A Study on Mineral Oil Hydrocarbons (MOH) Contamination in Pig Diets and Its Transfer to Back Fat and Loin Tissues
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lipid Sources, Pig Feeds, and Animals
2.2. Sampling of Pig Tissues
2.3. Determination of MOH in Lipid Sources, Pig Feeds, and Pig Tissues
2.3.1. Reagents and Standard Solutions
2.3.2. Sample Preparation of Lipid Sources
2.3.3. Sample Preparation of Pig Feeds
2.3.4. Sample Preparation of Pig Tissues
2.3.5. Mineral Oil Hydrocarbons Determination
2.3.6. Integration and Calculations
3. Results
3.1. MOH in Lipid Sources
3.2. MOH in Pig Feeds
3.3. MOH in Pig Tissues
4. Discussion
4.1. MOH in Lipid Sources
4.2. MOH in Pig Feeds
4.3. MOH in Pig Tissues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bratinova, S.; Robouch, P.; Hoekstra, E.; Bratinova, S. Guidance on Sampling, Analysis and Data Reporting for the Monitoring of Mineral Oil Hydrocarbons in Food and Food Contact Materials, 2nd ed.; Publications Office of the European Union: Luxembourg, 2023; ISBN 978-92-68-01789-0. [Google Scholar]
- EFSA. Scientific opinion on mineral oil hydrocarbons in food. EFSA J. 2012, 10, 2704. [Google Scholar] [CrossRef]
- EFSA. Rapid risk assessment on the possible risk for public health due to the contamination of infant formula and follow-on formula by mineral oil aromatic hydrocarbons (MOAH). EFSA J. 2019, 16, EN-1741. [Google Scholar] [CrossRef]
- EFSA. Update of the risk assessment of mineral oil hydrocarbons in food. EFSA J. 2023, 21, 1–143. [Google Scholar] [CrossRef]
- Coffey, D.; Dawson, K.; Ferket, P.; Connolly, A. Review of the feed industry from a historical perspective and implications for its future. J. Appl. Anim. Nutr. 2016, 4, 1–11. [Google Scholar] [CrossRef]
- Doppenberg, J.; van der Aar, P.J. Facts about Fats; Doppenberg, J., Van der Aar, P.J., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017; ISBN 978-90-8686-861-2. [Google Scholar]
- Feed Energy Company Utilization of Fatty Acids in Swine Diets. Available online: https://feedenergy.com/wp-content/uploads/2023/05/utilization-of-fatty-acids-in-swine-diets-41ebcf89.pdf (accessed on 6 February 2024).
- Hoffman, D.J.; Rattner, B.A.; Burton, G.A.; Cairns, J. Handbook of Ecotoxicology, 2nd ed.; Lewis Publishers: Boca Raton, FL, USA, 2007; ISBN 1566705460. [Google Scholar]
- Landrum, P.F.; Fisher, S.W. Influence of Lipids on the Transfer of Organic Contaminants in Aquatic Organisms. In Lipids in Freshwater Ecosystems; Arts, M.T., Bruce, C.W., Eds.; Springer: New York, NY, USA, 1999; pp. 203–234. ISBN 978-0-387-98505-3. [Google Scholar]
- EC. EU Agricultural Outlook for Markets and Income 2019–2030; European Commission: Brussels, Belgium, 2019; ISBN 9789276153825. [Google Scholar]
- EU. Commission Regulation (EU) 2017/1017 of 15 June 2017 amending Regulation (EU) No 68/2013 on the Catalogue of feed materials. Off. J. Eur. Union 2017, 48–119. [Google Scholar]
- EU. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, 276, 33–79. [Google Scholar]
- Menegoz Ursol, L.; Conchione, C.; Srbinovska, A.; Moret, S. Optimization and validation of microwave assisted saponification (MAS) followed by epoxidation for high-sensitivity determination of mineral oil aromatic hydrocarbons (MOAH) in extra virgin olive oil. Food Chem. 2022, 370, 130966. [Google Scholar] [CrossRef]
- Bauwens, G.; Conchione, C.; Sdrigotti, N.; Moret, S.; Purcaro, G. Quantification and characterization of mineral oil in fish feed by liquid chromatography-gas chromatography-flame ionization detector and liquid chromatography-comprehensive multidimensional gas chromatography-time-of-flight mass spectrometer/flame ioniza. J. Chromatogr. A 2022, 1677, 463208. [Google Scholar] [CrossRef]
- Biedermann, M.; Grob, K. Online coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil. Part 1: Method of analysis. J. Chromatogr. A 2012, 1255, 56–75. [Google Scholar] [CrossRef]
- Biedermann, M.; Fiselier, K.; Grob, K. Aromatic hydrocarbons of mineral oil origin in foods: Method for determining the total concentration and first result. J. Agric. Food Chem. 2009, 57, 8711–8721. [Google Scholar] [CrossRef]
- Biedermann, M.; Grob, K. Memory effects with the on-column interface for on-line coupled high performance liquid chromatography-gas chromatography: The Y-interface. J. Chromatogr. A 2009, 1216, 8652–8658. [Google Scholar] [CrossRef] [PubMed]
- Boselli, E.; Grolimund, B.; Grob, K.; Lercker, G.; Amadò, R. Solvent trapping during large volume injection with an early vapor exit, Part 1: Description of the flooding process. HRC J. High. Resolut. Chromatogr. 1998, 21, 355–362. [Google Scholar] [CrossRef]
- Biedermann-Brem, S.; Kasprick, N.; Simat, T.; Grob, K. Migration of polyolefin oligomeric saturated hydrocarbons (POSH) into food. Food Addit. Contam.–Part A Chem. Anal. Control. Expo. Risk Assess. 2012, 29, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Conchione, C.; Lucci, P.; Moret, S. Migration of polypropylene oligomers into ready-to-eat vegetable soups. Foods 2020, 9, 1365. [Google Scholar] [CrossRef]
- Urli, S.; Corte Pause, F.; Crociati, M.; Baufeld, A.; Monaci, M.; Stradaioli, G. Impact of microplastics and nanoplastics on livestock health: An emerging risk for reproductive efficiency. Animals 2023, 13, 1132. [Google Scholar] [CrossRef] [PubMed]
- Velebit, B.; Janković, V.; Milojević, L.; Baltić, T.; Ćirić, J.; Mitrović, R. Overview of microplastics in the meat: Occurrence, detection methods and health effects. Meat Technol. 2023, 64, 36–41. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Jiang, F.; Li, L.; Li, Y.; Zhang, M.; Qi, Z.; Ma, R.; Zhang, Y.; Fang, J.; et al. Detection of microplastics in domestic and fetal pigs’ lung tissue in natural environment: A preliminary study. Environ. Res. 2023, 216, 114623. [Google Scholar] [CrossRef] [PubMed]
- Tejeda, J.F.; García, C.; Petrón, M.J.; Andrés, A.I.; Antequera, T. n-Alkane content of intramuscular lipids of Iberian fresh ham from different feeding systems and crossbreeding. Meat Sci. 2001, 57, 371–377. [Google Scholar] [CrossRef]
- Petrón, M.J.; Tejeda, J.F.; Muriel, E.; Ventanas, J.; Antequera, T. Study of the branched hydrocarbon fraction of intramuscular lipids from Iberian dry-cured ham. Meat Sci. 2005, 69, 129–134. [Google Scholar] [CrossRef]
- Grob, K. Mineral oil hydrocarbons in food: A review. Food Addit. Contam.–Part A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 1845–1860. [Google Scholar] [CrossRef]
- Ahmad, H.; Noor, A.M.; Sabri, M.P.A.; Ngteni, R.; Hilmi, S.M.H.S. Mineral oil saturated hydrocarbon in crude palm oil-current status in sime darby palm oil mills. J. Adv. Agric. Technol. 2019, 6, 299–303. [Google Scholar] [CrossRef]
- Bauwens, G.; Pantó, S.; Purcaro, G. Mineral oil saturated and aromatic hydrocarbons quantification: Mono- and two-dimensional approaches. J. Chromatogr. A 2021, 1643, 462044. [Google Scholar] [CrossRef] [PubMed]
- Lacoste, F. International validation of the determination of saturated hydrocarbon mineral oil in vegetable oils. Eur. J. Lipid Sci. Technol. 2016, 118, 373–381. [Google Scholar] [CrossRef]
- Brühl, L. Occurrence, determination, and assessment of mineral oils in oilseeds and vegetable oils. Eur. J. Lipid Sci. Technol. 2016, 118, 361–372. [Google Scholar] [CrossRef]
- Moret, S.; Populin, T.; Conte, L.S.; Grob, K.; Neukom, H.P. Occurrence of C15-C45 mineral paraffins in olives and olive oils. Food Addit. Contam. 2003, 20, 417–426. [Google Scholar] [CrossRef]
- Varona, E.; Tres, A.; Rafecas, M.; Vichi, S.; Barroeta, A.C.; Guardiola, F. Composition and nutritional value of acid oils and fatty acid distillates used in animal feeding. Animals 2021, 11, 196. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, K.; Valet, N.; Spiratos, D.; Siragakis, G. Olive oil and pomace olive oil processing. Grasas Aceites 2006, 57, 56–67. [Google Scholar] [CrossRef]
- Gharby, S. Refining vegetable oils: Chemical and physical refining. Sci. World J. 2022, 2022, 6627013. [Google Scholar] [CrossRef]
- Gharbi, I.; Moret, S.; Chaari, O.; Issaoui, M.; Conte, L.S.; Lucci, P.; Hammami, M. Evaluation of hydrocarbon contaminants in olives and virgin olive oils from Tunisia. Food Control 2017, 75, 160–166. [Google Scholar] [CrossRef]
- Stauff, A.; Schnapka, J.; Heckel, F.; Matissek, R. Mineral oil hydrocarbons (MOSH/MOAH) in edible oils and possible minimization by deodorization through the example of cocoa butter. Eur. J. Lipid Sci. Technol. 2020, 122, 1–12. [Google Scholar] [CrossRef]
- Grob, K.; Vass, M.; Biedermann, M.; Neukom, H.P. Contamination of animal feed and food from animal origin with mineral oil hydrocarbons. Food Addit. Contam. 2001, 18, 1–10. [Google Scholar] [CrossRef]
- Menegoz Ursol, L.; Conchione, C.; Peroni, D.; Carretta, A.; Moret, S. A study on the impact of harvesting operations on the mineral oil contamination of olive oils. Food Chem. 2023, 406, 135032. [Google Scholar] [CrossRef] [PubMed]
- Menegoz Ursol, L.; Moret, S. Evaluation of the impact of olive milling on the mineral oil contamination of extra-virgin olive oils. Eur. J. Lipid Sci. Technol. 2024, 126, 2300123. [Google Scholar] [CrossRef]
- Matei, M.; Pop, I.M. Mineral oil hydrocarbons (MOH) analysis in animal feed: A characterization based on modern pollution. Sci. Pap. Ser. D Anim. Sci. 2023, LXVI, 113–122. [Google Scholar]
- Neukom, H.P.; Grob, K.; Biedermann, M.; Noti, A. Food contamination by C20–C50 mineral paraffins from the atmosphere. Atmos. Environ. 2002, 36, 4839–4847. [Google Scholar] [CrossRef]
- Wagner, C.; Neukom, H.-P.; Grob, K. Mineral Paraffins in Vegetable Oils and Refinery By-Products for Animal. Mitteilungen Leb. Hyg. 2001, 92, 499–514. [Google Scholar] [CrossRef]
- Miller, M.J.; Lonardo, E.C.; Greer, R.D.; Bevan, C.; Edwards, D.A.; Smith, J.H.; Freeman, J.J. Variable responses of species and strains to white mineral oils and paraffin waxes. Regul. Toxicol. Pharmacol. 1996, 23, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.C.; Kamelia, L.; Romanuka, J.; Kral, O.; Isola, A.; Niemelä, H.; Steneholm, A. Comparison of PAC and MOAH for understanding the carcinogenic and developmental toxicity potential of mineral oils. Regul. Toxicol. Pharmacol. 2022, 132, 105193. [Google Scholar] [CrossRef] [PubMed]
- Chuberre, B.; Araviiskaia, E.; Bieber, T.; Barbaud, A. Mineral oils and waxes in cosmetics: An overview mainly based on the current European regulations and the safety profile of these compounds. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 5–14. [Google Scholar] [CrossRef]
- Barp, L.; Kornauth, C.; Wuerger, T.; Rudas, M.; Biedermann, M.; Reiner, A.; Concin, N.; Grob, K. Mineral oil in human tissues, Part I: Concentrations and molecular mass distributions. Food Chem. Toxicol. 2014, 72, 312–321. [Google Scholar] [CrossRef]
- Pirow, R.; Blume, A.; Hellwig, N.; Herzler, M.; Huhse, B.; Hutzler, C.; Pfaff, K.; Thierse, H.J.; Tralau, T.; Vieth, B.; et al. Mineral oil in food, cosmetic products, and in products regulated by other legislations. Crit. Rev. Toxicol. 2019, 49, 742–789. [Google Scholar] [CrossRef] [PubMed]
- Barp, L.; Biedermann, M.; Grob, K.; Blas-Y-Estrada, F.; Nygaard, U.C.; Alexander, J.; Cravedi, J.P. Accumulation of mineral oil saturated hydrocarbons (MOSH) in female Fischer 344 rats: Comparison with human data and consequences for risk assessment. Sci. Total Environ. 2017, 575, 1263–1278. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Greenberg, J.; Cataneo, R.N. Effect of age on the profile of alkanes in normal human breath. Free Radic. Res. 2000, 33, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, M.; Barp, L.; Kornauth, C.; Würger, T.; Rudas, M.; Reiner, A.; Concin, N.; Grob, K. Mineral oil in human tissues, Part II: Characterization of the accumulated hydrocarbons by comprehensive two-dimensional gas chromatography. Sci. Total Environ. 2015, 506–507, 644–655. [Google Scholar] [CrossRef] [PubMed]
CP | COP | OPA | |||
---|---|---|---|---|---|
MOSH 1 (mg/kg) | n-C10–16 | Mean | 0.4 | 2.0 | 3.0 |
SD | 0.01 | 0.26 | 0.38 | ||
n-C16–20 | Mean | 1.3 | 6.1 | 5.4 | |
SD | 0.01 | 0.04 | 0.61 | ||
n-C20–25 | Mean | 3.6 | 25.3 | 21.2 | |
SD | 0.02 | 1.70 | 1.13 | ||
n-C25–35 | Mean | 11.8 | 82.8 | 71.2 | |
SD | 0.24 | 0.50 | 1.07 | ||
n-C35–40 | Mean | 4.0 | 17.3 | 17.0 | |
SD | 0.17 | 0.65 | 0.09 | ||
n-C40–50 | Mean | 4.2 | 15.6 | 10.8 | |
SD | 0.03 | 1.49 | 0.62 | ||
n-C10–50 | Mean | 24.9 | 149.2 | 128.5 | |
SD | 0.43 | 4.65 | 2.66 | ||
MOAH 2 (mg/kg) | n-C10–16 | Mean | <0.2 | 1.9 | 1.8 |
SD | NC | 0.10 | 0.06 | ||
n-C16–25 | Mean | 1.1 | 16.0 | 14.4 | |
SD | 0.14 | 0.29 | 0.58 | ||
n-C25–35 | Mean | 1.9 | 16.2 | 15.4 | |
SD | 0.09 | 0.76 | 0.89 | ||
n-C35–50 | Mean | 2.6 | 12.3 | 11.1 | |
SD | 0.30 | 0.49 | 0.12 | ||
n-C10–50 | Mean | 5.6 | 46.4 | 42.7 | |
SD | 0.54 | 1.54 | 1.35 |
Common Feeds | Grower Feeds | Finisher Feeds | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Starter | Starter | CP | COP | OPA | CP-OPA | CP | COP | OPA | CP-OPA | |||
MOSH 1 (mg/kg) | n-C10–16 | mean | 0.4 | 0.3 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 |
SD | 0.10 | 0.01 | 0.12 | 0.06 | 0.22 | 0.03 | 0.11 | 0.01 | 0.06 | 0.01 | ||
n-C16–20 | mean | 0.6 | 0.9 | 1.3 | 1.2 | 1.4 | 1.1 | 1.4 | 1.3 | 1.4 | 1.5 | |
SD | 0.06 | 0.05 | 0.04 | 0.11 | 0.11 | 0.04 | 0.10 | 0.07 | 0.05 | 0.05 | ||
n-C20–25 | mean | 1.7 | 2.5 | 4.4 | 4.2 | 4.5 | 4.0 | 4.4 | 4.4 | 4.4 | 4.9 | |
SD | 0.01 | 0.04 | 0.36 | 0.05 | 0.25 | 0.23 | 0.09 | 0.34 | 0.48 | 0.08 | ||
n-C25–35 | mean | 5.0 | 8.3 | 13.4 | 10.3 | 12.3 | 8.1 | 15.2 | 9.3 | 11.2 | 11.8 | |
SD | 0.35 | 0.13 | 0.90 | 0.22 | 0.24 | 0.11 | 0.16 | 1.00 | 0.60 | 0.39 | ||
n-C35–40 | mean | 1.4 | 4.7 | 8.2 | 4.6 | 6.0 | 4.0 | 9.4 | 4.5 | 5.4 | 5.4 | |
SD | 0.01 | 0.07 | 0.70 | 0.06 | 0.03 | 0.15 | 0.32 | 0.62 | 0.63 | 0.35 | ||
n-C40–50 | mean | 1.2 | 3.6 | 6.5 | 3.5 | 4.8 | 2.9 | 7.3 | 3.3 | 4.0 | 4.1 | |
SD | 0.01 | 0.12 | 0.56 | 0.40 | 0.12 | 0.22 | 0.01 | 0.38 | 0.18 | 0.12 | ||
n-C10–50 | mean | 10.3 | 20.3 | 33.8 | 24.0 | 29.3 | 20.3 | 37.9 | 23.1 | 26.9 | 28.1 | |
SD | 0.21 | 0.10 | 2.37 | 0.90 | 0.72 | 0.29 | 0.16 | 2.41 | 1.95 | 0.71 | ||
MOAH 2 (mg/kg) | n-C16–25 | mean | 0.2 | 0.3 | 0.2 | 0.6 | 0.7 | 0.5 | 0.3 | 0.4 | 0.7 | 0.6 |
SD | 0.04 | 0.01 | 0.06 | 0.01 | 0.11 | 0.01 | 0.10 | 0.04 | 0.06 | 0.02 | ||
n-C25–35 | mean | 0.5 | 0.5 | 0.7 | 1.1 | 1.3 | 1.0 | 0.6 | 0.8 | 1.4 | 1.0 | |
SD | 0.01 | 0.02 | 0.34 | 0.01 | 0.09 | 0.03 | 0.11 | 0.08 | 0.28 | 0.03 | ||
n-C35–50 | mean | 0.4 | 0.4 | 0.4 | 0.6 | 0.8 | 0.5 | 0.4 | 0.5 | 0.6 | 0.7 | |
SD | 0.01 | 0.01 | 0.16 | 0.12 | 0.20 | 0.07 | 0.08 | 0.02 | 0.07 | 0.05 | ||
n-C10–50 | mean | 1.2 | 1.2 | 1.3 | 2.3 | 2.8 | 2.0 | 1.3 | 1.6 | 2.7 | 2.3 | |
SD | 0.03 | 0.01 | 0.24 | 0.11 | 0.01 | 0.04 | 0.28 | 0.14 | 0.35 | 0.09 |
Back Fat | Loin | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CP | COP | OPA | CP-OPA | CP | COP | OPA | CP-OPA | |||
MOSH 1 (mg/kg) | n-C10–16 | Mean | 1.0 | <0.5 | 0.6 | 0.8 | <0.05 | <0.05 | <0.05 | <0.05 |
SD | 0.44 | NC | 0.35 | 0.48 | NC | NC | NC | NC | ||
n-C16–20 | Mean | 1.4 | 1.2 | 0.9 | 1.2 | <0.05 | <0.05 | 0.06 | <0.05 | |
SD | 0.14 | 0.29 | 0.01 | 0.25 | NC | NC | 0.01 | NC | ||
n-C20–25 | Mean | 2.2 | 2.8 | 1.2 | 1.3 | 0.07 | 0.07 | 0.15 | 0.08 | |
SD | 0.07 | 2.07 | 0.10 | 0.10 | 0.01 | 0.02 | 0.06 | 0.03 | ||
n-C25–35 | Mean | 16.6 | 8.0 | 4.6 | 5.6 | 0.24 | 0.29 | 0.37 | 0.29 | |
SD | 0.07 | 0.20 | 1.42 | 1.63 | 0.03 | 0.07 | 0.15 | 0.10 | ||
n-C35–40 | Mean | 6.2 | 2.9 | 1.7 | 2.1 | 0.11 | 0.13 | 0.2 | 0.13 | |
SD | 0.38 | 0.16 | 0.55 | 0.73 | 0.01 | 0.03 | 0.03 | 0.04 | ||
n-C40–50 | Mean | 2.4 | 1.4 | 1.0 | 1.2 | 0.07 | 0.09 | 0.22 | 0.09 | |
SD | 0.40 | 0.20 | 0.35 | 0.50 | 0.01 | 0.03 | 0.18 | 0.03 | ||
n-C10–50 | Mean | 29.8 | 16.3 | 10.0 | 12.2 | 0.54 | 0.64 | 1.02 | 0.65 | |
SD | 0.19 | 2.14 | 2.07 | 2.23 | 0.06 | 0.15 | 0.44 | 0.20 | ||
BCF 2 | n-C16–20 | 1.1 | NC | 0.7 | 0.9 | NC | NC | NC | NC | |
n-C20–25 | 0.5 | 0.7 | 0.3 | 0.3 | NC | NC | 0.03 | NC | ||
n-C25–35 | 1.2 | 0.8 | 0.4 | 0.6 | 0.02 | 0.03 | 0.03 | 0.04 | ||
n-C35–40 | 0.7 | 0.6 | 0.3 | 0.5 | 0.01 | 0.03 | 0.03 | 0.03 | ||
n-C40–50 | 0.4 | 0.4 | 0.2 | 0.3 | 0.01 | 0.03 | 0.05 | 0.03 | ||
n-C10–50 | 0.8 | 0.7 | 0.4 | 0.5 | 0.02 | 0.03 | 0.03 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albendea, P.; Conchione, C.; Menegoz Ursol, L.; Moret, S. A Study on Mineral Oil Hydrocarbons (MOH) Contamination in Pig Diets and Its Transfer to Back Fat and Loin Tissues. Animals 2024, 14, 1450. https://doi.org/10.3390/ani14101450
Albendea P, Conchione C, Menegoz Ursol L, Moret S. A Study on Mineral Oil Hydrocarbons (MOH) Contamination in Pig Diets and Its Transfer to Back Fat and Loin Tissues. Animals. 2024; 14(10):1450. https://doi.org/10.3390/ani14101450
Chicago/Turabian StyleAlbendea, Paula, Chiara Conchione, Luca Menegoz Ursol, and Sabrina Moret. 2024. "A Study on Mineral Oil Hydrocarbons (MOH) Contamination in Pig Diets and Its Transfer to Back Fat and Loin Tissues" Animals 14, no. 10: 1450. https://doi.org/10.3390/ani14101450