Embryonic Leucine Promotes Early Postnatal Growth via mTOR Signalling in Japanese Quails
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Analysis of Amino Acid Concentration in Eggs
2.2. Incubation and in Ovo Injection of Leucine
2.3. Rearing Experimental Hatchlings and Sample Collection
2.4. RNA Isolation and Real-Time qPCR
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jha, R.; Singh, A.K.; Yadav, S.; Berrocoso, J.F.D.; Mishra, B. Early Nutrition Programming (in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry. Front. Veter. Sci. 2019, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.-M.E.; Shehata, A.M.; Paswan, V.K. Editorial: Early life programming in poultry: Recent insights and interventional approaches. Front. Veter. Sci. 2023, 9, 1105653. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Beyer, J.; Brands, B.; Demmelmair, H.; Grote, V.; Haile, G.; Gruszfeld, D.; Rzehak, P.; Socha, P.; Weber, M. Early influences of nutrition on postnatal growth. In Recent Advances in Growth Research: Nutritional, Molecular and Endocrine Perspectives; Nestle Nutrition Institute Workshop Series; Karger Publishers: Basel, Switzerland, 2013; pp. 11–27. [Google Scholar] [CrossRef]
- Searcy, W.A.; Peters, S.; Nowicki, S. Effects of early nutrition on growth rate and adult size in song sparrows Melospiza melodia. J. Avian Biol. 2004, 35, 269–279. [Google Scholar] [CrossRef]
- Kop-Bozbay, C.; Ocak, N. In ovo injection of branched-chain amino acids: Embryonic development, hatchability and hatching quality of turkey poults. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1135–1142. [Google Scholar] [CrossRef]
- Lugata, J.K.; Ndunguru, S.F.; Reda, G.K.; Gulyás, G.; Knop, R.; Oláh, J.; Czeglédi, L.; Szabó, C. In ovo feeding of methionine affects antioxidant status and growth-related gene expression of TETRA SL and Hungarian indigenous chicks. Sci. Rep. 2024, 14, 4387. [Google Scholar] [CrossRef]
- Chen, M.; Xie, W.; Pan, N.; Wang, X.; Yan, H.; Gao, C. Methionine improves feather follicle development in chick embryos by activating Wnt/β-catenin signaling. Poult. Sci. 2020, 99, 4479–4487. [Google Scholar] [CrossRef]
- Ndunguru, S.F.; Reda, G.K.; Csernus, B.; Knop, R.; Gulyás, G.; Szabó, C.; Czeglédi, L.; Lendvai, Z. Embryonic methionine triggers post-natal developmental programming in Japanese quail. J. Comp. Physiol. B 2024, 194, 179–189. [Google Scholar] [CrossRef]
- Liu, R.; Tan, X.; Zhao, G.; Chen, Y.; Zhao, D.; Li, W.; Zheng, M.; Wen, J. Maternal dietary methionine supplementation influences egg production and the growth performance and meat quality of the offspring. Poult. Sci. 2020, 99, 3550–3556. [Google Scholar] [CrossRef] [PubMed]
- Regan, J.C.; Froy, H.; Walling, C.A.; Moatt, J.P.; Nussey, D.H. Dietary restriction and insulin-like signalling pathways as adaptive plasticity: A synthesis and re-evaluation. Funct. Ecol. 2019, 34, 107–128. [Google Scholar] [CrossRef]
- Oldham, S.; Hafen, E. Insulin/IGF and target of rapamycin signaling: A TOR de force in growth control. Trends Cell Biol. 2003, 13, 79–85. [Google Scholar] [CrossRef]
- Lodjak, J.; Verhulst, S. Insulin-like growth factor 1 of wild vertebrates in a life-history context. Mol. Cell. Endocrinol. 2020, 518, 110978. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, R.G.; Donato, J.; Pires, I.S.; Tirapegui, J. Leucine supplementation increases serum insulin-like growth factor 1 concentration and liver protein/RNA ratio in rats after a period of nutritional recovery. Appl. Physiol. Nutr. Metab. 2013, 38, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Tóth, Z.; Mahr, K.; Ölveczki, G.; Őri, L.; Lendvai, Z. Food Restriction Reveals Individual Differences in Insulin-Like Growth Factor-1 Reaction Norms. Front. Ecol. Evol. 2022, 10, 826968. [Google Scholar] [CrossRef]
- Yakar, S.; Adamo, M.L. Insulin-Like Growth Factor 1 Physiology. Endocrinol. Metab. Clin. N. Am. 2012, 41, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef]
- Anthony, T.G. Mechanisms of protein balance in skeletal muscle. Domest. Anim. Endocrinol. 2016, 56, S23–S32. [Google Scholar] [CrossRef]
- Zeitz, J.O.; Käding, S.-C.; Niewalda, I.R.; Most, E.; Dorigam, J.C.d.P.; Eder, K. The influence of dietary leucine above recommendations and fixed ratios to isoleucine and valine on muscle protein synthesis and degradation pathways in broilers. Poult. Sci. 2019, 98, 6772–6786. [Google Scholar] [CrossRef]
- Glass, D.J. Signaling pathways perturbing muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 225–229. [Google Scholar] [CrossRef]
- Averous, J.; Lambert-Langlais, S.; Carraro, V.; Gourbeyre, O.; Parry, L.; B’Chir, W.; Muranishi, Y.; Jousse, C.; Bruhat, A.; Maurin, A.-C.; et al. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids. Cell. Signal. 2014, 26, 1918–1927. [Google Scholar] [CrossRef]
- Ouyang, Y.; Wu, Q.; Li, J.; Sun, S.; Sun, S. S-adenosylmethionine: A metabolite critical to the regulation of autophagy. Cell Prolif. 2020, 53, e12891. [Google Scholar] [CrossRef]
- Kim, W.K.; Singh, A.K.; Wang, J.; Applegate, T. Functional role of branched chain amino acids in poultry: A review. Poult. Sci. 2022, 101, 101715. [Google Scholar] [CrossRef]
- Mullenix, G.; Maynard, C.; Lee, J.; Rao, S.; Butler, L.; Hiltz, J.; Orlowski, S.; Kidd, M. Failure of excess leucine to impact live performance and carcass traits in male and female Cobb MV × 500 broilers during a 15- to 32-day grower period. J. Appl. Poult. Res. 2022, 31, 100242. [Google Scholar] [CrossRef]
- Deng, H.; Zheng, A.; Liu, G.; Chang, W.; Zhang, S.; Cai, H. Activation of mammalian target of rapamycin signaling in skeletal muscle of neonatal chicks: Effects of dietary leucine and age. Poult. Sci. 2014, 93, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Cai, H.; Liu, G.; Chang, W.; Zheng, A.; Zhang, S.; Liao, R.; Liu, W.; Li, Y.; Tian, J. Effects of dietary leucine supplementation on the gene expression of mammalian target of rapamycin signaling pathway and intestinal development of broilers. Anim. Nutr. 2015, 1, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Huss, D.; Poynter, G.; Lansford, R. Japanese quail (Coturnix japonica) as a laboratory animal model. Lab Anim. 2008, 37, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.M.; Barbano, D.M. Kjeldahl Nitrogen Analysis as a Reference Method for Protein Determination in Dairy Products. J. AOAC Int. 1999, 82, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Simon, Á.; Jávor, A.; Bai, P.; Oláh, J.; Czeglédi, L. Reference gene selection for reverse transcription quantitative polymerase chain reaction in chicken hypothalamus under different feeding status. J. Anim. Physiol. Anim. Nutr. 2017, 102, 286–296. [Google Scholar] [CrossRef]
- Joshi, C.J.; Ke, W.; Drangowska-Way, A.; O’rourke, E.J.; Lewis, N.E. What are housekeeping genes? PLoS Comput. Biol. 2022, 18, e1010295. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Greller, L.D.; Tobin, F.L. Detecting Selective Expression of Genes and Proteins. Genome Res. 1999, 9, 282–296. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 11 August 2022).
- Vaida, F.; Blanchard, S. Conditional Akaike information for mixed-effects models. Biometrika 2005, 92, 351–370. [Google Scholar] [CrossRef]
- Guthery, F.S.; Burnham, K.P.; Anderson, D.R. Model selection and multimodel inference: A practical information-theoretic approach. J. Wild. Manag. 2003, 67, 655. [Google Scholar] [CrossRef]
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.N.; Goodwin, C.E.D.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 6, e4794. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Searle, S.R.; Speed, F.M.; Milliken, G.A. Population Marginal Means in the Linear Model: An Alternative to Least Squares Means. Am. Stat. 1980, 34, 216–221. [Google Scholar] [CrossRef]
- Nabi, F.; Arain, M.A.; Bhutto, Z.A.; Shah, Q.A.; Bangulzai, N.; Ujjan, N.A.; Fazlani, S.A. Effect of early feeding of L-arginine and L-threonine on hatchability and post-hatch performance of broiler chicken. Trop. Anim. Health Prod. 2022, 54, 380. [Google Scholar] [CrossRef] [PubMed]
- Kita, K.; Ito, K.R.; Sugahara, M.; Kobayashi, M.; Makino, R.; Takahashi, N.; Nakahara, H.; Takahashi, K.; Nishimukai, M. Effect of In Ovo Administration of Branched-Chain Amino Acids on Embryo Growth and Hatching Time of Chickens. J. Poult. Sci. 2015, 52, 34–36. [Google Scholar] [CrossRef]
- Ravindran, V.; Abdollahi, M.R. Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook. Animals 2021, 11, 2795. [Google Scholar] [CrossRef]
- Foye, O.; Ferket, P.; Uni, Z. The Effects of In Ovo Feeding Arginine, β-Hydroxy-β-Methyl-Butyrate, and Protein on Jejunal Digestive and Absorptive Activity in Embryonic and Neonatal Turkey Poults. Poult. Sci. 2007, 86, 2343–2349. [Google Scholar] [CrossRef]
- Han, G.; Ren, Y.; Shen, D.; Li, S.; Chowdhury, V.S.; Li, Y.; Furuse, M.; Li, C. L-Leucine In Ovo Administration Causes Growth Retardation and Modifies Specific Amino Acid Metabolism in Broiler Embryos. J. Poult. Sci. 2021, 58, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Lugata, J.K.; Ndunguru, S.F.; Reda, G.K.; Ozsváth, X.E.; Angyal, E.; Czeglédi, L.; Gulyás, G.; Knop, R.; Oláh, J.; Mészár, Z.; et al. Methionine sources and genotype affect embryonic intestinal development, antioxidants, tight junctions, and growth-related gene expression in chickens. Anim. Nutr. 2024, 16, 218–230. [Google Scholar] [CrossRef] [PubMed]
- de Verdal, H.; Mignon-Grasteau, S.; Jeulin, C.; Le Bihan-Duval, E.; Leconte, M.; Mallet, S.; Martin, C.; Narcy, A. Digestive tract measurements and histological adaptation in broiler lines divergently selected for digestive efficiency. Poult. Sci. 2010, 89, 1955–1961. [Google Scholar] [CrossRef]
- Ma, X.M.; Yoon, S.-O.; Richardson, C.J.; Jülich, K.; Blenis, J. SKAR Links Pre-mRNA Splicing to mTOR/S6K1-Mediated Enhanced Translation Efficiency of Spliced mRNAs. Cell 2008, 133, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 2013, 126, 1713–1719. [Google Scholar] [CrossRef] [PubMed]
- Roux, P.P.; Topisirovic, I. Regulation of mRNA Translation by Signaling Pathways. Cold Spring Harb. Perspect. Biol. 2012, 4, a012252. [Google Scholar] [CrossRef]
- Pascual-Ahuir, A.; Fita-Torró, J.; Proft, M. Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell. Int. J. Mol. Sci. 2020, 21, 8278. [Google Scholar] [CrossRef]
- Yeh, H.-S.; Yong, J. mTOR-coordinated Post-Transcriptional Gene Regulations: From Fundamental to Pathogenic Insights. J. Lipid Atheroscler. 2020, 9, 8–22. [Google Scholar] [CrossRef]
- Arif, W.; Datar, G.; Kalsotra, A. Intersections of post-transcriptional gene regulatory mechanisms with intermediary metabolism. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2017, 1860, 349–362. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. mTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.U.; Ali, R.; Zhang, H.; Zafar, M.H.; Wang, M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front. Physiol. 2023, 14, 1252089. [Google Scholar] [CrossRef]
- Cruz, B.; Oliveira, A.; Ventrucci, G.; Gomes-Marcondes, M.C.C. A leucine-rich diet modulates the mTOR cell signalling pathway in the gastrocnemius muscle under different Walker-256 tumour growth conditions. BMC Cancer 2019, 19, 349. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, B.; Ekim, B.; Fingar, D.C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 2011, 441, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.M.; Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009, 10, 307–318. [Google Scholar] [CrossRef]
- Meyuhas, O.; Dreazen, A. Chapter 3 Ribosomal Protein S6 Kinase. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2009; pp. 109–153. [Google Scholar] [CrossRef]
- Zhu, Q.-S.; Wang, J.; He, S.; Liang, X.-F.; Xie, S.; Xiao, Q.-Q. Early leucine programming on protein utilization and mTOR signaling by DNA methylation in zebrafish (Danio rerio). Nutr. Metab. 2020, 17, 67. [Google Scholar] [CrossRef]
- Zhou, J.; Liao, W.; Yang, J.; Ma, K.; Li, X.; Wang, Y.; Wang, D.; Wang, L.; Zhang, Y.; Yin, Y.; et al. FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway. Autophagy 2012, 8, 1712–1723. [Google Scholar] [CrossRef]
- Furtado, G.V.; Yang, J.; Wu, D.; I Papagiannopoulos, C.; Terpstra, H.M.; Kuiper, E.F.E.; Krauss, S.; Zhu, W.-G.; Kampinga, H.H.; Bergink, S. FOXO1 controls protein synthesis and transcript abundance of mutant polyglutamine proteins, preventing protein aggregation. Hum. Mol. Genet. 2021, 30, 996–1005. [Google Scholar] [CrossRef]
- Haeusler, R.A.; Hartil, K.; Vaitheesvaran, B.; Arrieta-Cruz, I.; Knight, C.M.; Cook, J.R.; Kammoun, H.L.; Febbraio, M.A.; Gutierrez-Juarez, R.; Kurland, I.J.; et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat. Commun. 2014, 5, 5190. [Google Scholar] [CrossRef]
- Haeusler, R.A.; Kaestner, K.H.; Accili, D. FoxOs Function Synergistically to Promote Glucose Production. J. Biol. Chem. 2010, 285, 35245–35248. [Google Scholar] [CrossRef]
- Langlet, F.; Haeusler, R.A.; Lindén, D.; Ericson, E.; Norris, T.; Johansson, A.; Cook, J.R.; Aizawa, K.; Wang, L.; Buettner, C.; et al. Selective Inhibition of FOXO1 Activator/Repressor Balance Modulates Hepatic Glucose Handling. Cell 2017, 171, 824–835.e18. [Google Scholar] [CrossRef] [PubMed]
- Tesseraud, S.; Avril, P.; Bonnet, M.; Bonnieu, A.; Cassar-Malek, I.; Chabi, B.; Dessauge, F.; Gabillard, J.-C.; Perruchot, M.-H.; Seiliez, I. Autophagy in farm animals: Current knowledge and future challenges. Autophagy 2020, 17, 1809–1827. [Google Scholar] [CrossRef] [PubMed]
- Al Amaz, S.; Shahid, A.H.; Chaudhary, A.; Jha, R.; Mishra, B. Embryonic thermal manipulation reduces hatch time, increases hatchability, thermotolerance, and liver metabolism in broiler embryos. Poult. Sci. 2024, 103, 103527. [Google Scholar] [CrossRef]
- Willson, N.-L.; Forder, R.E.A.; Tearle, R.; Williams, J.L.; Hughes, R.J.; Nattrass, G.S.; Hynd, P.I. Transcriptional analysis of liver from chickens with fast (meat bird), moderate (F1 layer x meat bird cross) and low (layer bird) growth potential. BMC Genom. 2018, 19, 309. [Google Scholar] [CrossRef] [PubMed]
- Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 1999, 14, 343–348. [Google Scholar] [CrossRef]
- Groothuis, T.G.; Kumar, N.; Hsu, B.-Y. Explaining discrepancies in the study of maternal effects: The role of context and embryo. Curr. Opin. Behav. Sci. 2020, 36, 185–192. [Google Scholar] [CrossRef]
Amino Acid | Whole Egg | Egg Yolk | Egg White |
---|---|---|---|
ASP | 1.26 | 1.43 | 1.04 |
THR | 0.73 | 0.82 | 0.60 |
SER | 0.98 | 1.23 | 0.69 |
GLU | 1.82 | 1.96 | 1.50 |
PRO | 0.47 | 0.69 | 0.38 |
GLY | 0.40 | 0.44 | 0.36 |
ALA | 0.59 | 0.66 | 0.55 |
CYS | 0.20 | 0.21 | 0.28 |
VAL | 0.80 | 0.90 | 0.66 |
MET | 0.42 | 0.38 | 0.36 |
ILE | 0.65 | 0.77 | 0.50 |
LEU | 1.11 | 1.20 | 0.85 |
TYR | 0.54 | 0.65 | 0.42 |
PHE | 0.68 | 0.68 | 0.64 |
HIS | 0.36 | 0.44 | 0.27 |
LYS | 1.18 | 1.20 | 0.87 |
ARG | 0.58 | 0.80 | 0.37 |
Feed Ingredients | % |
---|---|
Corn | 23.69 |
Wheat | 30.00 |
Soybean meal (46% CP) | 34.85 |
Fishmeal | 5.00 |
Sunflower oil | 4.09 |
Limestone | 1.01 |
MCP | 0.37 |
Salt | 0.24 |
DL-Methionine | 0.10 |
L-Threonine | 0.13 |
Vitamin and mineral premix a | 0.50 |
Nutrients | % |
Metabolisable energy (MJ/kg) | 12.13 |
Crude protein | 24.00 |
Calcium | 0.80 |
Available phosphorus | 0.30 |
Sodium | 0.15 |
Methionine | 0.45 |
Lysine | 1.34 |
Threonine | 1.02 |
Tryptophan | 0.29 |
Gene | Gene Name | Primer Sequences (5′ → 3′) (Forward/Reverse) | NCBI GenBank | Amplicon Length Range (bp) |
---|---|---|---|---|
mTOR | Mechanistic target of rapamycin | F: CCGAAGCATTGAATTGGCCCT | XM_015882433.2 | 116 |
R: CATCTCTCAAAGGCAGCGGACC | ||||
RPS6K1 | Ribosomal protein S6 kinase 1 | F: AGGCAGGAACCCTCCGTGCAA | XM_015883670.2 | 106 |
R: AGCTCAAACTGCGAAGGGTCGG | ||||
IGF-1 | Insulin-like growth factor-1 | F: CACTATGCGGTGCTGAGCTGGTT | XM_015867574.2 | 118 |
R: TCCCCTTGTGGTGTAAG CGTCT | ||||
IGF1R | Insulin-like growth factor 1 receptor | F: TACAACTACCGCTGCTGGACCAC | XM_015873184.2 | 107 |
R: AGGCACTCAGGATGGCAACAC | ||||
FOXO1 | Forkhead box O1 | F: TGAGCGAGATCTGCGAGTTCAT | XM_015851898.1 | 102 |
R: AGGAAGCTCCCGTTGTCGAACA | ||||
RPL19 | Ribosomal protein L19 | F: CATCGGTAAGAGGAAGGGT | XM_015885843.1 | 163 |
R: ACGTTGCCCTTGACCTTCAG |
Parameter | Day | Estimate | SE. | df | t-Ratio | Lower.CL | Upper.CL | p-Value |
---|---|---|---|---|---|---|---|---|
Body mass (g) | 1 | −0.67 | 2.56 | 61.60 | −0.26 | −5.79 | 4.44 | 0.795 |
3 | −5.70 | 3.50 | 91.80 | −1.63 | −12.64 | 1.25 | 0.107 | |
5 | −9.10 | 3.75 | 98.44 | −2.43 | −16.55 | −1.65 | 0.017 | |
7 | −13.73 | 3.82 | 100.19 | −3.59 | −21.32 | −6.14 | <0.001 | |
10 | −19.35 | 3.82 | 100.19 | −5.06 | −26.94 | −11.77 | <0.001 | |
14 | −28.57 | 3.82 | 100.19 | −7.47 | −36.16 | −20.98 | <0.001 | |
21 | −30.29 | 3.98 | 103.71 | −7.62 | −38.17 | −22.40 | <0.001 | |
Head length (mm) | 1 | 0.35 | 0.57 | 57.60 | 0.60 | −0.80 | 1.49 | 0.550 |
3 | −0.80 | 0.78 | 89.65 | −1.04 | −2.34 | 0.74 | 0.303 | |
5 | −1.63 | 0.83 | 96.80 | −1.97 | −3.27 | 0.01 | 0.052 | |
7 | −3.19 | 0.84 | 98.68 | −3.79 | −4.86 | −1.52 | <0.001 | |
10 | −3.07 | 0.84 | 98.68 | −3.64 | −4.74 | −1.40 | <0.001 | |
14 | −3.78 | 0.84 | 98.68 | −4.48 | −5.45 | −2.11 | <0.001 | |
21 | −3.88 | 0.87 | 102.43 | −4.43 | −5.61 | −2.14 | <0.001 | |
Tarsus length (mm) | 1 | 0.16 | 0.59 | 58.86 | 0.27 | −1.03 | 1.35 | 0.789 |
3 | −2.10 | 0.81 | 90.37 | −2.61 | −3.70 | −0.50 | 0.011 | |
5 | −1.66 | 0.86 | 97.37 | −1.93 | −3.37 | 0.05 | 0.006 | |
7 | −2.49 | 0.88 | 99.20 | −2.84 | −4.24 | −0.75 | 0.005 | |
10 | −3.31 | 0.88 | 99.20 | −3.77 | −5.05 | −1.56 | <0.001 | |
14 | −4.30 | 0.88 | 99.20 | −4.90 | −6.04 | −2.56 | <0.001 | |
21 | −4.11 | 0.91 | 102.88 | −4.51 | −5.92 | −2.30 | <0.001 | |
Wing length (mm) | 1 | −0.07 | 1.81 | 86.45 | −0.04 | −3.67 | 3.53 | 0.969 |
3 | −0.67 | 2.58 | 101.05 | −0.26 | −5.79 | 4.46 | 0.797 | |
5 | −3.16 | 2.80 | 104.40 | −1.13 | −8.72 | 2.40 | 0.263 | |
7 | −6.46 | 2.87 | 105.37 | −2.25 | −12.15 | −0.78 | 0.026 | |
10 | −11.65 | 2.87 | 105.37 | −4.06 | −17.34 | −5.97 | <0.001 | |
14 | −15.03 | 2.87 | 105.37 | −5.24 | −20.71 | −9.34 | <0.001 | |
21 | −12.76 | 3.01 | 107.54 | −4.24 | −18.72 | −6.80 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndunguru, S.F.; Reda, G.K.; Csernus, B.; Knop, R.; Lugata, J.K.; Szabó, C.; Lendvai, Á.Z.; Czeglédi, L. Embryonic Leucine Promotes Early Postnatal Growth via mTOR Signalling in Japanese Quails. Animals 2024, 14, 2596. https://doi.org/10.3390/ani14172596
Ndunguru SF, Reda GK, Csernus B, Knop R, Lugata JK, Szabó C, Lendvai ÁZ, Czeglédi L. Embryonic Leucine Promotes Early Postnatal Growth via mTOR Signalling in Japanese Quails. Animals. 2024; 14(17):2596. https://doi.org/10.3390/ani14172596
Chicago/Turabian StyleNdunguru, Sawadi F., Gebrehaweria K. Reda, Brigitta Csernus, Renáta Knop, James K. Lugata, Csaba Szabó, Ádám Z. Lendvai, and Levente Czeglédi. 2024. "Embryonic Leucine Promotes Early Postnatal Growth via mTOR Signalling in Japanese Quails" Animals 14, no. 17: 2596. https://doi.org/10.3390/ani14172596
APA StyleNdunguru, S. F., Reda, G. K., Csernus, B., Knop, R., Lugata, J. K., Szabó, C., Lendvai, Á. Z., & Czeglédi, L. (2024). Embryonic Leucine Promotes Early Postnatal Growth via mTOR Signalling in Japanese Quails. Animals, 14(17), 2596. https://doi.org/10.3390/ani14172596