A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Mediterranean Teleosts in a Changing Environment
1.2. Impact of Anthropic Activities
1.3. Implications for Teleost Farming
1.4. Model Species and Predictive Studies
2. Reproductive Challenges in Wild Teleost Populations
2.1. Climate Change
2.2. Environmental Contaminations Move to Next Page
2.3. Overfishing
2.4. Reproductive Challenges in Mediterranean Area
3. Impact of Broodstock Nutrition on Reproduction
3.1. Plant-Derived Ingredients
3.2. Nutritional Programming
3.3. Alternative Ingredients
3.4. Functional Feed Additives
3.5. Feed Restriction Practices
4. The Use of Model Species to Investigate Reproductive Challenges in Teleosts
4.1. Heavy Metals
4.2. Pharmaceuticals Compounds
4.3. Pesticides
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Coll, M.; Piroddi, C.; Steenbeek, J.; Kaschner, K.; Lasram, F.B.R.; Aguzzi, J.; Ballesteros, E.; Bianchi, C.N.; Corbera, J.; Dailianis, T.; et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 2010, 5, e11842. [Google Scholar] [CrossRef] [PubMed]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Luterbacher, J.; May, W.; Trigo, R.; Tsimplis, M.; et al. The Mediterranean climate: An overview of the main characteristics and issues. Dev. Earth Environ. Sci. 2006, 4, 1–26. [Google Scholar] [CrossRef]
- de la Hoz, C.F.; Ramos, E.; Puente, A.; Méndez, F.; Menéndez, M.; Juanes, J.A.; Losada, Í.J. Ecological typologies of large areas. An application in the Mediterranean Sea. J. Environ. Manag. 2018, 205, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, D.; Rodríguez, J.; Abdul Malak, D.; Nastasi, A.; Hernández, P. Marine protected areas and fisheries restricted areas in the Mediterranean: Assessing “actual” marine biodiversity protection coverage at multiple scales. Mar. Policy 2016, 64, 24–30. [Google Scholar] [CrossRef]
- Lasram, F.B.R.; Guilhaumon, F.; Mouillot, D. Fish diversity patterns in the Mediterranean Sea: Deviations from a mid-domain model. Mar. Ecol. Prog. Ser. 2009, 376, 253–267. [Google Scholar] [CrossRef]
- Meynard, C.N.; Mouillot, D.; Mouquet, N.; Douzery, E.J.P. A phylogenetic perspective on the evolution of Mediterranean teleost fishes. PLoS ONE 2012, 7, e36443. [Google Scholar] [CrossRef] [PubMed]
- Alix, M.; Kjesbu, O.S.; Anderson, K.C. From gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology. J. Fish Biol. 2020, 97, 607–632. [Google Scholar] [CrossRef] [PubMed]
- Planque, B.; Fromentin, J.M.; Cury, P.; Drinkwater, K.F.; Jennings, S.; Perry, R.I.; Kifani, S. How does fishing alter marine populations and ecosystems sensitivity to climate? J. Mar. Syst. 2010, 79, 403–417. [Google Scholar] [CrossRef]
- Doney, S.C.; Ruckelshaus, M.; Emmett Duffy, J.; Barry, J.P.; Chan, F.; English, C.A.; Galindo, H.M.; Grebmeier, J.M.; Hollowed, A.B.; Knowlton, N.; et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 2012, 4, 11–37. [Google Scholar] [CrossRef]
- Prakash, S. Impact of climate change on aquatic ecosystem and its biodiversity: An overview. Int. J. Biol. Innov. 2021, 3, 312–317. [Google Scholar] [CrossRef]
- Pankhurst, N.W.; Munday, P.L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 2011, 62, 1015–1026. [Google Scholar] [CrossRef]
- Mayer, I. The role of reproductive sciences in the preservation and breeding of commercial and threatened teleost fishes. Adv. Exp. Med. Biol. 2019, 1200, 187–224. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, H.O.; Farrell, A.P. Ecology. Physiology and climate change. Science 2008, 322, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Dahlke, F.T.; Wohlrab, S.; Butzin, M.; Pörtner, H.O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 2020, 369, 65–70. [Google Scholar] [CrossRef]
- Kumar, P.; Babita, M.; Kailasam, M.; Muralidhar, M.; Hussain, T.; Behera, A.; Jithendran, K.P. Effect of changing environmental factors on reproductive cycle and endocrinology of fishes. In Outlook of Climate Change and Fish Nutrition; Springer Nature: Singapore, 2023; pp. 377–396. ISBN 9789811955006. [Google Scholar]
- European Environment Agency. Horizon 2020 Mediterranean Report—Toward Shared Environmenteal Information Systems; EFA Technical Report No 6/2014; Publications Office of the European Union: Luxembourg, 2014; ISSN 1725-2237.
- Hsieh, C.-H.; Yamauchi, A.; Nakazawa, T.; Wang, W.F. Fishing effects on age and spatial structures undermine population stability of fishes. Aquat. Sci. 2010, 72, 165–178. [Google Scholar] [CrossRef]
- Geyer, H.J.; Rimkus, G.G.; Scheunert, I.; Kaune, A.; Schramm, K.-W.; Kettrup, A.; Zeeman, M.; Muir, D.C.G.; Hansen, L.G.; Mackay, D. Bioaccumulation and Occurrence of Endocrine-Disrupting Chemicals (EDCs), Persistent Organic Pollutants (POPs), and Other Organic Compounds in Fish and Other Organisms Including Humans. In Bioaccumulation—New Aspects and Developments; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–166. ISBN 978-3-540-68091-8. [Google Scholar]
- Nyholm, J.R.; Norman, A.; Norrgren, L.; Haglund, P.; Andersson, P.L. Maternal transfer of brominated flame retardants in zebrafish (Danio rerio). Chemosphere 2008, 73, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Impellitteri, F.; Multisanti, C.R.; Rusanova, P.; Piccione, G.; Falco, F.; Faggio, C. Exploring the impact of contaminants of emerging concern on fish and invertebrates physiology in the Mediterranean Sea. Biology 2023, 12, 767. [Google Scholar] [CrossRef] [PubMed]
- Miniero, R.; Abate, V.; Brambilla, G.; Davoli, E.; De Felip, E.; De Filippis, S.P.; Dellatte, E.; De Luca, S.; Fanelli, R.; Fattore, E.; et al. Persistent toxic substances in Mediterranean aquatic species. Sci. Total Environ. 2014, 494–495, 18–27. [Google Scholar] [CrossRef] [PubMed]
- de Lucia, G.A.; Vianello, A.; Camedda, A.; Vani, D.; Tomassetti, P.; Coppa, S.; Palazzo, L.; Amici, M.; Romanelli, G.; Zampetti, G.; et al. Sea Water Contamination in the Vicinity of the Italian Minor Islands Caused by Microplastic Pollution. Water 2018, 10, 1108. [Google Scholar] [CrossRef]
- Federation of European Aquaculture Producers (FEAP). DATA. Available online: https://feap.info/index.php/data/ (accessed on 20 November 2023).
- Cascarano, M.C.; Stavrakidis-Zachou, O.; Mladineo, I.; Thompson, K.D.; Papandroulakis, N.; Katharios, P. Mediterranean aquaculture in a changing climate: Temperature effects on pathogens and diseases of three farmed fish species. Pathogens 2021, 10, 1205. [Google Scholar] [CrossRef]
- Mylonas, C.; Zohar, Y. Controlling fish reproduction in a New Technologies in Aquaculture Improving Production Efficiency, Quality and Environmental Management quaculture. In New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management; WoodHead Publishing: Oxford, UK, 2009; pp. 109–142. [Google Scholar] [CrossRef]
- Callet, T.; Cardona, E.; Turonnet, N.; Maunas, P.; Larroquet, L.; Surget, A.; Corraze, G.; Panserat, S.; Marandel, L. Alteration of eggs biochemical composition and progeny survival by maternal high carbohydrate nutrition in a teleost fish. Sci. Rep. 2022, 12, 16726. [Google Scholar] [CrossRef]
- Chen, Z.; Fei, S.; Duan, Y.; Liu, C.; Liu, H.; Han, D.; Jin, J.; Yang, Y.; Zhu, X.; Xie, S. Effects of dietary protein level on the growth, reproductive performance, and larval quality of female yellow catfish (Pelteobagrus fulvidraco) broodstock. Aquac. Rep. 2022, 24, 101102. [Google Scholar] [CrossRef]
- Kause, A.; Nousiainen, A.; Koskinen, H. Improvement in feed efficiency and reduction in nutrient loading from rainbow trout farms: The role of selective breeding. J. Anim. Sci. 2022, 100, skac214. [Google Scholar] [CrossRef] [PubMed]
- Furutani-Seiki, M.; Wittbrodt, J. Medaka and zebrafish, an evolutionary twin study. Mech. Dev. 2004, 121, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, P.E.; Medrano, J.F.; Feijo, C.G. Zebrafish as animal model for aquaculture nutrition research. Front. Genet. 2014, 5, 313. [Google Scholar] [CrossRef]
- Ulloa, P.E.; Iturra, P.; Neira, R.; Araneda, C. Zebrafish as a model organism for nutrition and growth: Towards comparative studies of nutritional genomics applied to aquacultured fishes. Rev. Fish Biol. Fish. 2011, 21, 649–666. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Brander, K. Impacts of climate change on fisheries. J. Mar. Syst. 2010, 79, 389–402. [Google Scholar] [CrossRef]
- Ma, J.; Hung, H.; Macdonald, R.W. The influence of global climate change on the environmental fate of persistent organic pollutants: A review with emphasis on the Northern Hemisphere and the Arctic as a receptor. Glob. Planet. Chang. 2016, 146, 89–108. [Google Scholar] [CrossRef]
- Brown-Peterson, N.J.; Wyanski, D.M.; Saborido-Rey, F.; Macewicz, B.J.; Lowerre-Barbieri, S.K. A standardized terminology for describing reproductive development in fishes. Mar. Coast. Fish. 2011, 3, 52–70. [Google Scholar] [CrossRef]
- Wernberg, T.; Smale, D.A.; Thomsen, M.S. A decade of climate change experiments on marine organisms: Procedures, patterns and problems. Glob. Chang. Biol. 2012, 18, 1491–1498. [Google Scholar] [CrossRef]
- Servili, A.; Canario, A.V.M.; Mouchel, O.; Muñoz-Cueto, J.A. Climate change impacts on fish reproduction are mediated at multiple levels of the brain-pituitary-gonad axis. Gen. Comp. Endocrinol. 2020, 291, 113439. [Google Scholar] [CrossRef]
- Miranda, L.A.; Chalde, T.; Elisio, M.; Strüssmann, C.A. Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey Odontesthes bonariensis. Gen. Comp. Endocrinol. 2013, 192, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Migaud, H.; Davie, A.; Taylor, J.F. Current knowledge on the photoneuroendocrine regulation of reproduction in temperate fish species. J. Fish Biol. 2010, 76, 27–68. [Google Scholar] [CrossRef]
- Vergés, A.; McCosker, E.; Mayer-Pinto, M.; Coleman, M.A.; Wernberg, T.; Ainsworth, T.; Steinberg, P.D. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 2019, 33, 1000–1013. [Google Scholar] [CrossRef]
- Castro, J.S.; Braz-Mota, S.; Campos, D.F.; Souza, S.S.; Val, A.L. High temperature, pH, and hypoxia cause oxidative stress and impair the spermatic performance of the Amazon fish Colossoma macropomum. Front. Physiol. 2020, 11, 772. [Google Scholar] [CrossRef] [PubMed]
- Cruz Vieira, A.B.; Weber, A.A.; Ribeiro, Y.M.; Luz, R.K.; Bazzoli, N.; Rizzo, E. Influence of salinity on spermatogenesis in adult Nile tilapia (Oreochromis niloticus) testis. Theriogenology 2019, 131, 1–8. [Google Scholar] [CrossRef]
- Lehtonen, T.K.; Wong, B.B.M.; Kvarnemo, C. Effects of salinity on nest-building behaviour in a marine fish. BMC Ecol. 2016, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Muir, D.C.G.; Howard, P.H. Are there other persistent organic pollutants? A challenge for environmental chemists. Environ. Sci. Technol. 2006, 40, 7157–7166. [Google Scholar] [CrossRef]
- Mezzelani, M.; Gorbi, S.; Regoli, F. Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms. Mar. Environ. Res. 2018, 140, 41–60. [Google Scholar] [CrossRef]
- Wuttke, W.; Jarry, H.; Seidlova-Wuttke, D. Definition, classification and mechanism of action of endocrine disrupting chemicals. Hormones 2010, 9, 9–15. [Google Scholar] [CrossRef]
- Desbiolles, F.; Malleret, L.; Tiliacos, C.; Wong-Wah-Chung, P.; Laffont-Schwob, I. Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Sci. Total Environ. 2018, 639, 1334–1348. [Google Scholar] [CrossRef] [PubMed]
- Errico, S.; Nicolucci, C.; Migliaccio, M.; Micale, V.; Mita, D.G.; Diano, N. Analysis and occurrence of some phenol endocrine disruptors in two marine sites of the northern coast of Sicily (Italy). Mar. Pollut. Bull. 2017, 120, 68–74. [Google Scholar] [CrossRef]
- Rios-Fuster, B.; Alomar, C.; Paniagua González, G.; Garcinuño Martínez, R.M.; Soliz Rojas, D.L.; Fernández Hernando, P.; Deudero, S. Assessing microplastic ingestion and occurrence of bisphenols and phthalates in bivalves, fish and holothurians from a Mediterranean marine protected area. Environ. Res. 2022, 214, 114034. [Google Scholar] [CrossRef]
- Salgueiro-González, N.; Campillo, J.A.; Viñas, L.; Beiras, R.; López-Mahía, P.; Muniategui-Lorenzo, S. Occurrence of selected endocrine disrupting compounds in Iberian coastal areas and assessment of the environmental risk. Environ. Pollut. 2019, 249, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Miccoli, A.; Maradonna, F.; De Felice, A.; Caputo Barucchi, V.; Estonba, A.; Genangeli, M.; Vittori, S.; Leonori, I.; Carnevali, O. Detection of endocrine disrupting chemicals and evidence of their effects on the HPG axis of the European anchovy Engraulis encrasicolus. Mar. Environ. Res. 2017, 127, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Storelli, M.M.; Losada, S.; Marcotrigiano, G.O.; Roosens, L.; Barone, G.; Neels, H.; Covaci, A. Polychlorinated biphenyl and organochlorine pesticide contamination signatures in deep-sea fish from the Mediterranean Sea. Environ. Res. 2009, 109, 851–856. [Google Scholar] [CrossRef]
- Storelli, M.M.; Storelli, A.; Barone, G.; Marcotrigiano, G.O. Polychlorinated biphenyl and organochlorine pesticide residues in Lophius budegassa from the Mediterranean Sea (Italy). Mar. Pollut. Bull. 2004, 48, 743–748. [Google Scholar] [CrossRef]
- Brumovský, M.; Bečanová, J.; Kohoutek, J.; Borghini, M.; Nizzetto, L. Contaminants of emerging concern in the open sea waters of the Western Mediterranean. Environ. Pollut. 2017, 229, 976–983. [Google Scholar] [CrossRef]
- Reboa, A.; Mandich, A.; Cutroneo, L.; Carbone, C.; Malatesta, A.; Capello, M. Baseline evaluation of metal contamination in teleost fishes of the Gulf of Tigullio (north-western Italy): Histopathology and chemical analysis. Mar. Pollut. Bull. 2019, 141, 16–23. [Google Scholar] [CrossRef]
- Lounas, R.; Kasmi, H.; Chernai, S.; Amarni, N.; Ghebriout, L.; Hamdi, B. Heavy metal concentrations in wild and farmed gilthead sea bream from southern Mediterranean Sea—Human health risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 30732–30742. [Google Scholar] [CrossRef] [PubMed]
- Iamiceli, A.L.; Ubaldi, A.; Lucchetti, D.; Brambilla, G.; Abate, V.; De Felip, E.; De Filippis, S.P.; Dellatte, E.; De Luca, S.; Ferri, F.; et al. Metals in Mediterranean aquatic species. Mar. Pollut. Bull. 2015, 94, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, M.; Scarcella, G. Mediterranean sea: A failure of the European fisheries management system. Front. Mar. Sci. 2017, 4, 72. [Google Scholar] [CrossRef]
- Boudouresque, C.F. Marine biodiversity warming vs. biological invasions and overfishing in the Mediterranean Sea: Take care, ‘One Train can hide another’. MOJ Ecol. Environ. Sci. 2017, 2, 172–183. [Google Scholar] [CrossRef]
- van Overzee, H.M.J.; Rijnsdorp, A.D. Effects of fishing during the spawning period: Implications for sustainable management. Rev. Fish Biol. Fish. 2015, 25, 65–83. [Google Scholar] [CrossRef]
- Fiorentino, F.; Badalamenti, F.; D’Anna, G.; Garofalo, G.; Gianguzza, P.; Gristina, M.; Pipitone, C.; Rizzo, P.; Fortibuoni, T. Changes in spawning-stock structure and recruitment pattern of red mullet, Mullus barbatus, after a trawl ban in the Gulf of Castellammare (central Mediterranean Sea). ICES J. Mar. Sci. 2008, 65, 1175–1183. [Google Scholar] [CrossRef]
- Lloret, J.; Muñoz, M.; Casadevall, M. Threats posed by artisanal fisheries to the reproduction of coastal fish species in a Mediterranean marine protected area. Estuar. Coast. Shelf Sci. 2012, 113, 133–140. [Google Scholar] [CrossRef]
- Colloca, F.; Scarcella, G.; Libralato, S. Recent trends and impacts of fisheries exploitation on Mediterranean stocks and ecosystems. Front. Mar. Sci. 2017, 4, 244. [Google Scholar] [CrossRef]
- Albo-Puigserver, M.; Pennino, M.G.; Bellido, J.M.; Colmenero, A.I.; Giráldez, A.; Hidalgo, M.; Gabriel Ramírez, J.; Steenbeek, J.; Torres, P.; Cousido-Rocha, M.; et al. Changes in life history traits of small pelagic fish in the Western Mediterranean Sea. Front. Mar. Sci. 2021, 8, 570354. [Google Scholar] [CrossRef]
- Hidalgo, M.; Rouyer, T.; Molinero, J.C.; Massutí, E.; Moranta, J.; Guijarro, B.; Stenseth, N.C. Synergistic effects of fishing-induced demographic changes and climate variation on fish population dynamics. Mar. Ecol. Prog. Ser. 2011, 426, 1–12. [Google Scholar] [CrossRef]
- Coll, M.; Albo-Puigserver, M.; Navarro, J.; Palomera, I.; Dambacher, J.M. Who is to blame? Plausible pressures on small pelagic fish population changes in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 2018, 617, 277–294. [Google Scholar] [CrossRef]
- FAO. The State of Mediterranean and Black Sea Fisheries; General Fisheries Commission for the Mediterranean: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Martín, P.; Sabatés, A.; Lloret, J.; Martin-Vide, J. Climate modulation of fish populations: The role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Clim. Chang. 2012, 110, 925–939. [Google Scholar] [CrossRef]
- Maynou, F.; Sabatés, A.; Raya, V. Changes in the spawning habitat of two small pelagic fish in the Northwestern Mediterranean. Fish. Oceanogr. 2020, 29, 202–214. [Google Scholar] [CrossRef]
- Basilone, G.; Ferreri, R.; Aronica, S.; Mazzola, S.; Bonanno, A.; Gargano, A.; Pulizzi, M.; Fontana, I.; Giacalone, G.; Calandrino, P.; et al. Reproduction and sexual maturity of European sardine (Sardina pilchardus) in the Central Mediterranean Sea. Front. Mar. Sci. 2021, 8, 715846. [Google Scholar] [CrossRef]
- Chemello, G.; Cerrone, G.L.; Tavolazzi, V.; Donato, F.; Tiralongo, F.; Gioacchini, G. One year study on the reproductive biology, ovary characterization and age of the European sardine (Sardina pilchardus) in the middle-west Adriatic Sea. Front. Mar. Sci. 2023, 10, 1266894. [Google Scholar] [CrossRef]
- Zorica, B.; Anđelić, I.; Keč, V.Č. Sardine (Sardina pilchardus) spawning in the light of fat content analysis. Sci. Mar. 2019, 83, 207–213. [Google Scholar] [CrossRef]
- Hure, M.; Mustać, B. Feeding ecology of Sardina pilchardus considering co-occurring small pelagic fish in the eastern Adriatic Sea. Mar. Biodivers. 2020, 50, 40. [Google Scholar] [CrossRef]
- Caballero-Huertas, M.; Frigola-Tepe, X.; Viñas, J.; Muñoz, M. Somatic condition and reproductive potential as a tandem in European sardine: An analysis with an environmental perspective in the Northern Adriatic (Gulf of Trieste). Fishes 2022, 7, 105. [Google Scholar] [CrossRef]
- Mustać, B.; Sinovčić, G. Reproduction, length-weight relationship and condition of sardine, Sardina pilchardus (Walbaum, 1792), in the eastern Middle Adriatic Sea (Croatia). Period. Biol. 2010, 112, 133–138. [Google Scholar]
- Fossi, M.C.; Casini, S.; Marsili, L.; Neri, G.; Mori, G.; Ancora, S.; Moscatelli, A.; Ausili, A.; Notarbartolo-Di-Sciara, G. Biomarkers for endocrine disruptors in three species of Mediterranean large pelagic fish. Proc. Mar. Environ. Res. 2002, 54, 667–671. [Google Scholar] [CrossRef]
- De Metrio, G.; Corriero, A.; Desantis, S.; Zubani, D.; Cirillo, F.; Deflorio, M.; Bridges, C.R.; Eicker, J.; De La Serna, J.M.; Megalofonou, P.; et al. Evidence of a high percentage of intersex in the Mediterranean swordfish (Xiphias gladius L.). Mar. Pollut. Bull. 2003, 46, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Fossi, M.C.; Casini, S.; Ancora, S.; Moscatelli, A.; Ausili, A.; Notarbartolo-Di-Sciara, G. Do endocrine disrupting chemicals threaten Mediterranean swordfish? Preliminary results of vitellogenin and Zona radiata proteins in Xiphias gladius. Mar. Environ. Res. 2001, 52, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Desantis, S.; Corriero, A.; Cirillo, F.; Deflorio, M.; Brill, R.; Griffiths, M.; Lopata, A.L.; De La Serna, J.M.; Bridges, C.R.; Kime, D.E.; et al. Immunohistochemical localization of CYP1A, vitellogenin and Zona radiata proteins in the liver of swordfish (Xiphias gladius L.) taken from the Mediterranean Sea, South Atlantic, South Western Indian and Central North Pacific Oceans. Aquat. Toxicol. 2005, 71, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bobe, J.; Labbé, C. Egg and sperm quality in fish. Gen. Comp. Endocrinol. 2010, 165, 535–548. [Google Scholar] [CrossRef]
- Izquierdo, M.S.; Fernández-Palacios, H.; Tacon, A.G.J. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 2001, 197, 25–42. [Google Scholar] [CrossRef]
- Kunz, Y.W. Developmental Biology of Teleost Fishes; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Tocher, D.R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 2015, 449, 94–107. [Google Scholar] [CrossRef]
- Izquierdo, M.; Koven, W. Lipids. In Larval Fish Nutrition; Wiley-Blackwell: Oxford, UK, 2011; pp. 47–81. [Google Scholar]
- Fei, S.; Chen, Z.; Duan, Y.; Haokun, L.; Jin, J.; Yang, Y.; Han, D.; Zhu, X.; Xie, S. Growth, reproduction, fatty acid profiles and offspring performance of broodstock yellow catfish Pelteobagrus fulvidraco fed diets with different lipid levels. Aquaculture 2024, 580, 740273. [Google Scholar] [CrossRef]
- Beirão, J.; Soares, F.; Pousão-Ferreira, P.; Diogo, P.; Dias, J.; Dinis, M.T.; Herráez, M.P.; Cabrita, E. The effect of enriched diets on Solea senegalensis sperm quality. Aquaculture 2015, 435, 187–194. [Google Scholar] [CrossRef]
- Samaee, S.M.; Manteghi, N.; Estévez, A. Zebrafish as a model to screen the potential of fatty acids in reproduction. Zebrafish 2019, 16, 47–64. [Google Scholar] [CrossRef]
- Turchini, G.M.; Francis, D.S. Fatty acid metabolism (desaturation, elongation and β-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. Br. J. Nutr. 2009, 102, 69–81. [Google Scholar] [CrossRef]
- Turchini, G.M.; Trushenski, J.T.; Glencross, B.D. Thoughts for the future of aquaculture nutrition: Realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. N. Am. J. Aquac. 2019, 81, 13–39. [Google Scholar] [CrossRef]
- Bandara, T. Alternative feed ingredients in aquaculture: Opportunities and challenges. J. Entomol. Zool. Stud. 2018, 6, 3087–3094. [Google Scholar]
- Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, Å.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Oliva-Teles, A.; Enes, P.; Peres, H. Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. In Feed and Feeding Practices in Aquaculture; Woodhead Publishing: Sawston, UK, 2015; pp. 203–233. [Google Scholar] [CrossRef]
- Turchini, G.M.; Torstensen, B.E.; Ng, W.K. Fish oil replacement in finfish nutrition. Rev. Aquac. 2009, 1, 10–57. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- Ribas, L.; Piferrer, F. The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Rev. Aquac. 2014, 6, 209–240. [Google Scholar] [CrossRef]
- Yıldız, M.; Ofori-Mensah, S.; Arslan, M.; Yamaner, G.; Ekici, A.; Baltacı, M.A.; Korkmaz, F.; Tacer-Tanas, Ş. Effects of different dietary lipid resources on sperm quality and reproductive success in rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2021, 52, 3804–3814. [Google Scholar] [CrossRef]
- Yıldız, M.; Ofori-Mensah, S.; Arslan, M.; Ekici, A.; Yamaner, G.; Baltacı, M.A.; Tacer, Ş.; Korkmaz, F. Effects of different dietary oils on egg quality and reproductive performance in rainbow trout Oncorhynchus mykiss. Anim. Reprod. Sci. 2020, 221, 106545. [Google Scholar] [CrossRef] [PubMed]
- Noori, F.; Agh, N.; Jafari, F.; Jalili, R.; Gisbert, E.; Torfi Mozanzadeh, M. Dietary fatty acid profiling in plant protein-rich diets affects the reproductive performance, egg fatty acid profile and haematological parameters in female rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2019, 25, 1050–1062. [Google Scholar] [CrossRef]
- Lazzarotto, V.; Corraze, G.; Leprevost, A.; Quillet, E.; Dupont-Nivet, M.; Médale, F. Three-year breeding cycle of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet, totally free of marine resources: Consequences for reproduction, fatty acid composition and progeny survival. PLoS ONE 2015, 10, e0117609. [Google Scholar] [CrossRef]
- Lee, K.-J.; Rinchard, J.; Dabrowski, K.; Babiak, I.; Ottobre, J.S.; Christensen, J.E. Long-term effects of dietary cottonseed meal on growth and reproductive performance of rainbow trout: Three-year study. Anim. Feed Sci. Technol. 2006, 126, 93–106. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A.J. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Woźny, M.; Dobosz, S.; Hliwa, P.; Gomułka, P.; Król, J.; Obremski, K.; Blahova, J.; Svobodova, Z.; Michalik, O.; Ocalewicz, K.; et al. Feed-borne exposure to zearalenone impairs reproduction of rainbow trout. Aquaculture 2020, 528, 735522. [Google Scholar] [CrossRef]
- Glencross, B.D. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquac. 2009, 1, 71–124. [Google Scholar] [CrossRef]
- Tocher, D.R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 2010, 41, 717–732. [Google Scholar] [CrossRef]
- Skjærven, K.H.; Adam, A.-C.; Saito, T.; Waagbø, R.; Espe, M. Epigenetics in fish nutritional programming. In Epigenetics in Aquaculture; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 231–244. ISBN 9781119821946. [Google Scholar]
- Clarkson, M.; Migaud, H.; Metochis, C.; Vera, L.M.; Leeming, D.; Tocher, D.R.; Taylor, J.F. Early nutritional intervention can improve utilisation of vegetable-based diets in diploid and triploid Atlantic salmon (Salmo salar L.). Br. J. Nutr. 2017, 118, 17–29. [Google Scholar] [CrossRef]
- Turkmen, S.; Castro, P.L.; Caballero, M.J.; Hernández-Cruz, C.M.; Saleh, R.; Zamorano, M.J.; Regidor, J.; Izquierdo, M. Nutritional stimuli of gilthead seabream (Sparus aurata) larvae by dietary fatty acids: Effects on larval performance, gene expression and neurogenesis. Aquac. Res. 2017, 48, 202–213. [Google Scholar] [CrossRef]
- Rocha, F.; Dias, J.; Geurden, I.; Dinis, M.T.; Panserat, S.; Engrola, S. Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: An in vivo approach using 14C-starch. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 201, 189–199. [Google Scholar] [CrossRef]
- Balasubramanian, M.N.; Panserat, S.; Dupont-Nivet, M.; Quillet, E.; Montfort, J.; Le Cam, A.; Medale, F.; Kaushik, S.J.; Geurden, I. Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genom. 2016, 17, 449. [Google Scholar] [CrossRef]
- Geurden, I.; Borchert, P.; Balasubramanian, M.N.; Schrama, J.W.; Dupont-Nivet, M.; Quillet, E.; Kaushik, S.J.; Panserat, S.; Médale, F. The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PLoS ONE 2013, 8, e83162. [Google Scholar] [CrossRef]
- Fernández-Palacios, H.; Izquierdo, M.S.; Robaina, L.; Valencia, A.; Salhi, M.; Vergara, J. Effect of n − 3 HUFA level in broodstock diets on egg quality of gilthead sea bream (Sparus aurata L.). Aquaculture 1995, 132, 325–337. [Google Scholar] [CrossRef]
- Izquierdo, M.S.; Turkmen, S.; Montero, D.; Zamorano, M.J.; Afonso, J.M.; Karalazos, V.; Fernández-Palacios, H. Nutritional programming through broodstock diets to improve utilization of very low fishmeal and fish oil diets in gilthead sea bream. Aquaculture 2015, 449, 18–26. [Google Scholar] [CrossRef]
- Turkmen, S.; Zamorano, M.J.; Fernández-Palacios, H.; Hernández-Cruz, C.M.; Montero, D.; Robaina, L.; Izquierdo, M. Parental nutritional programming and a reminder during juvenile stage affect growth, lipid metabolism and utilisation in later developmental stages of a marine teleost, the gilthead sea bream (Sparus aurata). Br. J. Nutr. 2017, 118, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Palacios, H.; Norberg, B.; Izquierdo, M.; Hamre, K. Effects of broodstock diet on eggs and larvae. In Larval Fish Nutrition; Holt, G.J., Ed.; Wiley-Blackwell: Chichester, UK, 2011; ISBN 9780813817927. [Google Scholar]
- Xu, H.; Turkmen, S.; Rimoldi, S.; Terova, G.; Zamorano, M.J.; Afonso, J.M.; Sarih, S.; Fernández-Palacios, H.; Izquierdo, M. Nutritional intervention through dietary vegetable proteins and lipids to gilthead sea bream (Sparus aurata) broodstock affects the offspring utilization of a low fishmeal/fish oil diet. Aquaculture 2019, 513, 734402. [Google Scholar] [CrossRef]
- Ferosekhan, S.; Xu, H.; Turkmen, S.; Gómez, A.; Afonso, J.M.; Fontanillas, R.; Rosenlund, G.; Kaushik, S.; Izquierdo, M. Reproductive performance of gilthead seabream (Sparus aurata) broodstock showing different expression of fatty acyl desaturase 2 and fed two dietary fatty acid profiles. Sci. Rep. 2020, 10, 15547. [Google Scholar] [CrossRef] [PubMed]
- Zarantoniello, M.; Pulido Rodriguez, L.F.; Randazzo, B.; Cardinaletti, G.; Giorgini, E.; Belloni, A.; Secci, G.; Faccenda, F.; Pulcini, D.; Parisi, G.; et al. Conventional feed additives or red claw crayfish meal and dried microbial biomass as feed supplement in fish meal-free diets for rainbow trout (Oncorhynchus mykiss): Possible ameliorative effects on growth and gut health status. Aquaculture 2022, 554, 738137. [Google Scholar] [CrossRef]
- El-Gamal, M.M.; Othman, S.I.; Abdel-Rahim, M.M.; Mansour, A.T.; Alsaqufi, A.S.; El Atafy, M.M.; Mona, M.H.; Allam, A.A. Palaemon and artemia supplemented diet enhances sea bass, Dicentrarchus labrax, broodstock reproductive performance and egg quality. Aquac. Rep. 2020, 16, 100290. [Google Scholar] [CrossRef]
- Sahin, T.; Yılmaz, S.; Gürkan, M.; Ergün, S. Effects of Rapana venosa meal-supplemented diets on reproduction, histopathology and some blood parameters of rainbow trout (Oncorhynchus mykiss) broodstock. Aquac. Res. 2021, 52, 4897–4910. [Google Scholar] [CrossRef]
- Zarantoniello, M.; de Oliveira, A.A.; Sahin, T.; Freddi, L.; Torregiani, M.; Tucciarone, I.; Chemello, G.; Cardinaletti, G.; Gatto, E.; Parisi, G.; et al. Enhancing rearing of European seabass (Dicentrarchus labrax) in aquaponic systems: Investigating the effects of enriched black soldier fly (Hermetia illucens) prepupae meal on fish welfare and quality traits. Animals 2023, 13, 1921. [Google Scholar] [CrossRef]
- Ratti, S.; Zarantoniello, M.; Chemello, G.; Giammarino, M.; Palermo, F.A.; Cocci, P.; Mosconi, G.; Tignani, M.V.; Pascon, G.; Cardinaletti, G.; et al. Spirulina-enriched substrate to rear black soldier fly (Hermetia illucens) prepupae as alternative aquafeed ingredient for rainbow trout (Oncorhynchus mykiss) diets: Possible effects on zootechnical performances, gut and liver health status, and fillet quality. Animals 2023, 13, 173. [Google Scholar] [CrossRef]
- Shah, M.R.; Lutzu, G.A.; Alam, A.; Sarker, P.; Kabir Chowdhury, M.A.; Parsaeimehr, A.; Liang, Y.; Daroch, M. Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 2017, 30, 197–213. [Google Scholar] [CrossRef]
- Alagawany, M.; Taha, A.E.; Noreldin, A.; El-Tarabily, K.A.; Abd El-Hack, M.E. Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture 2021, 542, 736841. [Google Scholar] [CrossRef]
- Carneiro, W.F.; Castro, T.F.D.; Orlando, T.M.; Meurer, F.; de Jesus Paula, D.A.; do Carmo Rodrigues Virote, B.; da Cunha Barreto Vianna, A.R.; Murgas, L.D.S. Replacing fish meal by Chlorella sp. meal: Effects on zebrafish growth, reproductive performance, biochemical parameters and digestive enzymes. Aquaculture 2020, 528, 735612. [Google Scholar] [CrossRef]
- Teimouri, M.; Yeganeh, S.; Mianji, G.R.; Najafi, M.; Mahjoub, S. The effect of Spirulina platensis meal on antioxidant gene expression, total antioxidant capacity, and lipid peroxidation of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 2019, 45, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Chong, A.S.C.; Ishak, S.D.; Osman, Z.; Hashim, R. Effect of dietary protein level on the reproductive performance of female swordtails Xiphophorus helleri (Poeciliidae). Aquaculture 2004, 234, 381–392. [Google Scholar] [CrossRef]
- Pati, D.; Habibi, H.R. Involvement of protein kinase C and arachidonic acid pathways in the gonadotropin-releasing hormone regulation of oocyte meiosis and follicular steroidogenesis in the goldfish ovary. Biol. Reprod. 2002, 66, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Khanzadeh, M.; Esmaeili Fereidouni, A.; Seifi Berenjestanaki, S. Effects of partial replacement of fish meal with Spirulina platensis meal in practical diets on growth, survival, body composition, and reproductive performance of three-spot gourami (Trichopodus trichopterus) (Pallas, 1770). Aquac. Int. 2016, 24, 69–84. [Google Scholar] [CrossRef]
- Güroy, B.; Şahin, İ.; Mantoğlu, S.; Kayalı, S. Spirulina as a natural carotenoid source on growth, pigmentation and reproductive performance of yellow tail cichlid Pseudotropheus acei. Aquac. Int. 2012, 20, 869–878. [Google Scholar] [CrossRef]
- Takeuchi, T.; Lu, J.; Yoshizaki, G.; Satoh, S. Effect on the growth and body composition of juvenile tilapia Oreochromis niloticus fed raw Spirulina. Fish. Sci. 2002, 68, 34–40. [Google Scholar] [CrossRef]
- Jovanovic, S.; Dietrich, D.; Becker, J.; Kohlstedt, M.; Wittmann, C. Microbial production of polyunsaturated fatty acids—High-value ingredients for aquafeed, superfoods, and pharmaceuticals. Curr. Opin. Biotechnol. 2021, 69, 199–211. [Google Scholar] [CrossRef]
- Patel, A.; Karageorgou, D.; Katapodis, P.; Sharma, A.; Rova, U.; Christakopoulos, P.; Matsakas, L. Bioprospecting of thraustochytrids for omega-3 fatty acids: A sustainable approach to reduce dependency on animal sources. Trends Food Sci. Technol. 2021, 115, 433–444. [Google Scholar] [CrossRef]
- Katerina, K.; Berge, G.M.; Turid, M.; Aleksei, K.; Grete, B.; Trine, Y.; Mats, C.; John, S.; Bente, R. Microalgal Schizochytrium limacinum biomass improves growth and filet quality when used long-term as a replacement for fish oil, in modern salmon diets. Front. Mar. Sci. 2020, 7, 57. [Google Scholar] [CrossRef]
- Cardona, E.; Segret, E.; Cachelou, Y.; Vanderesse, T.; Larroquet, L.; Hermann, A.; Surget, A.; Corraze, G.; Cachelou, F.; Bobe, J.; et al. Effect of micro-algae Schizochytrium sp. supplementation in plant diet on reproduction of female rainbow trout (Oncorhynchus mykiss): Maternal programming impact of progeny. J. Anim. Sci. Biotechnol. 2022, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Zarantoniello, M.; Randazzo, B.; Cardinaletti, G.; Truzzi, C.; Chemello, G.; Riolo, P.; Olivotto, I. Possible dietary effects of insect-based diets across zebrafish (Danio rerio) generations: A multidisciplinary study on the larval phase. Animals 2021, 11, 751. [Google Scholar] [CrossRef] [PubMed]
- Chemello, G.; Zarantoniello, M.; Randazzo, B.; Gioacchini, G.; Truzzi, C.; Cardinaletti, G.; Riolo, P.; Olivotto, I. Effects of black soldier fly (Hermetia illucens) enriched with Schizochytrium sp. on zebrafish (Danio rerio) reproductive performances. Aquaculture 2022, 550, 737853. [Google Scholar] [CrossRef]
- Ewald, N.; Vidakovic, A.; Langeland, M.; Kiessling, A.; Sampels, S.; Lalander, C. Fatty acid composition of black soldier fly larvae (Hermetia illucens)—Possibilities and limitations for modification through diet. Waste Manag. 2020, 102, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, B.; Zarantoniello, M.; Gioacchini, G.; Giorgini, E.; Truzzi, C.; Notarstefano, V.; Cardinaletti, G.; Huyen, K.T.; Carnevali, O.; Olivotto, I. Can insect-based diets affect Zebrafish (Danio rerio) reproduction? A multidisciplinary study. Zebrafish 2020, 17, 287–304. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kapuscinski, A.R.; Lanois, A.J.; Livesey, E.D.; Bernhard, K.P.; Coley, M.L. Towards sustainable aquafeeds: Complete substitution of fish oil with marine microalga Schizochytrium sp. improves growth and fatty acid deposition in juvenile Nile tilapia (Oreochromis niloticus). PLoS ONE 2016, 11, e0156684. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Hemre, G.I.; Mommsen, T.P. Carbohydrates in fish nutrition: Digestion and absorption in postlarval stages. Aquac. Nutr. 2005, 11, 103–122. [Google Scholar] [CrossRef]
- Cardinaletti, G.; Messina, M.; Bruno, M.; Tulli, F.; Poli, B.M.; Giorgi, G.; Chini-Zittelli, G.; Tredici, M.; Tibaldi, E. Effects of graded levels of a blend of Tisochrysis lutea and Tetraselmis suecica dried biomass on growth and muscle tissue composition of European sea bass (Dicentrarchus labrax) fed diets low in fish meal and oil. Aquaculture 2018, 485, 173–182. [Google Scholar] [CrossRef]
- Al-Feky, S.S.A.; El-Sayed, A.-F.M.; Ezzat, A.A. Dietary taurine improves reproductive performance of Nile tilapia (Oreochromis niloticus) broodstock. Aquac. Nutr. 2016, 22, 392–399. [Google Scholar] [CrossRef]
- Gallego, V.; Asturiano, J.F. Fish sperm motility assessment as a tool for aquaculture research: A historical approach. Rev. Aquac. 2019, 11, 697–724. [Google Scholar] [CrossRef]
- Sarmento, N.; Martins, E.F.F.; Costa, D.C.; Silva, W.S.; Mattioli, C.C.; Luz, M.R.; Luz, R.K. Effects of supplemental dietary vitamin C on quality of semen from Nile tilapia (Oreochromis niloticus) breeders. Reprod. Domest. Anim. 2017, 52, 144–152. [Google Scholar] [CrossRef]
- Dada, A.A. Effect of ascorbic acid supplementation in broodstock feed on sperm quality of african sharptooth catfish (Clarias gariepinus). Indian J. Anim. Res. 2012, 46, 213–218. [Google Scholar]
- Castro, J.; Magnotti, C.; Angelo, M.; Sterzelecki, F.; Pedrotti, F.; Oliveira, M.F.; Soligo, T.; Fracalossi, D.; Cerqueira, V.R. Effect of ascorbic acid supplementation on zootechnical performance, haematological parameters and sperm quality of lebranche mullet Mugil liza. Aquac. Res. 2019, 50, 3267–3274. [Google Scholar] [CrossRef]
- Rohani, M.F.; Islam, S.M.M.; Hossain, M.K.; Ferdous, Z.; Siddik, M.A.B.; Nuruzzaman, M.; Padeniya, U.; Brown, C.; Shahjahan, M. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish Shellfish Immunol. 2022, 120, 569–589. [Google Scholar] [CrossRef] [PubMed]
- Akbari Nargesi, E.; Falahatkar, B.; Sajjadi, M.M. Dietary supplementation of probiotics and influence on feed efficiency, growth parameters and reproductive performance in female rainbow trout (Oncorhynchus mykiss) broodstock. Aquac. Nutr. 2020, 26, 98–108. [Google Scholar] [CrossRef]
- Py, C.; Elizondo-González, R.; Peña-Rodríguez, A. Compensatory growth: Fitness cost in farmed fish and crustaceans. Rev. Aquac. 2022, 14, 1389–1417. [Google Scholar] [CrossRef]
- Imsland, A.K.; Gunnarsson, S. Growth and maturation in Arctic charr (Salvelinus alpinus) in response to different feed rations. Aquaculture 2011, 318, 407–411. [Google Scholar] [CrossRef]
- Cleveland, B.M.; Kenney, P.B.; Manor, M.L.; Weber, G.M. Effects of feeding level and sexual maturation on carcass and fillet characteristics and indices of protein degradation in rainbow trout (Oncorhynchus mykiss). Aquaculture 2012, 338–341, 228–236. [Google Scholar] [CrossRef]
- Caldwell, L.K.; Pierce, A.L.; Riley, L.G.; Duncan, C.A.; Nagler, J.J. Plasma Nesfatin-1 is not affected by long-term food restriction and does not predict rematuration among iteroparous female rainbow trout (Oncorhynchus mykiss). PLoS ONE 2014, 9, e85700. [Google Scholar] [CrossRef]
- Cardona, E.; Bugeon, J.; Guivarc’h, F.; Goardon, L.; Panserat, S.; Labbé, L.; Corraze, G.; Skiba-Cassy, S.; Bobe, J. Positive impact of moderate food restriction on reproductive success of the rainbow trout Oncorhynchus mykiss. Aquaculture 2019, 502, 280–288. [Google Scholar] [CrossRef]
- Kar, S.; Sangem, P.; Anusha, N.; Senthilkumaran, B. Endocrine disruptors in teleosts: Evaluating environmental risks and biomarkers. Aquac. Fish. 2021, 6, 1–26. [Google Scholar] [CrossRef]
- Kavlock, R.J.; Daston, G.P.; DeRosa, C.; Fenner-Crisp, P.; Gray, L.E.; Kaattari, S.; Lucier, G.; Luster, M.; Mac, M.J.; Maczka, C.; et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the U.S. EPA-sponsored workshop. Environ. Health Perspect. 1996, 104, 715–740. [Google Scholar] [CrossRef]
- Carnevali, O.; Santangeli, S.; Forner-Piquer, I.; Basili, D.; Maradonna, F. Endocrine-disrupting chemicals in aquatic environment: What are the risks for fish gametes? Fish Physiol. Biochem. 2018, 44, 1561–1576. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Chianese, R.; Troisi, J.; Richards, S.; Nori, S.L.; Fasano, S.; Guida, M.; Plunk, E.; Viggiano, A.; Pierantoni, R.; et al. Neuro-toxic and reproductive effects of BPA. Curr. Neuropharmacol. 2019, 17, 1109–1132. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, W.; De Felici, M.; Zhang, X.F. Di(2-ethylhexyl)phthalate: Adverse effects on folliculogenesis that cannot be neglected. Environ. Mol. Mutagen. 2016, 57, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sheng, N.; Wang, M.; Zhang, H.; Dai, J. Zebrafish reproductive toxicity induced by chronic perfluorononanoate exposure. Aquat. Toxicol. 2016, 175, 269–276. [Google Scholar] [CrossRef]
- Maradonna, F.; Meccariello, R. EDCs: Focus on reproductive alterations in mammalian and nonmammalian models. In Environmental Contaminants and Endocrine Health; Academic Press: New York, NY, USA, 2023; pp. 89–108. [Google Scholar] [CrossRef]
- Herráez, M.P.; Lombó, M.; González-Rojo, S. The EDCs as epigenetic disruptors: Implications for development and health. In Environmental Contaminants and Endocrine Health; Academic Press: New York, NY, USA, 2023; pp. 109–124. [Google Scholar] [CrossRef]
- Cui, J.; Tian, S.; Gu, Y.; Wu, X.; Wang, L.; Wang, J.; Chen, X.; Meng, Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. Chemosphere 2023, 340, 139825. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Giunchi, V.; Fusaroli, M.; Linder, E.; Villén, J.; Wettermark, B.; Nekoro, M.; Raschi, E.; Lunghi, C.; Poluzzi, E. The environmental impact of pharmaceuticals in Italy: Integrating healthcare and eco-toxicological data to assess and potentially mitigate their diffusion to water supplies. Br. J. Clin. Pharmacol. 2023, 89, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Grabicova, K.; Grabic, R.; Fedorova, G.; Fick, J.; Cerveny, D.; Kolarova, J.; Turek, J.; Zlabek, V.; Randak, T. Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream. Water Res. 2017, 124, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Manjarrés-López, D.P.; Peña-Herrera, J.M.; Benejam, L.; Montemurro, N.; Pérez, S. Assessment of wastewater-borne pharmaceuticals in tissues and body fluids from riverine fish. Environ. Pollut. 2023, 324, 121374. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Cao, J.; Wang, G.; Wang, T.; Chen, J.; Wenjing, G.; Wu, P.; He, X.; Xie, L. Copper caused reproductive endocrine disruption in zebrafish (Danio rerio). Aquat. Toxicol. 2019, 211, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-Based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Gao, L.; Zhang, S.; Du, D.; Xue, Y. Effects of copper oxide nanoparticles on reproductive system of zebrafish. Ecotoxicol. Environ. Saf. 2023, 263, 115252. [Google Scholar] [CrossRef]
- Alsop, D.; Brown, S.; Van Der Kraak, G. The effects of copper and benzo[a]pyrene on retinoids and reproduction in zebrafish. Aquat. Toxicol. 2007, 82, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Luo, X.; Panga, M.J.; Appiah, C.; Retyunskiy, V.; Zhu, L.; Zhao, Y. Toxic effects and potential mechanisms of zinc pyrithione (ZPT) exposure on sperm and testicular injury in zebrafish. J. Hazard. Mater. 2024, 461, 132575. [Google Scholar] [CrossRef]
- Paul, V.; Krishnakumar, S.; Gowd, G.S.; Nair, S.V.; Koyakutty, M.; Paul-Prasanth, B. Sex-dependent bioaccumulation of nano zinc oxide and its adverse effects on sexual behavior and reproduction in Japanese medaka. ACS Appl. Bio Mater. 2021, 4, 7408–7421. [Google Scholar] [CrossRef]
- Zheng, J.L.; Zhu, Q.L.; Hu, X.C.; Parsons, D.; Lawson, R.; Hogstrand, C. Transgenerational effects of zinc in zebrafish following early life stage exposure. Sci. Total Environ. 2022, 828, 154443. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.L.; Peng, L.B.; Xia, L.P.; Li, J.; Zhu, Q.L. Effects of continuous and intermittent cadmium exposure on HPGL axis, GH/IGF axis and circadian rhythm signaling and their consequences on reproduction in female zebrafish: Biomarkers independent of exposure regimes. Chemosphere 2021, 282, 130879. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhao, Y.; Wang, S.; Xing, H.; Dong, W.F. Effect of combined exposure to silica nanoparticles and cadmium chloride on female zebrafish ovaries. Environ. Toxicol. Pharmacol. 2021, 87, 103720. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.M.; Tsai, P.J.; Chou, M.Y.; Wang, W.-D. Effects of maternal cadmium exposure on female reproductive functions, gamete quality, and offspring development in Zebrafish (Danio rerio). Arch. Environ. Contam. Toxicol. 2013, 65, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Acosta, I.B.; Junior, A.S.V.; e Silva, E.F.; Cardoso, T.F.; Caldas, J.S.; Jardim, R.D.; Corcini, C.D. Effects of exposure to cadmium in sperm cells of zebrafish, Danio rerio. Toxicol. Rep. 2016, 3, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.F.; Li, Y.W.; Liu, Z.H.; Chen, Q.L. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis. Aquat. Toxicol. 2016, 177, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; An, J.; Xie, D.; Gong, S.; Lian, X.; Liu, Z.; Shen, Y.; Li, Y. Suppression and recovery of reproductive behavior induced by early life exposure to mercury in zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 239, 108876. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Chen, Q.; Gong, S.; An, J.; Li, Y.; Lian, X.; Liu, Z.; Shen, Y.; Giesy, J.P. Exposure of zebrafish to environmentally relevant concentrations of mercury during early life stages impairs subsequent reproduction in adults but can be recovered in offspring. Aquat. Toxicol. 2020, 229, 105655. [Google Scholar] [CrossRef] [PubMed]
- Carvan, M.J.; Kalluvila, T.A.; Klingler, R.H.; Larson, J.K.; Pickens, M.; Mora-Zamorano, F.X.; Connaughton, V.P.; Sadler-Riggleman, I.; Beck, D.; Skinner, M.K. Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish. PLoS ONE 2017, 12, e0176155. [Google Scholar] [CrossRef]
- Yang, C.H.; Kung, T.A.; Chen, P.J. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products. Environ. Pollut. 2019, 252, 1920–1932. [Google Scholar] [CrossRef]
- Chen, H.; Cao, J.; Li, L.; Wu, X.; Bi, R.; Klerks, P.L.; Xie, L. Maternal transfer and reproductive effects of Cr(VI) in Japanese medaka (Oryzias latipes) under acute and chronic exposures. Aquat. Toxicol. 2016, 171, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Hamid, N.; Deng, S.; Jia, P.P.; Pei, D.S. Individual and combined toxicogenetic effects of microplastics and heavy metals (Cd, Pb, and Zn) perturb gut microbiota homeostasis and gonadal development in marine medaka (Oryzias melastigma). J. Hazard. Mater. 2020, 397, 122795. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Luo, T.; Wang, D.; Zhao, Y.; Jin, Y.; Yang, G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms—A review. Sci. Total Environ. 2023, 900, 165732. [Google Scholar] [CrossRef] [PubMed]
- Foran, C.M.; Weston, J.; Slattery, M.; Brooks, B.W.; Huggett, D.B. Reproductive assessment of Japanese medaka (Oryzias latipes) following a four-week fluoxetine (SSRI) exposure. Arch. Environ. Contam. Toxicol. 2004, 46, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.P.; Ribeiro, Y.M.; Ferreira, C.S.; dos Santos Nassif Lacerda, S.M.; Rizzo, E. Exposure to acetaminophen impairs gametogenesis and fertility in zebrafish (Danio rerio). Arch. Toxicol. 2023, 97, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Morthorst, J.E.; Lund, B.F.; Holbech, H.; Bjerregaard, P. Two common mild analgesics have no effect on general endocrine mediated endpoints in zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2018, 204, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tan, J.T.T.; Emelyanov, A.; Korzh, V.; Gong, Z. Hepatic and extrahepatic expression of vitellogenin genes in the zebrafish, Danio rerio. Gene 2005, 356, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Constantine, L.A.; Green, J.W.; Schneider, S.Z. Ibuprofen: Fish short-term reproduction assay with zebrafish (Danio rerio) based on an extended OECD 229 protocol. Environ. Toxicol. Chem. 2020, 39, 1534–1545. [Google Scholar] [CrossRef] [PubMed]
- Flippin, J.L.; Huggett, D.; Foran, C.M. Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes. Aquat. Toxicol. 2007, 81, 73–78. [Google Scholar] [CrossRef]
- Yokota, H.; Higashi, K.; Hanada, E.; Matsuzaki, E.; Tsuruda, Y.; Suzuki, T.; Nakano, E.; Eguchi, S. Recovery from reproductive and morphological abnormalities in medaka (Oryzias latipes) following a 14-day exposure to diclofenac. Environ. Toxicol. Chem. 2017, 36, 3277–3283. [Google Scholar] [CrossRef]
- Yu, K.; Qiu, Y.; Shi, Y.; Yu, X.; Dong, T.; Wu, Y.; Li, H.; Huang, L. Association of long-term effects of low-level sulfamethoxazole with ovarian lipid and amino acid metabolism, sex hormone levels, and oocyte maturity in zebrafish. Ecotoxicol. Environ. Saf. 2022, 247, 114234. [Google Scholar] [CrossRef]
- Yan, Z.; Lu, G.; Ye, Q.; Liu, J. Long-term effects of antibiotics, norfloxacin, and sulfamethoxazole, in a partial life-cycle study with zebrafish (Danio rerio): Effects on growth, development, and reproduction. Environ. Sci. Pollut. Res. 2016, 23, 18222–18228. [Google Scholar] [CrossRef]
- Stenzel, A.; Wirt, H.; Patten, A.; Theodore, B.; King-Heiden, T. Larval exposure to environmentally relevant concentrations of triclosan impairs metamorphosis and reproductive fitness in zebrafish. Reprod. Toxicol. 2019, 87, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; He, J.; Han, P.; Qu, J.; Wang, X.; Wang, J. Long-term exposure to environmental relevant triclosan induces reproductive toxicity on adult zebrafish and its potential mechanism. Sci. Total Environ. 2022, 826, 154026. [Google Scholar] [CrossRef]
- Kim, B.; Ji, K.; Kho, Y.; Kim, P.G.; Park, K.; Kim, K.; Kim, Y.; Kim, K.T.; Choi, K. Effects of chronic exposure to cefadroxil and cefradine on Daphnia magna and Oryzias latipes. Chemosphere 2017, 185, 844–851. [Google Scholar] [CrossRef]
- Velmurugan, G.; Ramprasath, T.; Gilles, M.; Swaminathan, K.; Ramasamy, S. Gut microbiota, endocrine-disrupting chemicals, and the diabetes epidemic. Trends Endocrinol. Metab. 2017, 28, 612–625. [Google Scholar] [CrossRef]
- He, S.; Li, H.; Yu, Z.; Zhang, F.; Liang, S.; Liu, H.; Chen, H.; Lü, M.H. The gut microbiome and sex hormone-related diseases. Front. Microbiol. 2021, 12, 711137. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen–gut microbiome axis: Physiological and clinical implications. Maturitas 2017, 103, 45–53. [Google Scholar] [CrossRef]
- Ervin, S.M.; Li, H.; Lim, L.; Roberts, L.R.; Liang, X.; Mani, S.; Redinbo, M.R. Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J. Biol. Chem. 2019, 294, 18586–18599. [Google Scholar] [CrossRef]
- Papoulias, D.M.; Tillitt, D.E.; Talykina, M.G.; Whyte, J.J.; Richter, C.A. Atrazine reduces reproduction in Japanese medaka (Oryzias latipes). Aquat. Toxicol. 2014, 154, 230–239. [Google Scholar] [CrossRef]
- Richter, C.A.; Papoulias, D.M.; Whyte, J.J.; Tillitt, D.E. Evaluation of potential mechanisms of atrazine-induced reproductive impairment in fathead minnow (Pimephales promelas) and Japanese medaka (Oryzias latipes). Environ. Toxicol. Chem. 2016, 35, 2230–2238. [Google Scholar] [CrossRef] [PubMed]
- Brain, R.A.; Schneider, S.Z.; Anderson, J.C.; Knopper, L.D.; Wolf, J.C.; Hanson, M.L. Extended fish short term reproduction assays with the fathead minnow and Japanese medaka: No evidence of impaired fecundity from exposure to atrazine. Chemosphere 2018, 205, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, A.J.; Schneider, S.Z.; Anderson, J.C.; Knopper, L.D.; Brain, R.A. Fish short-term reproduction assay with atrazine and the Japanese medaka (Oryzias latipes). Environ. Toxicol. Chem. 2017, 36, 2327–2334. [Google Scholar] [CrossRef] [PubMed]
- Cleary, J.A.; Tillitt, D.E.; vom Saal, F.S.; Nicks, D.K.; Claunch, R.A.; Bhandari, R.K. Atrazine induced transgenerational reproductive effects in medaka (Oryzias latipes). Environ. Pollut. 2019, 251, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhu, K.; Wang, Q.; Chen, M.; He, C.; Yang, C.; Zuo, Z. Aryl hydrocarbon receptor agonist diuron and its metabolites cause reproductive disorders in male marine medaka (Oryzias melastigma). Chemosphere 2022, 305, 135388. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Zhou, Y.; Tang, R.; Yao, Y.; Zuo, Z.; Yang, C. Parental diuron exposure causes lower hatchability and abnormal ovarian development in offspring of medaka (Oryzias melastigma). Aquat. Toxicol. 2022, 244, 106106. [Google Scholar] [CrossRef] [PubMed]
- Flynn, K.; Lothenbach, D.; Whiteman, F.; Hammermeister, D.; Swintek, J.; Etterson, M.; Johnson, R. The effects of continuous diazinon exposure on growth and reproduction in Japanese medaka using a modified Medaka Extended One Generation Reproduction Test (MEOGRT). Ecotoxicol. Environ. Saf. 2018, 162, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Flynn, K.; Johnson, R.; Lothenbach, D.; Swintek, J.; Whiteman, F.; Etterson, M. The effects of combinations of limited ration and diazinon exposure on acetylcholinesterase activity, growth and reproduction in Oryzias latipes, the Japanese medaka. J. Appl. Toxicol. 2020, 40, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhang, L.; Chen, M.; Yang, Z.; Zuo, Z.; Wang, C. Exposure to difenoconazole inhibits reproductive ability in male marine medaka (Oryzias melastigma). J. Environ. Sci. 2018, 63, 126–132. [Google Scholar] [CrossRef]
- Dong, X.; Zuo, Z.; Guo, J.; Li, H.; Zhang, L.; Chen, M.; Yang, Z.; Wang, C. Reproductive effects of life-cycle exposure to difenoconazole on female marine medaka (Oryzias melastigma). Ecotoxicology 2017, 26, 772–781. [Google Scholar] [CrossRef]
- Chu, S.H.; Liao, P.H.; Chen, P.J. Developmental exposures to an azole fungicide triadimenol at environmentally relevant concentrations cause reproductive dysfunction in females of medaka fish. Chemosphere 2016, 152, 181–189. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombó, M.; Giommi, C.; Zarantoniello, M.; Chemello, G. A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals 2024, 14, 1597. https://doi.org/10.3390/ani14111597
Lombó M, Giommi C, Zarantoniello M, Chemello G. A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals. 2024; 14(11):1597. https://doi.org/10.3390/ani14111597
Chicago/Turabian StyleLombó, Marta, Christian Giommi, Matteo Zarantoniello, and Giulia Chemello. 2024. "A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction" Animals 14, no. 11: 1597. https://doi.org/10.3390/ani14111597
APA StyleLombó, M., Giommi, C., Zarantoniello, M., & Chemello, G. (2024). A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals, 14(11), 1597. https://doi.org/10.3390/ani14111597