Transcriptional Evaluation of Neuropeptides, Hormones, and Tissue Repair Modulators in the Skin of Gilthead Sea Bream (Sparus aurata L.) Subjected to Mechanical Damage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish and Rearing Condition
2.2. Experimental Design
2.3. Sampling
2.4. Isolation of RNA and cDNA Synthesis
2.5. Quantitative Real-Time PCR (qPCR)
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ceballos-Francisco, D.; Cordero, H.; Guardiola, F.A.; Cuesta, A.; Esteban, M.Á. Healing and mucosal immunity in the skin of experimentally wounded gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2017, 71, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Esteban, M.Á.; Cerezuela, R. Fish mucosal immunity: Skin. In Mucosal Health in Aquaculture; Elsevier: Amsterdam, The Netherlands, 2015; pp. 67–92. [Google Scholar]
- Tort, L.; Balasch, J.C.; Mackenzie, S. Fish immune system. A crossroads between innate and adaptive responses. Inmunología 2003, 22, 277–286. [Google Scholar]
- Khansari, A.R.; Balasch, J.C.; Vallejos-Vidal, E.; Teles, M.; Fierro-Castro, C.; Tort, L.; Reyes-López, F.E. Comparative study of stress and immune-related transcript outcomes triggered by Vibrio anguillarum bacterin and air exposure stress in liver and spleen of gilthead seabream (Sparus aurata), zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019, 86, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Engelsma, M.Y.; O Huising, M.; van Muiswinkel, W.B.; Flik, G.; Kwang, J.; Savelkoul, H.F.; Kemenade, B.V.-V. Neuroendocrine–immune interactions in fish: A role for interleukin-1. Vet. Immunol. Immunopathol. 2002, 87, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Barandica, L.M. Efectos de las Dietas Experimentales en la Respuesta Inmune de los Peces. 2010. Available online: https://www.educacion.gob.es/teseo/mostrarRef.do?ref=883776 (accessed on 4 March 2024).
- Engelsma, M.Y.; Stet, R.J.M.; Saeij, J.P.; Verburg-van Kemenade, B.M.L. Differential expression and haplotypic variation of two interleukin-1β genes in the common carp (Cyprinus carpio L.). Cytokine 2003, 22, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Parra, D.; Reyes-Lopez, F.E.; Tort, L. Mucosal immunity and B cells in teleosts: Effect of vaccination and stress. Front. Immunol. 2015, 6, 146583. [Google Scholar] [CrossRef] [PubMed]
- Reyes-López, F.E.; Ibarz, A.; Ordóñez-Grande, B.; Vallejos-Vidal, E.; Andree, K.B.; Balasch, J.C.; Fernández-Alacid, L.; Sanahuja, I.; Sánchez-Nuño, S.; Firmino, J.P.; et al. Skin multi-omics-based interactome analysis: Integrating the tissue and mucus exuded layer for a comprehensive understanding of the teleost mucosa functionality as model of study. Front. Immunol. 2021, 11, 613824. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Ermak, G.; Hwang, J.; Chakraborty, A.; Mazurkiewicz, J.E.; Mihm, M. Proopiomelanocortin, corticotropin releasing hormone and corticotropin releasing hormone receptor genes are expressed in human skin. FEBS Lett. 1995, 374, 113–116. [Google Scholar] [CrossRef]
- Slominski, A.; Ermak, G.; Mihm, M. ACTH receptor, CYP11A1, CYP17 and CYP21A2 genes are expressed in skin. J. Clin. Endocrinol. Metab. 1996, 81, 2746–2749. [Google Scholar]
- Slominski, A.; Zbytek, B.; Semak, I.; Sweatman, T.; Wortsman, J. CRH stimulates POMC activity and corticosterone production in dermal fibroblasts. J. Neuroimmunol. 2005, 162, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Zmijewski, M.A.; Skobowiat, C.; Zbytek, B.; Slominski, R.M.; Steketee, J.D. Sensing the environment: Regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv. Anat. Embryol. Cell. Biol. 2012, 212, v-115. [Google Scholar] [PubMed]
- Pondeljak, N.; Lugović-Mihić, L. Stress-induced interaction of skin immune cells, hormones, and neurotransmitters. Clin. Ther. 2020, 42, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Vallejos-Vidal, E.; Khansari, A.R.; Soliva-Dueso, L.; Balasch, J.C.; Tort, L.; Reyes-López, F.E. The direct exposure of cortisol does not modulate the expression of immune-related genes on tissue explants of mucosal surfaces in rainbow trout (Oncorhynchus mykiss) nor in gilthead Sea bream (Sparus aurata). Front. Mar. Sci. 2022, 9, 828050. [Google Scholar] [CrossRef]
- Cordero, H.; Ceballos-Francisco, D.; Cuesta, A.; Esteban, M.Á. Dorso-ventral skin characterization of the farmed fish gilthead seabream (Sparus aurata). PLoS ONE 2017, 12, e0180438. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ceballos-Francisco, D.; Guardiola, F.A.; Esteban, M.Á. Influence of skin wounds on the intestinal inflammatory response and barrier function: Protective role of dietary Shewanella putrefaciens SpPdp11 administration to gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2020, 99, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Parra, G.I.M. Aspectos clínicos y diagnóstico de laboratorio de la vaginosis bacteriana. Rev. Habanera Cienc. Médicas 2015, 14, 611–623. [Google Scholar]
- Chen, Z.; Ceballos-Francisco, D.; Guardiola, F.A.; Huang, D.; Esteban, M.Á. Skin wound healing in gilthead seabream (Sparus aurata L.) fed diets supplemented with arginine. Fish Shellfish Immunol. 2020, 104, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.A.; Power, D.M. Skin and scale regeneration after mechanical damage in a teleost. Mol. Immunol. 2018, 95, 73–82. [Google Scholar] [CrossRef]
- Cordero, H.; Mauro, M.; Cuesta, A.; Cammarata, M.; Esteban, M.Á. In vitro cytokine profile revealed differences from dorsal and ventral skin susceptibility to pathogen-probiotic interaction in gilthead seabream. Fish Shellfish Immunol. 2016, 56, 188–191. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Salomón, R.; Reyes-López, F.E.; Tort, L.; Firmino, J.P.; Sarasquete, C.; Ortiz-Delgado, J.B.; Gisbert, E. Medicinal plant leaf extract from sage and lemon verbena promotes intestinal immunity and barrier function in gilthead seabream (Sparus aurata). Front. Immunol. 2021, 12, 670279. [Google Scholar] [CrossRef] [PubMed]
- Veiga-Fernandes, H.; Mucida, D. Neuro-immune interactions at barrier surfaces. Cell 2016, 165, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Flanagan, J.U.; Langley, R.J.; Hay, M.P.; Perry, J.K. Targeting growth hormone function: Strategies and therapeutic applications. Signal Transduct. Target. Ther. 2019, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Pech-Pool, S.; Berumen, L.C.; Martínez-Moreno, C.G.; García-Alcocer, G.; Carranza, M.; Luna, M.; Arámburo, C. Thyrotropin-releasing hormone (TRH) and somatostatin (SST), but not growth hormone-releasing hormone (GHRH) nor ghrelin (GHRL), regulate expression and release of immune growth hormone (GH) from chicken bursal B-lymphocyte cultures. Int. J. Mol. Sci. 2020, 21, 1436. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.; Arámburo, C. Growth hormone: Not just a pituitary endocrine. J. Endocr. Disord. 2017, 4, 2–4. [Google Scholar]
- Clark, R. The somatogenic hormones and insulin-like growth factor-1, stimulators of lymphopoiesis and immune function. Endocr. Rev. 1997, 18, 157–179. [Google Scholar] [CrossRef] [PubMed]
- Hattori, N. Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system. Growth Horm. IGF Res. 2009, 19, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Yada, T. Growth hormone and fish immune system. Gen. Comp. Endocrinol. 2007, 152, 353–358. [Google Scholar] [CrossRef]
- Lee, L.T.; Siu, F.K.; Tam, J.K.; Lau, I.T.; Wong, A.O.; Lin, M.C.; Chow, B.K. Discovery of growth hormone-releasing hormones and receptors in nonmammalian vertebrates. Proc. Natl. Acad. Sci. USA 2007, 104, 2133–2138. [Google Scholar] [CrossRef]
- Pontigo, J.P.; Vargas-Chacoff, L. Growth hormone (GH) and growth hormone release factor (GRF) modulate the immune response in the SHK-1 cell line and leukocyte cultures of head kidney in Atlantic salmon. Gen. Comp. Endocrinol. 2021, 300, 113631. [Google Scholar] [CrossRef] [PubMed]
- Weigent, D.A. Lymphocyte GH-axis hormones in immunity. Cell Immunol. 2013, 285, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Fryer, J.N. Neuropeptides regulating the activity of goldfish corticotropes and melanotropes. Fish. Physiol. Biochem. 1989, 7, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Rousseau; Belle, L.; Marchelidon; Dufour. Evidence that corticotropin-releasing hormone acts as a growth hormone-releasing factor in a primitive teleost, the European eel (Anguilla anguilla). J. Neuroendocrinol. 1999, 11, 385–392. [Google Scholar] [PubMed]
- Rassouli, O.; Liapakis, G.; Venihaki, M. Role of central and peripheral CRH in skin. Curr. Mol. Pharmacol. 2018, 11, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Herget, U.; Wolf, A.; Wullimann, M.F.; Ryu, S. Molecular neuroanatomy and chemoarchitecture of the neurosecretory preoptic-hypothalamic area in zebrafish larvae. J. Comp. Neurol. 2014, 522, 1542–1564. [Google Scholar] [CrossRef] [PubMed]
- Herget, U.; Ryu, S. Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish. Front. Neuroanat. 2015, 9, 2. [Google Scholar] [CrossRef]
- Eachus, H.; Ryu, S.; Placzek, M.; Wood, J. Zebrafish as a model to investigate the CRH axis and interactions with DISC1. Curr. Opin. Endocr. Metab. Res. 2022, 26, 100383. [Google Scholar] [CrossRef] [PubMed]
- Poutahidis, T.; Kearney, S.M.; Levkovich, T.; Qi, P.; Varian, B.J.; Lakritz, J.R.; Ibrahim, Y.M.; Chatzigiagkos, A.; Alm, E.J.; Erdman, S.E. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS ONE 2013, 8, e78898. [Google Scholar] [CrossRef]
- Takeda, H.; Katagata, Y.; Hozumi, Y.; Kondo, S. Effects of angiotensin II receptor signaling during skin wound healing. Am. J. Pathol. 2004, 165, 1653–1662. [Google Scholar] [CrossRef]
- Bernasconi, R.; Nyström, A. Balance and circumstance: The renin angiotensin system in wound healing and fibrosis. Cell Signal 2018, 51, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Hondo, M.; Ishii, M.; Sakurai, T. The NPB/NPW neuropeptide system and its role in regulating energy homeostasis, pain, and emotion. Orphan G Protein-Coupled Recept. Nov. Neuropept. 2008, 46, 239–256. [Google Scholar]
- Sakurai, T. NPBWR1 and NPBWR2, implications in energy homeostasis, pain, and emotion. Front. Endocrinol. 2013, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Sun, C.; Li, W. Neuropeptide B in Nile tilapia Oreochromis niloticus: Molecular cloning and its effects on the regulation of food intake and mRNA expression of growth hormone and prolactin. Gen. Comp. Endocrinol. 2014, 200, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Ramadasan, P.N.; Anthonysamy, R.; Parhar, I.S. Sexual dimorphic distribution of hypothalamic Tachykinin1 cells and their innervations to GnRH neurons in the zebrafish. Front. Endocrinol. 2021, 11, 534343. [Google Scholar] [CrossRef]
- Ekstrand, A.J.; Cao, R.; Björndahl, M.; Nyström, S.; Jönsson-Rylander, A.-C.; Hassani, H.; Hallberg, B.; Nordlander, M.; Cao, Y. Deletion of neuropeptide Y (NPY) 2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing. Proc. Natl. Acad. Sci. USA 2003, 100, 6033–6038. [Google Scholar] [CrossRef]
- Salaneck, E.; Larsson, T.A.; Larson, E.T.; Larhammar, D. Birth and death of neuropeptide Y receptor genes in relation to the teleost fish tetraploidization. Gene 2008, 409, 61–71. [Google Scholar] [CrossRef]
- Chéret, J.; Lebonvallet, N.; Carré, J.; Misery, L.; Le Gall-Ianotto, C. Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. Wound Repair Regen. 2013, 21, 772–788. [Google Scholar] [CrossRef]
- Gupta, D.; Kaushik, D.; Mohan, V. Role of neurotransmitters in the regulation of cutaneous wound healing. Exp. Brain Res. 2022, 240, 1649–1659. [Google Scholar] [CrossRef]
- Holmes, D.I.R.; Zachary, I. The vascular endothelial growth factor (VEGF) family: Angiogenic factors in health and disease. Genome Biol. 2005, 6(2), 209. [Google Scholar] [CrossRef]
- Zhang, C.; Ellis, J.L.; Yin, C. Inhibition of vascular endothelial growth factor signaling facilitates liver repair from acute ethanol-induced injury in zebrafish. Dis. Model. Mech. 2016, 9, 1383–1396. [Google Scholar] [CrossRef]
- Jones, B.J.; Tan, T.; Bloom, S.R. Minireview: Glucagon in stress and energy homeostasis. Endocrinology 2012, 153, 1049–1054. [Google Scholar] [CrossRef]
- Albalat, A.; Gómez-Requeni, P.; Rojas, P.; Médale, F.; Kaushik, S.; Vianen, G.J.; Thillart, G.V.D.; Gutiérrez, J.; Pérez-Sánchez, J.; Navarro, I. Nutritional and hormonal control of lipolysis in isolated gilthead seabream (Sparus aurata) adipocytes. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2005, 289, R259–R265. [Google Scholar] [CrossRef]
- Johnson, B.Z.; Stevenson, A.W.; Prêle, C.M.; Fear, M.W.; Wood, F.M. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines 2020, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Glaudemans, B.; Knoers, N.V.A.M.; Hoenderop, J.G.J.; Bindels, R.J.M. New molecular players facilitating Mg2+ reabsorption in the distal convoluted tubule. Kidney Int. 2010, 77, 17–22. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, R.; Chao, S.; Xue, J.; Jiang, D.; Feng, Y.H.; Guo, X.D.; Luo, D.; Zhang, J.; Li, Z.; et al. Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation. Nat. Commun. 2022, 13, 6908. [Google Scholar] [CrossRef]
- Groenestege, W.M.T.; Thébault, S.; van der Wijst, J.; Berg, D.v.D.; Janssen, R.; Tejpar, S.; Heuvel, L.P.v.D.; van Cutsem, E.; Hoenderop, J.G.; Knoers, N.V.; et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J. Clin. Investig. 2007, 117, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.A.; Lakshmanan, J. Metabolism and effects of epidermal growth factor and related growth factors in mammals. Endocr. Rev. 1990, 11, 418–442. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, S.M.; Auger, R.; Dreux, C.; Mauduit, P. Regulated cell surface pro-EGF ectodomain shedding is a zinc metalloprotease-dependent process. J. Biol. Chem. 2003, 278, 45255–45268. [Google Scholar] [CrossRef]
- Vallejos-Vidal, E.; Sanz-Milián, B.; Teles, M.; Reyes-Cerpa, S.; Mancera, J.M.; Tort, L.; Reyes-López, F.E. The gene expression profile of the glucocorticoid receptor 1 (gr1) but not gr2 is modulated in mucosal tissues of gilthead sea bream (Sparus aurata) exposed to acute air-exposure stress. Front. Mar. Sci. 2022, 9, 977719. [Google Scholar] [CrossRef]
- Khansari, A.R.; Balasch, J.C.; Vallejos-Vidal, E.; Parra, D.; Reyes-López, F.E.; Tort, L. Comparative immune-and stress-related transcript response induced by air exposure and Vibrio anguillarum bacterin in rainbow trout (Oncorhynchus mykiss) and gilthead seabream (Sparus aurata) mucosal surfaces. Front. Immunol. 2018, 9, 343833. [Google Scholar] [CrossRef] [PubMed]
Biological Function | Gene Name | Gene Acronym | GenBank Accession Number | Primer Sequence (5′→3′) | Amplicon Size (bp) |
---|---|---|---|---|---|
Neuropeptides | Corticotropin-releasing hormone | crh | KC195964 | FW: TCTTCGTCCATGTATCCCGG RV: AGCAGGTGGAAGGTCAGATC | 203 |
Galanin | galn | T20103:4520 | FW: AGGAGGACTTCAGAACAGGC RV: TGTCCAAGGCTCCAATCTCT | 108 | |
Growth hormone-releasing hormone | ghrh | DQ659328 | FW: TGATGGCAAAACGTGTAGGC RV: CCGGCGTCCTTTGTTTCTAA | 188 | |
Neuropeptide B | npb | Spau1B013495 | FW: CATCCTCAAAAGCATGGCCA RV: CCAGGGTGAGGAAGACGTC | 119 | |
Neuropeptide Y | npy | Spau1B023653 | FW: GCCAAGTACTACTCAGCCCT RV: ATCTCGACTGTGGAAGGGTG | 145 | |
Proenkephalin-B | penkb | Spau1B016802 | FW: GAGAGAGGTGTAGACGAGCC RV: GCTTGTCCCACTTCAGGTTG | 226 | |
Tachykinin 1 | tac1 | T20103:14549 | FW: TCATTGGGAAGGACTCAGCA RV: ACATGGCTCCTTGATCCTCG | 108 | |
Hormones | Angiotensinogen | agt | T20103:4928 | FW: CCTACGGATCCCTCTTCACC RV: CGTCGTCCACCAGAGAGTTA | 171 |
Cholecystokinin | cck | Spau1B015900 | FW: TCCCTACCAGACCAGATCCT RV: TCCAAAGTCCATCCAGCCAA | 100 | |
Glucagon-1 | gcga | Spau1B008631 | FW: ATGTAGACGGGAGCTTCACC RV: ATTGGCCCGCTTGTCTTTTC | 126 | |
Glucagon-2 | gcgb | Spau1B020957 | FW: ATGTAGACGGGAGCTTCACC RV: ATTGGCCCGCTTGTCTTTTC | 100 | |
Leptin | lep | Spau1B029280 | FW: CTCGGGCTGATGATCTGGAT RV: CGTGCTTGATCTGTGAGACG | 105 | |
Oxytocin | oxt | Spau1B008906 | FW: GAGAACTACCTGCTCACCCC RV: CAGTCAGAGTCCACCGTACA | 119 | |
Pro-opiomelanocortin-A | pomca | HM584909 | FW: GATGATGAGAAGGCGGAGGA RV: TGGCTCCTGTCCATCTTTGT | 216 | |
Prolactin | prl | Spau1B018970 | FW: AGAGAATGGCGAGACAGGAG RV: AGTTGTTGAAGTCATGGTGGTG | 114 | |
Somatostatin-1B | sst1b | Spau1B024306 | FW: GTGTCTGGCTTGTTGGATGG RV: TAGACAGCCCTCTCCTCCAG | 110 | |
Vasoactive intestinal peptide | vip | Spau1B010730 | FW: CAGACAACTACAGCCGCTTC RV: GTTCGTCCCTGGATTCCTCA | 123 | |
Tissue repair modulators | Epidermal growth factor receptor | egfr | Spau1B012402T1 | FW: GGAGGCCGTCATGAACAAAAC RV: CGTATTTCCACACCAGCGCA | 191 |
Pro-epidermal growth factor | pro-egf | Spau1B019439T1 | FW: TCGATTTCACAGAGGACCGC RV: GGTCGCCCTACTTGGTTCTC | 115 | |
Interleukin 6 | il-6 | EU244588.1 | FW: TCGCCCACTGTTGCATAAGT RV: ATGAATCAGCGGTCGGATCC | 139 | |
Vascular endothelial growth factor A | vegfa | Spau1B002667T5 | FW: CCAAGAGTATGTGTCAGCCCA RV: CCGCATTACCTGCAATGTGAC | 182 | |
Vascular endothelial growth factor C | vegfc | Spau1B001969T1 | FW: TCAGCAGATGTGTGTGGACC RV: GAGGTGTCGGTTAGAGCCAC | 105 | |
Reference genes | Elongation factor 1 alpha | ef1a | AF184170.1 | FW: TGTCATCAAGGCTGTTGAGC RV: GCACACTTCTTGTTGCTGGA | 115 |
Ribosomal protein S18 | 18s | AM490061.1 | FW: CGAAAGCATTTGCCAAGAAT RV: AGTTGGCACCGTTTATGGTC | 102 | |
Ribosomal protein L27 | rpl27 | AY188520.1 | FW: AAGAGGAACACAACTCACTGCCCCAC RV: GCTTGCCTTTGCCCAGAACTTTGTAG | 160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piñera-Moreno, R.; Reyes-López, F.E.; Goldstein, M.; Santillán-Araneda, M.J.; Robles-Planells, B.; Arancibia-Carvallo, C.; Vallejos-Vidal, E.; Cuesta, A.; Esteban, M.Á.; Tort, L. Transcriptional Evaluation of Neuropeptides, Hormones, and Tissue Repair Modulators in the Skin of Gilthead Sea Bream (Sparus aurata L.) Subjected to Mechanical Damage. Animals 2024, 14, 1815. https://doi.org/10.3390/ani14121815
Piñera-Moreno R, Reyes-López FE, Goldstein M, Santillán-Araneda MJ, Robles-Planells B, Arancibia-Carvallo C, Vallejos-Vidal E, Cuesta A, Esteban MÁ, Tort L. Transcriptional Evaluation of Neuropeptides, Hormones, and Tissue Repair Modulators in the Skin of Gilthead Sea Bream (Sparus aurata L.) Subjected to Mechanical Damage. Animals. 2024; 14(12):1815. https://doi.org/10.3390/ani14121815
Chicago/Turabian StylePiñera-Moreno, Rocío, Felipe E. Reyes-López, Merari Goldstein, María Jesús Santillán-Araneda, Bárbara Robles-Planells, Camila Arancibia-Carvallo, Eva Vallejos-Vidal, Alberto Cuesta, María Ángeles Esteban, and Lluis Tort. 2024. "Transcriptional Evaluation of Neuropeptides, Hormones, and Tissue Repair Modulators in the Skin of Gilthead Sea Bream (Sparus aurata L.) Subjected to Mechanical Damage" Animals 14, no. 12: 1815. https://doi.org/10.3390/ani14121815