Use of Microalgae-Derived Astaxanthin to Improve Cytoprotective Capacity in the Ileum of Heat-Induced Oxidative Stressed Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Animal Design
2.3. Astaxanthin-Rich Dietary Supplement
2.4. Growth Performance
2.5. Tissue Sample Collection
2.6. Total RNA Extraction and cDNA Preparation
2.7. Bioinformatics: Genome Assembly and Gene Primer Design
2.8. Quantitative Real-Time RT-PCR (qPCR)
2.9. Gene Ontology
2.10. Tissue Histology Using Hematoxylin and Eosin Staining
2.11. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Quantitative Real-Time RT-PCR (qPCR) Gene Expression
3.2.1. Cytoprotective Capacity Genes
3.2.2. Epithelial Integrity Genes
3.3. Ileum Histomorphology
4. Discussion
4.1. Growth Performance
4.2. Gene Ontology Enrichment and Expression Analysis
4.2.1. Cytoprotective Capacity Genes
4.2.2. Epithelial Integrity Genes
4.3. Ileum Histomorphology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ricke, S.C. Improving Gut Health in Poultry, 1st ed.; Burleigh Dodds Science Publishing; University of Arkansas: Fayetteville, AR, USA, 2019. [Google Scholar] [CrossRef]
- Bailey, R.A. “Gut Health in Poultry: The World within-Update|The…” Gut Health in Poultry: The World within-Update. Available online: https://www.thepoultrysite.com/articles/gut-health-in-poultry-the-world-within-1 (accessed on 1 October 2019).
- Glendinning, L.; Stewart, R.D.; Pallen, M.J.; Watson, K.A.; Watson, M. Assembly of Hundreds of Novel Bacterial Genomes from the Chicken Caecum. Genome Biol. 2019, 21, 34. [Google Scholar] [CrossRef]
- Kers, J.G.; Velkers, F.C.; Fischer, E.A.J.; Hermes, G.D.A.; Stegeman, J.A.; Smidt, H. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens. Front. Microbiol. 2018, 9, 235. [Google Scholar] [CrossRef]
- Carrasco, J.M.D.; Casanova, N.A.; Miyakawa, M.E.F. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Vitagenes in Poultry Production: Part 3. Vitagene Concept Development. World’s Poult. Sci. J. 2016, 72, 793–804. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, H.; Ma, T.; Yan, Z.; Zhang, Y.; Geng, Y.; Zhu, Y.; Shi, Y. Effect of Chronic Cyclic Heat Stress on the Intestinal Morphology, Oxidative Status and Cecal Bacterial Communities in Broilers. J. Therm. Biol. 2020, 91, 102619. [Google Scholar] [CrossRef] [PubMed]
- Javid, M.A.; Abbas, G.; Waqas, M.Y.; Basit, M.A.; Asif, M.; Akhtar, M.S.; Masood, S.; Saleem, M.U.; Qamar, S.H.; Kiani, F.A. Evaluation of comparative effect of feed additive of allium sativum and zingeber officinale on bird growth and histomorphometric characteristics of small intestine in broilers. Braz. J. Poult. Sci. 2019, 21, 2. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghareeb, K.; Abdel-Raheem, S.; Böhm, J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 2009, 88, 49–55. [Google Scholar] [CrossRef]
- Ou, H.C.; Chou, W.C.; Hung, C.H.; Chu, P.M.; Hsieh, P.-L.; Chan, S.H.; Tsai, K.L. Galectin-3 Aggravates Ox-LDL-Induced Endothelial Dysfunction through LOX-1 Mediated Signaling Pathway. Environ. Toxicol. 2019, 34, 825–835. [Google Scholar] [CrossRef]
- Laczko, R.; Csiszar, K. Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways. Biomolecules 2020, 10, 1093. [Google Scholar] [CrossRef]
- Santos, R.R.; Awati, A.; Roubos-van den Hil, P.J.; van Kempen, T.A.T.G.; Tersteeg-Zijderveld, M.H.G.; Koolmees, P.A.; Smits, C.; Fink-Gremmels, J. Effects of feed additive blend on broilers challenged with heat stress. Avian Pathol. 2019, 48, 582–601. [Google Scholar] [CrossRef]
- Apalowo, O.O.; Minor, R.C.; Adetunji, O.A.; Ekunseitan, D.A.; Fasina, Y.O. Effect of Ginger Root Extract on Intestinal Oxidative Status and Mucosal Morphometrics in Broiler Chickens. Animals 2024, 14, 1084. [Google Scholar] [CrossRef]
- Akagi, R. Role of Heme Oxygenase in Gastrointestinal. Epithelial Cells. Antioxidants 2022, 11, 1323. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.R.; Alagawany, M. Physiological Alterations of Poultry to the High Environmental Temperature. J. Therm. Biol. 2018, 76, 101–106. [Google Scholar] [CrossRef]
- Lara, L.; Rostagno, M. Impact of Heat Stress on Poultry Production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Collier, R.J.; Gebremedhin, K.G. Thermal biology of domestic animals. Annu. Rev. Anim. Biosci. 2015, 3, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Slimen, I.B.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Cano-Europa, E.; Blas-Valdivia, V.; Franco-Colin, M.; Ortiz-Butron, R. Regulation of the Redox Environment; Intech: Mexico City, Mexico, 2015; Available online: https://www.intechopen.com/books/basic-principles-and-clinical-significance-of-oxidative-stress/regulation-of-the-redox-environment (accessed on 24 June 2022). [CrossRef]
- Montzouris, K.C.; Paraskeuas, V.V.; Fegeros, K. Priming of intestinal cytoprotective genes and antioxidant capacity by dietary phytogenic inclusion in broilers. Anim. Nutr. 2020, 6, 305–312. [Google Scholar] [CrossRef]
- Paraskeuas, V.; Griela, E.; Bouziotis, D.; Fegeros, K.; Antonissen, G.; Mountzouris, K.C. Effects of Deoxynivalenol and Fumonisins on Broiler Gut Cytoprotective Capacity. Toxins 2021, 13, 729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, D.; Wu, J.; Jiao, H.; Wang, X.C.; Zhao, J.; Lin, H. The development of antioxidant system in the intestinal tract of broiler chickens. Poult. Sci. 2019, 98, 664–678. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F. Antioxidant Systems in Poultry Biology: Superoxide Dismutase. J. Anim. Res. Nutr. 2016, 1, 8. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Vitagenes in Poultry Production: Part 1. Technological and Environmental Stresses. World’s Poult. Sci. J. 2016, 72, 721–734. [Google Scholar] [CrossRef]
- Morimoto, R.I.; Tissieres, A.; Georgopoulos, C. The Biology of Heat Shock Proteins and Molecular Chaperones; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1994. [Google Scholar]
- Pirkkala, L.; Nykanen, P.; Sistonen, L. Roles of the Heat Shock Transcription Factors in Regulation of the Heat Shock Response and Beyond. FASEB J. 2001, 15, 1118–1131. [Google Scholar] [CrossRef] [PubMed]
- Vabulas, R.M.; Raychaudhuri, S.; Hayer-Hartl, M.; Hartl, F.U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harbor Perspect. Biol. 2010, 2, a004390. [Google Scholar] [CrossRef] [PubMed]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoids. Isolation and Analysis; Birkhäuser Verlag: Basel, Switzerland, 1995. [Google Scholar]
- Shahidi, F.; Barrow, C.J. Marine Nutraceuticals and Functional Foods; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Astaxanthin. (n.d.). Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Astaxanthin (accessed on 2 April 2024).
- Heaney, R.P. Factors Influencing the Measurement of Bioavailability, Taking Calcium as a Model. J. Nutr. 2001, 131, 1344S–1348S. [Google Scholar] [CrossRef]
- Mularczyk, M.; Michalak, I.; Marycz, K. Astaxanthin and other Nutrients from Haematococcus pluvialis-Multifunctional Applications. Mar. Drugs 2020, 18, 459. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.-W.; Xu, X.-C.; Liu, T.; Yuan, S. Mitochondrion-Permeable Antioxidants to Treat ROS-Burst-Mediated Acute Diseases. Oxidative Med. Cell. Longev. 2016, 2016, 6859523. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Ensembl.org. Available online: https://uswest.ensembl.org/Gallus_gallus/Info/Index (accessed on 4 April 2024).
- Iji, P.A.; Saki, A.; Tivey, D.R. Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. Br. Poult. Sci. 2001, 42, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji an open-source platform for biological-image analysis. Nat. Methods 2019, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. 2023. Available online: https://www.R-project.org/ (accessed on 4 April 2024).
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between Heat Stress and Oxidative Stress in Poultry; Mitochondrial Dysfunction and Dietary Interventions with Phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Tolba, S.A.; Magnuson, A.D.; Sun, T.; Lei, X.G. Dietary supplemental microalgal astaxanthin modulates molecular profiles of stress, inflammation, and lipid metabolism in broilers chickens and laying hens under high ambient temperatures. Poult. Sci. 2020, 99, 4853–4860. [Google Scholar] [CrossRef] [PubMed]
- Kouvedaki, I.; Pappas, A.C.; Surai, P.F.; Zoidis, E. Nutrigenomics of Natural Antioxidants in Broilers. Antioxidants 2024, 13, 270. [Google Scholar] [CrossRef] [PubMed]
- Namekawa, T.; Ikeda, S.; Sugimoto, M.; Kume, S. Effects of Astaxanthin-containing Oil on Development and Stress-related Gene Expression of Bovine Embryos Exposed to Heat Stress. Reprod. Dom. Anim. 2010, 45, e387–e391. [Google Scholar] [CrossRef]
- Du, X.; Zhao, D.; Pian, H.; Li, Y.; Wu, X.; Liu, F.; Yu, D. Effects of puerarin as a feed additive on the laying performance, egg quality, endocrine hormones, antioxidant capacity, and intestinal morphology of aged laying hens. Poult. Sci. 2024, 103, 103420. [Google Scholar] [CrossRef]
- Wang, M.; Huang, H.; Liu, S.; Zhuang, Y.; Yang, H.; Li, Y.; Chen, S.; Wang, L.; Yin, L.; Yao, Y.; et al. Tannic acid modulates intestinal barrier functions associated with intestinal mophology, antioxidant activity, and intestinal tight junction in a diquat-induced mouse model. RSC Adv. 2019, 9, 31988–31998. [Google Scholar] [CrossRef]
- Dao, Q. A Technical Review of Haematococcus Algae History, Distribution and Classification of Haematococcus pluvialis. NatuRose Technical Bulletin #060; Cyanotech Corporation: Kona, HI, USA, 1999. [Google Scholar]
Ingredients (%) | Starter | Finisher |
---|---|---|
Corn | 54.86 | 63.14 |
Soybean Meal | 39.49 | 29.59 |
Soybean oil | 2.00 | 4.50 |
Limestone | 1.27 | 0.85 |
Monocalcium phosphate | 0.75 | 0.50 |
L-lysine (98–99%) | 0.23 | 0.18 |
DL-methionine (99%) | 0.14 | 0.12 |
L-threonine (98–99%) | 0.20 | 0.16 |
Sodium chloride | 0.43 | 0.35 |
Sodium bicarbonate | 0.12 | 0.10 |
Vitamin–mineral premix 1 | 0.50 | 0.50 |
Astaxanthin supplement 2 | 0.01 | 0.01 |
Total | 100 | 100 |
Calculated analysis | ||
ME (kcal/kg) | 2909 | 3203 |
Soybean Meal-CP (%) | 22.09 | 18.07 |
Calcium | 0.75 | 0.52 |
Total Phosphorus | 0.57 | 0.47 |
dig Phosphorous | 0.30 | 0.23 |
L-lysine | 1.39 | 1.10 |
dig L-lysine | 1.25 | 0.99 |
DL-methionine | 0.48 | 0.41 |
dig DL-methionine | 0.45 | 0.39 |
L-cysteine | 0.43 | 0.38 |
L-threonine | 1.03 | 0.85 |
dig L-threonine | 0.85 | 0.69 |
L-tryptopha | 0.33 | 0.26 |
DL-methionine + L-cysteine | 0.91 | 0.80 |
L-arginine | 1.61 | 1.31 |
L-valine | 1.22 | 1.03 |
L-isoleucine | 0.93 | 0.76 |
L-leucine | 1.89 | 1.63 |
Neutral detergent fiber (% DM) | 9.13 | 8.78 |
Crude fiber | 3.97 | 3.46 |
Sodium (mg/kg) | 0.22 | 0.18 |
Chloride (mg/kg) | 0.30 | 0.25 |
Choline (mg/kg) | 1419 | 1200 |
Astaxanthin (mg/kg) | --- | 1.33 |
Gene | NCBI Accession No. | Primer Set (5′-3′) |
---|---|---|
GAPDH | X00182 | F: 5′-CGCAAGGGCTAGGACGG |
R: 3′-GCGCTCTTGCGGGTACC | ||
ACTB | NM_205518.1 | F: 5′-GAGAAATTGTGCGTGACATCA |
R: 3′-CCTGAACCTCTCATTGCCA | ||
TBP | NM_205103.1 | F: 5′-TAGCCCGATGATGCCGTAT |
R: 3′-GTTCCCTGTGTCGCTTGC | ||
HSF1 | NM_001305256.1 | F: 5′-AAGGAGGTGCTCCCAAAGTA |
R: 3′-TTCTTTATGCTGGACACGCTG | ||
HSF2 | NM_001167764.2 | F: 5′-TCTTTTTACAAGCTCCGTGC |
R: 3′-TCCCTTTGTCTCCATTTTGGT | ||
HSF3 | NM_001305041.1 | F: 5′-TTCAGCGATGTGTTTAACCCT |
R: 3′-GGAGGTCTTTTGGATCCTCT | ||
HSP90AA1 | NM_001109785.1 | F: 5′-GATAACGGTGAACCTTTGGG |
R: 3′-GGGTAGCCAATGAACTGAGA | ||
HIF1A | XM_015287264.4 | F: 5′-GTCACCGACAAGAAGAGGAT |
R: 3′-GTCTCTAGCTCACCAGCATC | ||
SOD1 | NM_205064.1 | F: 5′-CAACACAAATGGGTGTACCA |
R: 3′-CTCCCTTTGCAGTCACATTG | ||
SOD2 | NM_204211.1 | F: 5′-CCTTCGCAAACTTCAAGGAG |
R: 3′-AGCAATGGAATGAGACCTGT | ||
ROS-1 | NM_205257.2 | F: 5′-AAACTACAGCTGGTGTTCCC |
R: 3′-CTAAGTTCTCGGCCTTCCAT | ||
GPX1 | NM_001277853.2 | F: 5′-AATTCGGGCACCAGGAGAA |
R: 3′-CTCGAACATGGTGAAGTTGG | ||
GPX3 | NM_001163232.3 | F: 5′-AATTCGGGCACCAGGAGAA |
R: 3′-CTCGAACATGGTGAAGTTGG | ||
HMOX1 | NM_205344.2 | F: 5′-AATCGCATGAAAACAGTCCA |
R: 3′-CACATGGCAAATAAGCCCAC | ||
CAT | NM_001031215.2 | F: 5′-TGGCCAATTATCAGAGGGAC |
R: 3′-CTCGCACCTGAGACACATTA | ||
CASP3 | NM_204725.1 | F: 5′-GGTGGAGGTGGAGGAGC |
R: 3′-TGAGCGTGGTCCATCTTTTA | ||
GSTT1 | NM_205365.1 | F: 5′-AACATCCCGTTCGAGTTCAA |
R: 3′-CACTATTTGATGGCCCTGTG | ||
TXN | NM_205453.1 | F: 5′-GGCAATCTGGCTGATTTTGA |
R: 3′-ACCATGTGGCAGAGAAATCA | ||
TXN2 | NM_001031410.1 | F: 5′-CGATTGAGTACGAGGTGTCA |
R: 3′-CAGAAGAAAACCCCACAAACTT | ||
PRDX1 | NM_001271932.1 | F: 5′-GGTATTGCATACAGGGGTCT |
R: 3′-AGGGTCTCATCAACAGAACG | ||
LOX | NM_205481.2 | F: 5′-TACTTCCAGTACGGTCTGCC |
R: 3′-CTCTAACATCCGCCCGATAA | ||
MYB | NM_205306.1 | F: 5′-AGCATATACAGCAGCGATGA |
R: 3′-TTTCTCATCCTCTTCACGGG | ||
CLDN1 | NM_001013611.2 | F: 5′-CATCACTTCTCCTTCGTCAGC |
R: 3′-GCACAAAGATCTCCCAGGTC | ||
OCLN | NM_205128.1 | F: 5′-CTACAAGCAGGAGTTCGACA |
R: 3′-CTCTGCCACATCCTGGTATT | ||
MUC2 | NM_001318434.1 | F: 5′-TACAGGGAGTTCTCTGTCCA |
R: 3′-TAGGGTGTCTTGACAATCCG | ||
CDH1 | NM_001039258.2 | F: 5′-GAACTTCATCGACGAGAACC |
R: 3′-CGTTGAGGTAGTCGTAGTCC |
Measurements | TN | HS | HSAX | p-Value |
---|---|---|---|---|
BW (g) | 2673.68 b | 1848.85 a | 1867.83 a | 0.005 |
±35.71 | ±61.56 | ±60.82 | ||
ADFI (g) | 94.98 b | 70.68 a | 72.24 a | 0.004 |
±1.45 | ±2.38 | ±1.14 | ||
ADG (g) | 62.65 b | 42.99 a | 43.45 a | 0.005 |
±0.86 | ±1.46 | ±1.44 | ||
FCR | 1.52 b | 1.64 a | 1.67 a | 0.005 |
±0.02 | ±0.02 | ±0.03 |
Gene | TN | HS | HSAX | p-Value |
---|---|---|---|---|
HSF1 | 1.52 | 2.04 | 3.72 | 0.150 |
±0.55 | ±0.61 | ±1.49 | ||
HSF2 | 1.06 a | 1.02 b | 1.97 a | 0.022 |
±0.14 | ±0.07 | ±0.31 | ||
HSF3 | 1.09 | 1.03 | 1.18 | 0.220 |
±0.23 | ±0.03 | ±0.42 | ||
HSP90AA1 | 1.09 | 1.03 | 0.93 | 0.130 |
±0.20 | ±0.06 | ±0.32 | ||
HIF1A | 1.04 | 1.07 | 1.08 | 0.895 |
±0.12 | ±0.17 | ±0.17 | ||
SOD1 | 1.10 | 1.01 | 1.59 | 0.199 |
±0.23 | ±0.13 | ±0.34 | ||
SOD2 | 1.01 a | 0.96 b | 1.44 a | 0.003 |
±0.07 | ±0.05 | ±0.19 | ||
ROS-1 | 1.08 | 0.99 | 1.17 | 0.372 |
±0.17 | ±0.13 | ±0.27 | ||
GPX1 | 1.06 | 1.00 | 1.85 | 0.075 |
±0.15 | ±0.07 | ±0.44 | ||
GPX3 | 1.07 b | 1.26 a | 3.10 a | 0.027 |
±0.18 | ±0.29 | ±0.90 | ||
HMOX1 | 1.03 | 1.10 | 1.17 | 0.849 |
±0.12 | ±0.19 | ±0.21 | ||
CAT | 1.23 | 1.14 | 1.17 | 0.834 |
±0.43 | ±0.14 | ±0.29 | ||
CASP3 | 1.06 | 1.04 | 1.58 | 0.130 |
±0.16 | ±0.12 | ±0.43 | ||
GSTTI | 1.42 | 1.25 | 1.05 | 0.523 |
±0.47 | ±1.07 | ±0.62 | ||
TXN | 1.07 a | 0.93 b | 4.45 a | 0.002 |
±0.16 | ±0.10 | ±1.46 | ||
TXN2 | 1.82 | 1.65 | 3.96 | 0.103 |
±0.97 | ±0.21 | ±1.73 | ||
PRDX1 | 1.07 | 0.97 | 1.64 | 0.052 |
±0.19 | ±0.07 | ±0.54 | ||
LOX | 1.12 b | 1.39 a | 2.72 a | 0.013 |
±0.20 | ±0.37 | ±0.26 | ||
MYB | 1.06 | 1.20 | 1.95 | 0.059 |
±0.16 | ±0.31 | ±0.23 | ||
IL-4 | 1.57 | 1.36 | 1.83 | 0.117 |
±0.73 | ±0.11 | ±0.78 | ||
CLDN1 | 1.03 a | 0.98 b | 1.71 a | 0.021 |
±0.10 | ±0.09 | ±0.35 | ||
OCLN | 1.13 | 1.03 | 1.89 | 0.368 |
±0.29 | ±0.19 | ±0.54 | ||
MUC2 | 1.11 a | 0.99 b | 1.64 a | 0.004 |
±0.25 | ±0.09 | ±0.33 | ||
CDH1 | 1.06 | 1.01 | 1.30 | 0.567 |
±0.17 | ±0.09 | ±0.37 |
Gene | Cellular Component | Molecular Function | Biological Process | Transcript IDs |
---|---|---|---|---|
HSF2 | nucleus and cytoplasm | DNA-binding transcription factor activity, DNA-binding transcription activator activity, RNA polymerase II-specific, and RNA polymerase II cis-regulatory region sequence-specific DNA binding | cellular response to heat, positive regulation of transcription from RNA polymerase II promoter in response to heat stress, regulation of transcription, DNA-templated | ENST00000368455 and ENST00000452194 |
SOD2 | mitochondrion | superoxide dismutase activity, oxidoreductase activity, manganese ion binding, metal ion binding, and identical protein binding | response to oxidative stress, oxidation–reduction process, negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway, response to hydrogen peroxide, and removal of superoxide radicals | ENSGALT00000019062 |
GPX3 | extracellular space | glutathione peroxidase activity, selenium binding, and identical protein binding | response to oxidative stress and hydrogen peroxide catabolic process | ENSGALG00010016480 |
TXN | nucleus, cytosol, and extracellular region | protein disulfide oxidoreductase activity | oxidation–reduction process, cell redox homeostasis, negative regulation of hydrogen peroxide-induced cell death, positive regulation of peptidyl-serine phosphorylation, positive regulation of peptidyl-cysteine S-nitrosylation, negative regulation of transcription by RNA polymerase II, and positive regulation of DNA binding | ENSGALT00000025326 |
LOX | extracellular space | protein-lysine 6-oxidase activity, copper ion binding, and collagen binding | peptidyl-lysine oxidation and collagen fibril organization | https://www.ncbi.nlm.nih. gov/gene/396474 (accessed on 4 April 2024) |
CLDN1 | cell junction, bicellular tight junction, integral component of membrane, and cytoplasm | structural molecule activity | bicellular tight junction assembly, cell adhesion, and regulation of ion transport | ENSGALT00000077095 and ENSGALT00000030190 |
MUC2 | extracellular matrix, intracellular membrane-bounded organelle, and supramolecular fiber | protein binding, virion binding, and antigen binding | cholesterol homeostasis, intestinal cholesterol absorption, maintenance of gastrointestinal epithelium, negative regulation of cell growth, and macrophage activation involved in immune response | https://www.ncbi.nlm.nih. gov/gene/414878 (accessed on 4 April 2024) |
Measurements | TN | HS | HSAX | p-Value |
---|---|---|---|---|
VH (μm) | 992.79 b | 1061.89 a | 893.08 a | 0.047 |
±118.97 | ±235.73 | ±170.00 | ||
CD (μm) | 164.28 c | 145.08 b | 197.87 a | 2.05 × 10−6 |
±32.67 | ±19.09 | ±42.86 | ||
VSA (μm) | 108,602.30 a | 152,946.60 b | 99,497.84 a | 0.005 |
±31,508.84 | ±70,507.57 | ±39,296.00 | ||
VH/CD (μm2) | 6.31 c | 7.13 b | 4.67 a | 2.39 × 10−7 |
±1.59 | ±2.00 | ±1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuehu, D.L.; Fu, Y.; Nasu, M.; Yang, H.; Khadka, V.S.; Deng, Y. Use of Microalgae-Derived Astaxanthin to Improve Cytoprotective Capacity in the Ileum of Heat-Induced Oxidative Stressed Broilers. Animals 2024, 14, 1932. https://doi.org/10.3390/ani14131932
Kuehu DL, Fu Y, Nasu M, Yang H, Khadka VS, Deng Y. Use of Microalgae-Derived Astaxanthin to Improve Cytoprotective Capacity in the Ileum of Heat-Induced Oxidative Stressed Broilers. Animals. 2024; 14(13):1932. https://doi.org/10.3390/ani14131932
Chicago/Turabian StyleKuehu, Donna Lee, Yuanyuan Fu, Masaki Nasu, Hua Yang, Vedbar S. Khadka, and Youping Deng. 2024. "Use of Microalgae-Derived Astaxanthin to Improve Cytoprotective Capacity in the Ileum of Heat-Induced Oxidative Stressed Broilers" Animals 14, no. 13: 1932. https://doi.org/10.3390/ani14131932
APA StyleKuehu, D. L., Fu, Y., Nasu, M., Yang, H., Khadka, V. S., & Deng, Y. (2024). Use of Microalgae-Derived Astaxanthin to Improve Cytoprotective Capacity in the Ileum of Heat-Induced Oxidative Stressed Broilers. Animals, 14(13), 1932. https://doi.org/10.3390/ani14131932