kg/d) | CSN1S1 | 0.011 | 0.005 | 0.014 | * | 0.008 | 0.007 | 0.255 | |
CSN3 | 0.005 | 0.005 | 0.300 | −0.002 | 0.007 | 0.785 | |||
SCD | −0.005 | 0.005 | 0.317 | 0.005 | 0.007 | 0.503 | |||
LPL | −0.008 | 0.005 | 0.098 | 0.008 | 0.007 | 0.208 | |||
dFP (g/100 g) | CSN1S1 | 0.003 | 0.033 | 0.937 | −0.035 | 0.047 | 0.461 | ||
CSN3 | −0.031 | 0.034 | 0.354 | −0.074 | 0.047 | 0.115 | |||
SCD | −0.052 | 0.038 | 0.164 | −0.003 | 0.050 | 0.953 | |||
LPL | 0.076 | 0.035 | 0.027 | * | −0.047 | 0.046 | 0.312 | ||
dPP (g/100 g) | CSN1S1 | 0.011 | 0.010 | 0.260 | −0.018 | 0.014 | 0.182 | ||
CSN3 | 0.012 | 0.010 | 0.212 | −0.019 | 0.014 | 0.173 | |||
SCD | −0.005 | 0.011 | 0.639 | 0.007 | 0.015 | 0.648 | |||
LPL | 0.020 | 0.010 | 0.050 | * | 0.007 | 0.014 | 0.631 | ||
SCS (log(SCC/100) + 3) | CSN1S1 | 0.087 | 0.041 | 0.032 | * | 0.119 | 0.057 | 0.038 | * |
CSN3 | 0.117 | 0.041 | 0.005 | ** | 0.067 | 0.058 | 0.247 | ||
SCD | −0.081 | 0.046 | 0.080 | −0.076 | 0.061 | 0.216 | |||
LPL | 0.008 | 0.042 | 0.845 | −0.017 | 0.057 | 0.770 | |||
UREA (mg/dL) | CSN1S1 | −0.172 | 0.262 | 0.511 | 0.317 | 0.367 | 0.388 | ||
CSN3 | 0.177 | 0.266 | 0.507 | 0.909 | 0.365 | 0.013 | * | ||
SCD | 0.208 | 0.293 | 0.477 | 0.362 | 0.390 | 0.353 | |||
LPL | −0.029 | 0.271 | 0.915 | −0.191 | 0.361 | 0.596 |
Genotype 3 | % Variance Explained by Random Effect | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Trait 1 | Gene | A/B | Allelic 2 | A/A | A/B | B/B | P 4 | r2SNP | r2bcow | r2htd | |
dMY (kg/d) | CSN1S1 | C/T | * | 8.00 b(0.12) | 8.32 ab(0.14) | 8.47 a(0.20) | 0.04 | * | 0.4 | 8.6 | 37.1 |
CSN3 | C/T | 8.15 (0.13) | 8.20 (0.14) | 8.39 (0.22) | 0.60 | ns | 0.0 | 8.7 | 37.3 | ||
SCD | A/C | 8.21 (0.12) | 8.22 (0.15) | 7.90 (0.30) | 0.57 | ns | 0.0 | 8.7 | 37.3 | ||
LPL | A/G | * | 8.46 (0.21) | 8.29 (0.13) | 8.01 (0.14) | 0.08 | † | 0.3 | 8.7 | 37.1 | |
dFY (kg/d) | CSN1S1 | C/T | * | 0.66 (0.01) | 0.68 (0.01) | 0.70 (0.02) | 0.08 | † | 0.3 | 9.6 | 26.2 |
CSN3 | C/T | 0.67 (0.01) | 0.67 (0.01) | 0.69 (0.02) | 0.59 | ns | 0.0 | 9.6 | 26.2 | ||
SCD | A/C | 0.68 (0.01) | 0.68 (0.01) | 0.64 (0.02) | 0.22 | ns | 0.0 | 9.6 | 26.2 | ||
LPL | A/G | 0.69 (0.02) | 0.68 (0.01) | 0.67 (0.01) | 0.46 | ns | 0.0 | 9.6 | 26.2 | ||
dPY (kg/d) | CSN1S1 | C/T | * | 0.37 b (0.01) | 0.38 ab (0.01) | 0.40 a(0.01) | 0.03 | * | 0.4 | 10.0 | 33.8 |
CSN3 | C/T | 0.38 (0.01) | 0.38 (0.01) | 0.39 (0.01) | 0.32 | ns | 0.0 | 10.1 | 34.0 | ||
SCD | A/C | 0.38 (0.01) | 0.38 (0.01) | 0.36 (0.01) | 0.39 | ns | 0.0 | 10.1 | 34.0 | ||
LPL | A/G | 0.39 0(.01) | 0.39 (0.01) | 0.37 (0.01) | 0.21 | ns | 0.1 | 10.1 | 34.0 | ||
dFP (g/100 g) | CSN1S1 | C/T | 8.33 (0.06) | 8.28 (0.06) | 8.34 (0.08) | 0.59 | ns | 0.0 | 13.6 | 8.8 | |
CSN3 | C/T | 8.34 (0.06) | 8.26 (0.06) | 8.32 (0.08) | 0.29 | ns | 0.0 | 13.6 | 8.8 | ||
SCD | A/C | 8.33 (0.06) | 8.31 (0.07) | 8.15 (0.10) | 0.19 | ns | 0.0 | 13.6 | 8.8 | ||
LPL | A/G | * | 8.24 ab(0.08) | 8.27 b(0.06) | 8.38 a(0.06) | 0.05 | * | 0.1 | 13.6 | 8.8 | |
dPP (g/100 g) | CSN1S1 | C/T | 4.68 (0.02) | 4.67 (0.02) | 4.72 (0.02) | 0.09 | † | 0.1 | 14.3 | 14.5 | |
CSN3 | C/T | 4.68 (0.02) | 4.68 (0.02) | 4.73(0.02) | 0.06 | † | 0.2 | 14.3 | 14.5 | ||
SCD | A/C | 4.69 (0.01) | 4.69 (0.02) | 4.65 (0.03) | 0.43 | ns | 0.0 | 14.3 | 14.6 | ||
LPL | A/G | * | 4.64 (0.02) | 4.69 (0.02) | 4.70 (0.02) | 0.06 | † | 0.2 | 14.3 | 14.5 | |
SCS (log(SCC/100) + 3) | CSN1S1 | C/T | * | 3.12 b(0.08) | 3.28 a (0.08) | 3.25 ab (0.10) | 0.04 | * | 0.2 | 25.6 | 11.7 |
CSN3 | C/T | * | 3.13 b (0.02) | 3.26 ab (0.08) | 3.35 a (0.02) | 0.03 | * | 0.3 | 25.5 | 11.7 | |
SCD | A/C | 3.24 (0.07) | 3.16 (0.08) | 3.07 (0.13) | 0.22 | ns | 0.1 | 25.7 | 11.7 | ||
LPL | A/G | 3.20 (0.10) | 3.19 (0.07) | 3.22 (0.08) | 0.91 | ns | 0.0 | 25.7 | 11.7 | ||
UREA (mg/dL) | CSN1S1 | C/T | 37.59 (0.62) | 37.68 (0.62) | 36.77 (0.73) | 0.23 | ns | 0.0 | 57.1 | 7.6 | |
CSN3 | C/T | 37.24 b (0.62) | 38.04 a (0.62) | 36.80 b (0.76) | 0.04 | * | 0.1 | 57.1 | 7.5 | ||
SCD | A/C | 37.45 (0.60) | 37.72 (0.65) | 37.35 (0.89) | 0.77 | ns | 0.0 | 57.1 | 7.6 | ||
LPL | A/G | 38.00 (0.75) | 37.38 (0.61) | 37.60 (0.63) | 0.54 | ns | 0.0 | 57.1 | 7.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauciullo, A.; Gaspa, G.; Zhang, Y.; Liu, Q.; Cosenza, G. CSN1S1, CSN3 and LPL: Three Validated Gene Polymorphisms Useful for More Sustainable Dairy Production in the Mediterranean River Buffalo. Animals 2024, 14, 1414. https://doi.org/10.3390/ani14101414
Pauciullo A, Gaspa G, Zhang Y, Liu Q, Cosenza G. CSN1S1, CSN3 and LPL: Three Validated Gene Polymorphisms Useful for More Sustainable Dairy Production in the Mediterranean River Buffalo. Animals. 2024; 14(10):1414. https://doi.org/10.3390/ani14101414
Chicago/Turabian StylePauciullo, Alfredo, Giustino Gaspa, Yi Zhang, Qingyou Liu, and Gianfranco Cosenza. 2024. "CSN1S1, CSN3 and LPL: Three Validated Gene Polymorphisms Useful for More Sustainable Dairy Production in the Mediterranean River Buffalo" Animals 14, no. 10: 1414. https://doi.org/10.3390/ani14101414
APA StylePauciullo, A., Gaspa, G., Zhang, Y., Liu, Q., & Cosenza, G. (2024). CSN1S1, CSN3 and LPL: Three Validated Gene Polymorphisms Useful for More Sustainable Dairy Production in the Mediterranean River Buffalo. Animals, 14(10), 1414. https://doi.org/10.3390/ani14101414