Different Physiochemical Properties of Novel Fibre Sources in the Diet of Weaned Pigs Influence Animal Performance, Nutrient Digestibility, and Caecal Fermentation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics Statement
2.2. Animals and Housing
2.3. Experimental Design and Diets
2.4. Growth Performance Trial
2.5. Measurement of Total Tract Apparent Digestibility
2.6. Gut Sampling and In Vitro Caecal Fermentation
2.7. In Vitro Caecal Fermentation
2.8. Laboratory Analysis
2.8.1. Chemical Composition
2.8.2. Physicochemical Properties
2.8.3. Short-Chain Fatty Acid Determination
2.9. Statistical Analysis
3. Results
3.1. Growth Traits
3.2. Total Tract Apparent Digestibility
3.3. Gut Traits and Short-Chain Fatty Acid Concentration
4. Discussion
4.1. Growth Performance and Diet Digestibility
4.2. In Vitro Fermentation and Caecal Content Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary Fiber and Intestinal Health of Monogastric Animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.A.; Mikkelsen, D.; Flanagan, B.M.; Gidley, M.J. “Dietary Fibre”: Moving beyond the “Soluble/Insoluble” Classification for Monogastric Nutrition, with an Emphasis on Humans and Pigs. J. Anim. Sci. Biotechnol. 2019, 10, 45. [Google Scholar] [CrossRef]
- Svihus, B. Function of the Digestive System. J. Appl. Poult. Res. 2014, 67, 306–313. [Google Scholar] [CrossRef]
- Zhao, J.B.; Liu, P.; Huang, C.F.; Liu, L.; Li, E.K.; Zhang, G.; Zhang, S. Effect of Wheat Bran on Apparent Total Tract Digestibility, Growth Performance, Fecal Microbiota and Their Metabolites in Growing Pigs. Anim. Feed Sci. Technol. 2018, 239, 14–26. [Google Scholar] [CrossRef]
- Farré, R.; Fiorani, M.; Rahiman, S.A.; Matteoli, G. Intestinal Permeability, Inflammation and the Role of Nutrients. Nutrients 2020, 12, 1185. [Google Scholar] [CrossRef] [PubMed]
- Molist, F.; Manzanilla, E.G.; Pérez, J.F.; Nyachoti, C.M. Coarse, but Not Finely Ground, Dietary Fibre Increases Intestinal Firmicutes: Bacteroidetes Ratio and Reduces Diarrhoea Induced by Experimental Infection in Piglets. Br. J. Nutr. 2012, 108, 9–15. [Google Scholar] [CrossRef]
- Pascoal, L.A.F.; Thomaz, M.C.; Watanabe, P.H.; dos Santos Ruiz, U.; Amorim, A.B.; Daniel, E.; da Silva, S.Z. Purified Cellulose, Soybean Hulls and Citrus Pulp as a Source of Fiber for Weaned Piglets. Sci. Agric. 2015, 72, 400–410. [Google Scholar] [CrossRef]
- Grundy, M.M.L.; Tang, J.; van Milgen, J.; Renaudeau, D. Cell Wall of Feeds and Their Impact on Protein Digestibility: An In Vitro Method Applied for Pig Nutrition. Anim. Feed Sci. Technol. 2022, 293, 115467. [Google Scholar] [CrossRef]
- Jha, R.; Berrocoso, J.D. Review: Dietary Fiber Utilization and Its Effects on Physiological Functions and Gut Health of Swine. Animal 2015, 9, 1441–1452. [Google Scholar] [CrossRef]
- Shang, Q.; Liu, H.; Wu, D.; Mahfuz, S.; Piao, X. Source of Fiber Influences Growth, Immune Responses, Gut Barrier Function and Microbiota in Weaned Piglets Fed Antibiotic-Free Diets. Anim. Nutr. 2021, 7, 315–325. [Google Scholar] [CrossRef]
- Freire, J.P.B.; Guerreiro, A.J.G.; Cunha, L.F.; Aumaitre, A. Effect of Dietary Fibre Source on Total Tract Digestibility, Caecum Volatile Fatty Acids and Digestive Transit Time in the Weaned Piglet. Anim. Feed Sci. Technol. 2000, 87, 71–83. [Google Scholar] [CrossRef]
- Hedemann, M.S.; Eskildsen, M.; Lærke, H.N.; Pedersen, C.; Lindberg, J.E.; Laurinen, P.; Knudsen, K.E.B. Intestinal Morphology and Enzymatic Activity in Newly Weaned Pigs Fed Contrasting Fiber Concentrations and Fiber Properties. J. Anim. Sci. 2006, 84, 1375–1386. [Google Scholar] [CrossRef]
- Molist, F.; van Oostrum, M.; Pérez, J.F.; Mateos, G.G.; Nyachoti, C.M.; van der Aar, P.J. Relevance of Functional Properties of Dietary Fibre in Diets for Weanling Pigs. Anim. Feed Sci. Technol. 2014, 189, 1–10. [Google Scholar] [CrossRef]
- Slama, J.; Schedle, K.; Wurzer, G.K.; Gierus, M. Physicochemical Properties to Support Fibre Characterization in Monogastric Animal Nutrition. J. Sci. Food Agric. 2019, 99, 3895–3902. [Google Scholar] [CrossRef]
- Bachmann, M.; Michel, S.; Greef, J.M.; Zeyner, A. Fermentation Characteristics and In Vitro Digestibility of Fibers and Fiber-Rich Byproducts Used for the Feeding of Pigs. Animals 2021, 11, 341. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, D.; Tian, G.; Zheng, P.; Mao, X.; Yu, J.; He, J.; Huang, Z.; Luo, Y.; Luo, J.; et al. Effects of Soluble and Insoluble Dietary Fiber Supplementation on Growth Performance, Nutrient Digestibility, Intestinal Microbe and Barrier Function in Weaning Piglet. Anim. Feed Sci. Technol. 2019, 260, 114335. [Google Scholar] [CrossRef]
- Ardana, I.B.K.; Sumadi, I.K.; Warditha, A.A.G.J.; Dharmayudha, A.A.G.O. Using Lignocellulose Fiber in Feed to Maintain Health and Improve the Growth of Post-Weaning Piglets. Online J. Anim. Feed Res. 2024, 14, 234–242. [Google Scholar] [CrossRef]
- Slama, J.; Schedle, K.; Wetscherek, W.; Pekar, D.; Schwarz, C.; Gierus, M. Effects of Soybean Hulls and Lignocellulose on Performance, Nutrient Digestibility, Microbial Metabolites and Immune Response in Piglets. Arch. Anim. Nutr. 2020, 74, 173–188. [Google Scholar] [CrossRef]
- Sun, X.; Cui, Y.; Su, Y.; Gao, Z.; Diao, X.; Li, J.; Zhu, X.; Li, D.; Li, Z.; Wang, C.; et al. Dietary Fiber Ameliorates Lipopolysaccharide-Induced Intestinal Barrier Function Damage in Piglets by Modulation of Intestinal Microbiome. mSystems 2021, 6, 10–1128. [Google Scholar] [CrossRef]
- Silva-Guillen, Y.V.; Almeida, V.V.; Nuñez, A.J.C.; Schinckel, A.P.; Thomaz, M.C. Effects of Feeding Diets Containing Increasing Content of Purified Lignocellulose Supplied by Sugarcane Bagasse to Early-Weaned Pigs on Growth Performance and Intestinal Health. Anim. Feed Sci. Technol. 2022, 284, 115147. [Google Scholar] [CrossRef]
- Pieper, R.; Boudry, C.; Bindelle, J.; Vahjen, W.; Zentek, J. Interaction between Dietary Protein Content and the Source of Carbohydrates along the Gastrointestinal Tract of Weaned Piglets. Arch. Anim. Nutr. 2014, 68, 263–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, W.; Zhu, X.; Sun, X.; Xiao, J.; Li, D.; Cui, Y.; Wang, C.; Shi, Y. Response of Gut Microbiota to Dietary Fiber and Metabolic Interaction with SCFAs in Piglets. Front. Microbiol. 2018, 9, 2344. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Han, D.; Ye, H.; Tao, S.; Pi, Y.; Zhao, J.; Chen, L.; Wang, J. Short Administration of Combined Prebiotics Improved Microbial Colonization, Gut Barrier, and Growth Performance of Neonatal Piglets. ACS Omega 2020, 5, 20506–20516. [Google Scholar] [CrossRef] [PubMed]
- Lallès, J.P.; Montoya, C.A. Dietary Alternatives to in-Feed Antibiotics, Gut Barrier Function and Inflammation in Piglets Post-Weaning: Where Are We Now? Anim. Feed Sci. Technol. 2021, 274, 114836. [Google Scholar] [CrossRef]
- Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van Immerseel, F. From the Gut to the Peripheral Tissues: The Multiple Effects of Butyrate. Nutr. Res. Rev. 2010, 23, 366–384. [Google Scholar] [CrossRef]
- Yadav, S.; Jha, R. Strategies to Modulate the Intestinal Microbiota and Their Effects on Nutrient Utilization, Performance, and Health of Poultry. J. Anim. Sci. Biotechnol. 2019, 10, 2. [Google Scholar] [CrossRef]
- Van Nevel, C.J.; Dierick, N.A.; Decuypere, J.A.; De Smet, S.M. In Vitro Fermentability and Physicochemical Properties of Fibre Substrates and Their Effect on Bacteriological and Morphological Characteristics of the Gastrointestinal Tract of Newly Weaned Piglets. Arch. Anim. Nutr. 2006, 60, 477–500. [Google Scholar] [CrossRef] [PubMed]
- Ivarsson, E. Chicory (Cichorium intybus L.) as Fibre Source in Pig Diets: Effects on Digestibility, Gut Microbiota and Performance. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2012. ISBN 9789157676559. [Google Scholar]
- Uerlings, J.; Schroyen, M.; Bindelle, J.; Bruggeman, G.; Everaert, N. Chicory Root and Inulin Stimulate Butyrate-Producing Bacterial Communities in an In Vitro Model of the Piglet’s Gastro-Intestinal Tract. Bioact. Carbohydr. Diet. Fibre 2021, 26, 100269. [Google Scholar] [CrossRef]
- Patterson, J.; Yasuda, K.; Welch, R.M.; Miller, D.D.; Lei, X.G. Supplemental Dietary Inulin of Variable Chain Lengths Alters Intestinal Bacterial Populations in Young Pigs. J. Nutr. 2010, 140, 2158–2161. [Google Scholar] [CrossRef]
- Halas, D.; Hansen, C.F.; Hampson, D.J.; Mullan, B.P.; Wilson, R.H.; Pluske, J.R. Effect of Dietary Supplementation with Inulin and/or Benzoic Acid on the Incidence and Severity of Post-Weaning Diarrhoea in Weaner Pigs after Experimental Challenge with Enterotoxigenic Escherichia coli. Arch. Anim. Nutr. 2009, 63, 267–280. [Google Scholar] [CrossRef]
- Chang, M.; Zhao, Y.; Qin, G.; Zhang, X. Fructo-Oligosaccharide Alleviates Soybean-Induced Anaphylaxis in Piglets by Modulating Gut Microbes. Front. Microbiol. 2018, 9, 2769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, G.; Zhang, S.; Zhao, J. Fructooligosaccharide Reduces Weanling Pig Diarrhea in Conjunction with Improving Intestinal Antioxidase Activity and Tight Junction Protein Expression. Nutrients 2022, 14, 512. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, D.; Yu, B.; Huang, Z.; Mao, X.; Zheng, P.; Luo, Y.; Yu, J.; Luo, J.; Yan, H.; et al. Effects of Dietary Inulin Supplementation on Growth Performance, Intestinal Barrier Integrity and Microbial Populations in Weaned Pigs. Br. J. Nutr. 2020, 124, 296–305. [Google Scholar] [CrossRef]
- Mair, C.; Plitzner, C.; Domig, K.J.; Schedle, K.; Windisch, W. Impact of Inulin and a Multispecies Probiotic Formulation on Performance, Microbial Ecology and Concomitant Fermentation Patterns in Newly Weaned Piglets. J. Anim. Physiol. Anim. Nutr. 2010, 94, e164–e177. [Google Scholar] [CrossRef] [PubMed]
- Pluske, J.; Kim, J.C.; Hewitt, M.R.; Van Barneveld, R. Reducing the Risk of Post-Weaning E. coli Diarrhoea Using Different Sources of Fibre in Diets; Pork CRC: Willaston, Australia, 2014. [Google Scholar]
- Chuang, W.Y.; Lin, L.J.; Shih, H.; Shy, Y.M.; Chang, S.C.; Lee, T.T. The Potential Utilization of High-Fiber Agricultural by-Products as Monogastric Animal Feed and Feed Additives: A Review. Animals 2021, 11, 2098. [Google Scholar] [CrossRef]
- Costa, M.M.; Alfaia, C.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A.M. Grape By-Products as Feedstuff for Pig and Poultry Production. Animals 2022, 12, 2239. [Google Scholar] [CrossRef]
- Speroni, C.S.; Stiebe, J.; Guerra, D.R.; Bender, A.B.B.; Ballus, C.A.; dos Santos, D.R.; Dal Pont Morisso, F.; da Silva, L.P.; Emanuelli, T. Micronization and Granulometric Fractionation Improve Polyphenol Content and Antioxidant Capacity of Olive Pomace. Ind. Crops Prod. 2019, 137, 347–355. [Google Scholar] [CrossRef]
- Speroni, C.S.; Guerra, D.R.; Bender, A.B.B.; Stiebe, J.; Ballus, C.A.; da Silva, L.P.; Lozano-Sánchez, J.; Emanuelli, T. Micronization Increases the Bioaccessibility of Polyphenols from Granulometrically Separated Olive Pomace Fractions. Food Chem. 2021, 344, 28689. [Google Scholar] [CrossRef]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.R.; da Silva, L.P.; Penna, N.G. Effects of Micronization on Dietary Fiber Composition, Physicochemical Properties, Phenolic Compounds, and Antioxidant Capacity of Grape Pomace and Its Dietary Fiber Concentrate. LWT 2020, 117, 108652. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Mills, A. Role of Feed Processing on Gut Health and Function in Pigs and Poultry: Conundrum of Optimal Particle Size and Hydrothermal Regimens. Front. Vet. Sci. 2019, 6, 19. [Google Scholar] [CrossRef]
- Boletín Oficial del Estado. Ley 53/2013 de 1 de Febrero Por el que Se Establecen las Normas Básicas Aplicables Para la Protección de los Animales Utilizados en Experimentación y Otros Fines Científicos, Incluyendo la Docencia; Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2013; Volume 34, pp. 11370–11421. [Google Scholar]
- FEDNA; de Blas, C.; Gasa, J.; Mateos, G.G. Necesidades Nutricionales Para Ganado Porcino: Normas FEDNA, 2nd ed.; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2013. [Google Scholar]
- De Coca-Sinova, A.; Mateos, G.G.; Gónzalez-Alvarado, J.M.; Centeno, C.; Lázaro, R.; Jímenez-Moreno, E. Comparative Study of Two Analytical Procedures for the Determination of Acid Insoluble Ash for Evaluation of Nutrient Retention in Broilers. Span. J. Agric. Res. 2011, 9, 761–768. [Google Scholar] [CrossRef]
- Rybicka, A.; Medel, P.; Carro, M.D.; García, J. Effect of Dietary Supplementation of Two Fiber Sources Differing on Fermentability and Hydration Capacity on Performance, Nutrient Digestibility and Cecal Fermentation in Broilers from 1 to 42 d of Age. Poult. Sci. 2024, 103, 103957. [Google Scholar] [CrossRef]
- Ocasio-Vega, C.; Abad-Guamán, R.; Delgado, R.; Carabaño, R.; Carro, M.D.; García, J. Archives of Animal Nutrition Effect of Cellobiose Supplementation and Dietary Soluble Fibre Content on In Vitro Caecal Fermentation of Carbohydrate-Rich Substrates in Rabbits. Arch. Anim. Nutr. 2018, 72, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures, and Some Applications; USDA Agricultural Research Service: Washington, DC, USA, 1970. [Google Scholar]
- Latimer, G.W., Jr. AOAC Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Horwitz, W. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006; ISBN 978-0-935584-77-6. [Google Scholar]
- Mertens, D. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- ANSI/ASAE S319.4; Method of Determining and Expressing Fineness of Feed Materials by Sieving. ASAE Standard. American Society of Agricultural Engineers: St. Joseph, MO, USA, 1995.
- Berrocoso, J.D.; García-Ruiz, A.; Page, G.; Jaworski, N.W. The Effect of Added Oat Hulls or Sugar Beet Pulp to Diets Containing Rapidly or Slowly Digestible Protein Sources on Broiler Growth Performance from 0 to 36 Days of Age. Poult. Sci. 2020, 99, 6859–6866. [Google Scholar] [CrossRef] [PubMed]
- Priester, M.; Visscher, C.; Fels, M.; Rohn, K.; Dusel, G. Fibre Supply for Breeding Sows and Its Effects on Social Behaviour in Group-Housed Sows and Performance during Lactation. Porc. Health Manag. 2020, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Kimiaeitalab, M.V.; Goudarzi, S.M.; Jiménez-Moreno, E.; Cámara, L.; Mateos, G.G. A Comparative Study on the Effects of Dietary Sunflower Hulls on Growth Performance and Digestive Tract Traits of Broilers and Pullets Fed a Pullet Diet from 0 to 21 Days of Age. Anim. Feed Sci. Technol. 2017, 236, 57–67. [Google Scholar] [CrossRef]
- García-Martínez, R.; Ranilla, M.J.; Tejido, M.L.; Carro, M.D. Effects of Disodium Fumarate on In Vitro Rumen Microbial Growth, Methane Production and Fermentation of Diets Differing in Their Forage:Concentrate Ratio. Br. J. Nutr. 2005, 94, 71–77. [Google Scholar] [CrossRef]
- Prosky, L.; Hoebregs, H. Methods to Determine Food Inulin and Oligofructose. J. Nutr. 1999, 129, 1418S–1423S. [Google Scholar] [CrossRef]
- Hall, M.B.; Mertens, D.R. Comparison of Alternative Neutral Detergent Fiber Methods to the AOAC Definitive Method. J. Dairy Sci. 2023, 106, 5364–5378. [Google Scholar] [CrossRef]
- Molist, F.; de Segura, A.G.; Gasa, J.; Hermes, R.G.; Manzanilla, E.G.; Anguita, M.; Pérez, J.F. Effects of the Insoluble and Soluble Dietary Fibre on the Physicochemical Properties of Digesta and the Microbial Activity in Early Weaned Piglets. Anim. Feed Sci. Technol. 2009, 149, 346–353. [Google Scholar] [CrossRef]
- Superchi, P.; Sabbioni, A.; Sereni, M.; Zavattini, S.; Garella, E.; van den Bossche, L. Preliminary Study of a Thermomechanically Processed Lignocellulose Incorporated into a Weaned Piglet Feed. In Proceedings of the 49th Journées de la Recherche Porcine, Paris, France, 31 January–1 February 2017; pp. 1–2. [Google Scholar]
- Wang, W.; Chen, D.; Yu, B.; Huang, Z.; Luo, Y.; Zheng, P.; Mao, X.; Yu, J.; Luo, J.; He, J. Effect of Dietary Inulin Supplementation on Growth Performance, Carcass Traits, and Meat Quality in Growing—Finishing Pigs. Animals 2019, 9, 840. [Google Scholar] [CrossRef]
- Zhao, J.; Bai, Y.; Zhang, G.; Liu, L.; Lai, C. Relationship between Dietary Fiber Fermentation and Volatile Fatty Acids’ Concentration in Growing Pigs. Animals 2020, 10, 263. [Google Scholar] [CrossRef]
- Shang, Q.; Ma, X.; Liu, H.; Liu, S.; Piao, X. Effect of Fibre Sources on Performance, Serum Parameters, Intestinal Morphology, Digestive Enzyme Activities and Microbiota in Weaned Pigs. Arch. Anim. Nutr. 2019, 74, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Schroyen, M.; Leblois, J.; Wavreille, J.; Soyeurt, H.; Bindelle, J.; Everaert, N. Effects of Inulin Supplementation to Piglets in the Suckling Period on Growth Performance, Postileal Microbial and Immunological Traits in the Suckling Period and Three Weeks after Weaning. Arch. Anim. Nutr. 2018, 72, 425–442. [Google Scholar] [CrossRef]
- Ivarsson, E.; Liu, H.Y.; Dicksved, J.; Roos, S.; Lindberg, J.E. Impact of Chicory Inclusion in a Cereal-Based Diet on Digestibility, Organ Size and Faecal Microbiota in Growing Pigs. Animal 2012, 6, 1077–1085. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Trevisi, P.; Prates, J.A.M.; Tanghe, S.; Bosi, P.; Canibe, N.; Montagne, L.; Freire, J.; Zebeli, Q. Assessing the Effect of Dietary Inulin Supplementation on Gastrointestinal Fermentation, Digestibility and Growth in Pigs: A Meta-Analysis. Anim. Feed Sci. Technol. 2017, 233, 120–132. [Google Scholar] [CrossRef]
- Anguita, M.; Gasa, J.; Nofrarias, M.; Martín-Orúe, S.M.; Pérez, J.F. Effect of Coarse Ground Corn, Sugar Beet Pulp and Wheat Bran on the Voluntary Intake and Physicochemical Characteristics of Digesta of Growing Pigs. Livest. Sci. 2007, 107, 182–191. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Macfarlane, S. Bacteria, Colonic Fermentation, and Gastrointestinal Health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar] [CrossRef]
- Dou, S.; Gadonna-Widehem, P.; Rome, V.; Hamoudi, D.; Rhazi, L.; Lakhal, L.; Larcher, T.; Bahi-Jaber, N.; Pinon-Quintana, A.; Guyonvarch, A.; et al. Characterisation of Early-Life Fecal Microbiota in Susceptible and Healthy Pigs to Post-Weaning Diarrhoea. PLoS ONE 2017, 12, e0169851. [Google Scholar] [CrossRef]
- Bedford, M.R.; Svihus, B.; Cowieson, A.J. Dietary Fibre Effects and the Interplay with Exogenous Carbohydrases in Poultry Nutrition. Anim. Nutr. 2024, 16, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Hald, S.; Schioldan, A.G.; Moore, M.E.; Dige, A.; Lærke, H.N.; Agnholt, J.; Knudsen, K.E.B.; Hermansen, K.; Marco, M.L.; Gregersen, S.; et al. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study. PLoS ONE 2016, 11, e0159223. [Google Scholar] [CrossRef]
- Chen, T.; Chen, D.; Tian, G.; Zheng, P.; Mao, X.; Yu, J.; He, J.; Huang, Z.; Luo, Y.; Luo, J.; et al. Soluble Fiber and Insoluble Fiber Regulate Colonic Microbiota and Barrier Function in a Piglet Model. BioMed Res. Int. 2019, 2019, 7809171. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, R.; Liu, X.; Wang, J.; Zheng, X.; Zuo, F. Effect of Particle Size on Physicochemical Properties and In Vitro Hypoglycemic Ability of Insoluble Dietary Fiber from Corn Bran. Front. Nutr. 2022, 9, 951821. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.A.M.; Özcan, M.M.; Juhaimi, F.A.; Babiker, E.F.E.; Ghafoor, K.; Banjanin, T.; Osman, M.A.; Gassem, M.A.; Alqah, H.A.S. Chemical Composition, Bioactive Compounds, Mineral Contents, and Fatty Acid Composition of Pomace Powder of Different Grape Varieties. J. Food Process. Preserv. 2020, 44, e14539. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Z.; Pi, F.; Pan, R.; Zhao, Z.; Yu, S. Sequential Extraction and Physicochemical Characterization of Polysaccharides from Chicory (Cichorium intybus) Root Pulp. Food Hydrocoll. 2018, 77, 277–285. [Google Scholar] [CrossRef]
- Uerlings, J.; Schroyen, M.; Bautil, A.; Courtin, C.; Richel, A.; Sureda, E.A.; Bruggeman, G.; Tanghe, S.; Willems, E.; Bindelle, J.; et al. In Vitro Prebiotic Potential of Agricultural By-Products on Intestinal Fermentation, Gut Barrier and Inflammatory Status of Piglets. Br. J. Nutr. 2019, 123, 293–307. [Google Scholar] [CrossRef]
- Youssef, I.M.I.; Kamphues, J. Fermentation of Lignocellulose Ingredients In Vivo and In Vitro via Using Fecal and Caecal Inoculums of Monogastric Animals (Swine/Turkeys). Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 407–413. [Google Scholar] [CrossRef]
- Rybicka, A.; del Pozo, R.; Carro, D.; García, J. Effect of Type of Fiber and Its Physicochemical Properties on Performance, Digestive Transit Time, and Cecal Fermentation in Broilers from 1 to 23 d of Age. Poult. Sci. 2024, 103, 103192. [Google Scholar] [CrossRef]
- Hanczakowska, E.; Świątkiewicz, M.; Białecka, A. Pure Cellulose as a Feed Supplement for Piglets. Med. Weter. 2008, 64, 45–48. [Google Scholar]
- Yang, C.; Lu, H.; Li, E.; Oladele, P.; Ajuwon, K.M. Inulin Supplementation Induces Expression of Hypothalamic Antioxidant Defence Genes in Weaned Piglets. J. Anim. Physiol. Anim. Nutr. 2023, 107, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Loh, G.; Eberhard, M.; Brunner, R.M.; Hennig, U.; Kuhla, S.; Kleessen, B.; Metges, C.C. Inulin Alters the Intestinal Microbiota and Short-Chain Fatty Acid Concentrations in Growing Pigs Regardless of Their Basal Diet. J. Nutr. 2006, 136, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, M.; Hennig, U.; Kuhla, S.; Brunner, R.M.; Kleessen, B.; Metges, C.C. Effect of Inulin Supplementation on Selected Gastric, Duodenal, and Caecal Microbiota and Short Chain Fatty Acid Pattern in Growing Piglets. Arch. Anim. Nutr. 2007, 61, 235–246. [Google Scholar] [CrossRef]
- Böhmer, B.M.; Branner, G.R.; Roth-Maier, D.A. Precaecal and Faecal Digestibility of Inulin (DP 10-12) or an Inulin/Enterococcus faecium Mix and Effects on Nutrient Digestibility and Microbial Gut Flora. J. Anim. Physiol. Anim. Nutr. 2005, 89, 388–396. [Google Scholar] [CrossRef]
- Paßlack, N.; Al-Samman, M.; Vahjen, W.; Männer, K.; Zentek, J. Chain Length of Inulin Affects Its Degradation and the Microbiota in the Gastrointestinal Tract of Weaned Piglets after a Short-Term Dietary Application. Livest. Sci. 2012, 149, 128–136. [Google Scholar] [CrossRef]
- Yasuda, K.; Dawson, H.D.; Wasmuth, E.V.; Roneker, C.A.; Chen, C.; Urban, J.F.; Welch, R.M.; Miller, D.D.; Lei, X.G. Supplemental Dietary Inulin Influences Expression of Iron and Inflammation Related Genes in Young Pigs. J. Nutr. 2009, 139, 2018–2023. [Google Scholar] [CrossRef] [PubMed]
- Hedemann, M.S.; Knudsen, K.E.B. Dried Chicory Root Has Minor Effects on the Digestibility of Nutrients and the Composition of the Micro Fl Ora at the Terminal Ileum and in Faeces of Growing Pigs. Livest. Sci. 2010, 134, 53–55. [Google Scholar] [CrossRef]
- Yan, C.L.; Kim, H.S.; Hong, J.S.; Lee, J.H.; Han, Y.G.; Jin, Y.H.; Son, S.W.; Ha, S.H.; Kim, Y.Y. Effect of Dietary Sugar Beet Pulp Supplementation on Growth Performance, Nutrient Digestibility, Fecal Microflora, Blood Profiles and Diarrhea Incidence in Weaning Pigs. J. Anim. Sci. Technol. 2017, 59, 18. [Google Scholar] [CrossRef]
- Lv, Z.; Zhang, Z.; Wang, F.; Guo, J.; Zhao, X.; Zhao, J. Effects of Dietary Fiber Type on Growth Performance, Serum Parameters and Fecal Microbiota Composition in Weaned and Growing-Finishing Pigs. Animals 2022, 12, 1579. [Google Scholar] [CrossRef]
- Cronin, P.; Joyce, S.A.; O’Toole, P.W.; O’Connor, E.M. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef]
- Awati, A.; Konstantinov, S.R.; Williams, B.A.; Akkermans, A.D.L.; Bosch, M.W.; Smidt, H.; Verstegen, M.W.A. Effect of Substrate Adaptation on the Microbial Fermentation and Microbial Composition of Faecal Microbiota of Weaning Piglets Studied In Vitro. J. Sci. Food Agric. 2005, 85, 1765–1772. [Google Scholar] [CrossRef]
Fibre Sources Used in Experimental Diets | |||
---|---|---|---|
LHC | MHC | HHC | |
Chemical composition | |||
Dry matter | 92.3 | 92.6 | 92.3 |
Total dietary fibre | 79.5 | 82.7 | 90.5 |
Soluble fibre | 2.5 | 2.7 | 1.0 |
Insoluble fibre | 77.0 | 80.0 | 89.5 |
Neutral detergent fibre (NDF) | 72.4 | 72.9 | 87.8 |
Acid detergent fibre (ADF) | 49.9 | 55.5 | 75.8 |
Acid detergent lignin (ADL) | 18.5 | 21.0 | 25.2 |
Hemicellulose 2 | 22.5 | 17.4 | 18.6 |
Cellulose 3 | 31.4 | 34.5 | 43.2 |
Crude protein | 4.95 | 4.72 | 1.22 |
Hydration capacity | |||
WBC, g/g | 2.55 | 3.97 | 6.54 |
SC, ml/g | 3.99 | 5.51 | 7.17 |
Geometric mean diameter (GMD), µm | 12.9 | 28.0 | 97.0 |
Prestarter Diet | Starter Diet | |||||||
---|---|---|---|---|---|---|---|---|
Ingredients | CON | LHC | MHC | HHC | CON | LHC | MHC | HHC |
Barley | 20.30 | 20.00 | 20.00 | 20.00 | --- | --- | --- | --- |
Wheat | 19.80 | 17.60 | 17.60 | 17.60 | 8.70 | 5.80 | 5.80 | 5.80 |
Corn | --- | --- | --- | --- | 44.94 | 44.90 | 44.90 | 44.90 |
Extruded corn | 15.00 | 15.00 | 15.00 | 15.00 | --- | --- | --- | --- |
Cookie meal | 16.50 | 16.50 | 16.50 | 16.50 | 20.00 | 20.00 | 20.00 | 20.00 |
Sweet whey | 10.00 | 10.00 | 10.00 | 10.00 | --- | --- | --- | --- |
Soy protein concentrate | 4.40 | 4.90 | 4.90 | 4.90 | 1.30 | 0.85 | 0.85 | 0.85 |
Fish meal, CP 64% | 4.00 | 4.00 | 4.00 | 4.00 | 1.50 | 1.50 | 1.50 | 1.50 |
Soybean meal, CP 48% | 2.50 | 2.50 | 2.50 | 2.50 | 17.00 | 18.25 | 18.25 | 18.25 |
Spray-dried porcine plasma | 2.00 | 2.00 | 2.00 | 2.00 | --- | --- | --- | --- |
Low-HC fibre source | --- | 1.50 | --- | --- | --- | 1.50 | ---- | ---- |
Medium-HC fibre source | --- | --- | 1.50 | --- | --- | --- | 1.50 | ---- |
High-HC fibre source | --- | --- | --- | 1.50 | --- | --- | --- | 1.50 |
Celite ® | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
Calcium formate | 0.79 | 0.79 | 0.79 | 0.79 | --- | --- | --- | --- |
Calcium carbonate | --- | --- | --- | --- | 0.93 | 0.93 | 0.93 | 0.93 |
Monocalcium phosphate | 0.70 | 0.70 | 0.70 | 0.70 | 1.12 | 1.12 | 1.12 | 1.12 |
Vitamin/mineral premix 2 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
MCFA monoglyceride mix 3 | 0.40 | 0.40 | 0.40 | 0.40 | 0.30 | 0.30 | 0.30 | 0.30 |
Soybean oil | 0.32 | 0.85 | 0.85 | 0.85 | 0.80 | 1.45 | 1.45 | 1.45 |
Organic acid mix 4 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Benzoic acid | 0.25 | 0.25 | 0.25 | 0.25 | --- | --- | --- | --- |
Salt | 0.25 | 0.25 | 0.25 | 0.25 | 0.43 | 0.44 | 0.44 | 0.44 |
L-Lysine HCl, 78.8% | 0.48 | 0.47 | 0.47 | 0.47 | 0.57 | 0.55 | 0.55 | 0.55 |
L-Threonine, 98% | 0.23 | 0.23 | 0.23 | 0.23 | 0.26 | 0.26 | 0.26 | 0.26 |
DL-Methionine, 99% | 0.18 | 0.18 | 0.18 | 0.18 | 0.21 | 0.21 | 0.21 | 0.21 |
L-Valine, 98% | 0.09 | 0.09 | 0.09 | 0.09 | 0.11 | 0.11 | 0.11 | 0.11 |
L-Tryptophan, 98% | 0.06 | 0.06 | 0.06 | 0.06 | 0.08 | 0.08 | 0.08 | 0.08 |
Choline chloride | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Nutritive value, % DM | ||||||||
dLys 5 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | 1.39 | 1.39 | 1.39 |
Estimated net energy (MJ/kg) | 11.1 | 11.1 | 11.1 | 11.1 | 11.4 | 11.4 | 11.4 | 11.4 |
Analysed composition, % DM | ||||||||
Organic matter | 92.8 | 92.3 | 91.9 | 92.1 | 92.8 | 92.2 | 92.4 | 93.1 |
Crude protein | 20.7 | 20.9 | 21.0 | 20.7 | 20.0 | 20.4 | 20.2 | 19.9 |
Neutral detergent fibre | 12.2 | 13.6 | 13.9 | 13.8 | 12.0 | 13.5 | 13.5 | 13.9 |
Acid detergent fibre | 3.7 | 4.2 | 4.1 | 4.4 | 3.5 | 3.9 | 4.0 | 4.2 |
Acid detergent lignin | 0.4 | 0.6 | 0.6 | 0.6 | 0.3 | 0.5 | 0.5 | 0.9 |
Dietary Treatment (DT) 1 | p-Value 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | CON | LHC | MHC | HHC | SEM 2 | COV | DT | C1 | C2 | C3 |
Prestarter (28–42 d) | ||||||||||
ADFI, g | 356 a | 334 ab | 352 a | 319 b | 10.2 | <0.001 | 0.033 | 0.119 | 0.036 | 0.112 |
ADG, g | 316 a | 307 ab | 332 a | 291 b | 9.9 | <0.001 | 0.027 | 0.670 | 0.018 | 0.052 |
FCR | 1.125 | 1.092 | 1.064 | 1.098 | 0.02 | 0.48 | 0.401 | 0.149 | 0.551 | 0.502 |
BW 42 d | 11.1 ab | 11.0 ab | 11.4 a | 10.8 b | 0.14 | <0.001 | 0.028 | 0.915 | 0.017 | 0.053 |
Starter (42–60 d) | ||||||||||
ADFI, g | 812 b | 836 ab | 912 a | 792 b | 21.3 | <0.001 | 0.028 | 0.291 | 0.025 | 0.064 |
ADG, g | 539 bc | 561 ab | 578 a | 510 c | 12.0 | <0.001 | 0.002 | 0.431 | <0.001 | 0.301 |
FCR | 1.510 | 1.493 | 1.512 | 1.561 | 0.03 | 0.083 | 0.386 | 0.729 | 0.108 | 0.660 |
BW 60 d | 20.8 bc | 21.1 b | 22.0 a | 20.00 c | 0.31 | <0.001 | 0.001 | 0.561 | <0.001 | 0.049 |
Overall (28–60 d) | ||||||||||
ADFI, g | 632 b | 636 ab | 691 a | 603 b | 15.6 | <0.001 | 0.029 | 0.610 | 0.019 | 0.056 |
ADG, g | 455 bc | 464 b | 493 a | 429 c | 9.98 | <0.001 | 0.001 | 0.561 | <0.001 | 0.049 |
FCR | 1.388 | 1.372 | 1.358 | 1.411 | 0.02 | 0.278 | 0.355 | 0.753 | 0.087 | 0.647 |
Dietary Treatment (DT) 1 | p-Value 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Item | CON | LHC | MHC | HHC | SEM 2 | DT | C1 | C2 | C3 |
TTAD, 42 d | |||||||||
DM | 82.4 | 81.4 | 83.6 | 80.3 | 0.98 | 0.152 | 0.596 | 0.098 | 0.541 |
CP | 80.9 ab | 80.0 ab | 83.9 a | 78.3 b | 1.26 | 0.040 | 0.936 | 0.035 | 0.802 |
OM | 84.7 | 83.8 | 85.7 | 82.7 | 0.87 | 0.139 | 0.555 | 0.076 | 0.789 |
TTAD, 61 d | |||||||||
DM | 82.5 | 82.7 | 82.0 | 82.8 | 0.65 | 0.712 | 0.207 | 0.59 | 0.440 |
CP | 77.4 | 76.7 | 78.3 | 78.9 | 1.17 | 0.566 | 0.697 | 0.34 | 0.337 |
OM | 84.1 | 85.2 | 84.7 | 84.9 | 0.58 | 0.557 | 0.200 | 0.95 | 0.538 |
Dietary Treatment (DT) 1 | p-Value 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Item | CON | LHC | MHC | HHC | SEM 2 | DT | C1 | C2 | C3 |
pH of ileum | 6.45 | 6.95 | 6.63 | 6.67 | 0.13 | 0.064 | 0.045 | 0.443 | 0.087 |
pH of colon | 6.48 | 6.57 | 6.46 | 6.50 | 0.12 | 0.929 | 0.838 | 0.920 | 0.534 |
pH of caecum | 5.83 | 5.92 | 5.66 | 5.88 | 0.12 | 0.467 | 0.912 | 0.550 | 0.146 |
Caecal weight, g | 147 | 166 | 178 | 149 | 20.3 | 0.672 | 0.477 | 0.363 | 0.670 |
Caecal weight, % body weight | 7.24 | 7.31 | 8.23 | 7.33 | 0.96 | 0.868 | 0.727 | 0.713 | 0.504 |
Caecal short chain fatty acids (SCFA), µmol/g | |||||||||
Total SCFAs | 239 | 246 | 209 | 235 | 14.4 | 0.297 | 0.590 | 0.664 | 0.076 |
Acetate | 143 | 145 | 130 | 145 | 8.41 | 0.521 | 0.714 | 0.453 | 0.218 |
Propionate | 63.1 | 64.0 | 51.1 | 59.7 | 4.33 | 0.160 | 0.339 | 0.695 | 0.040 |
Isobutyrate | 0.72 | 0.69 | 0.76 | 0.70 | 0.15 | 0.990 | 0.972 | 0.913 | 0.757 |
Butyrate | 28.0 | 32.5 | 24.3 | 25.9 | 3.13 | 0.303 | 0.914 | 0.522 | 0.080 |
Isovalerate | 0.86 | 0.74 | 0.64 | 0.91 | 0.11 | 0.340 | 0.471 | 0.123 | 0.515 |
Valerate | 3.26 | 3.82 | 2.47 | 3.21 | 0.79 | 0.690 | 0.917 | 0.943 | 0.237 |
Individual SCFAs, mol/100 mol | |||||||||
Acetate | 60.1 | 59.2 | 62.0 | 61.7 | 1.50 | 0.50 | 0.623 | 0.535 | 0.191 |
Propionate | 26.4 | 25.8 | 24.5 | 25.2 | 0.86 | 0.42 | 0.213 | 0.967 | 0.269 |
Isobutyrate | 0.30 | 0.30 | 0.36 | 0.32 | 0.070 | 0.925 | 0.794 | 0.887 | 0.544 |
Butyrate | 11.5 | 12.9 | 11.7 | 10.9 | 0.90 | 0.487 | 0.733 | 0.237 | 0.345 |
Isovalerate | 0.36 | 0.31 | 0.30 | 0.41 | 0.051 | 0.465 | 0.745 | 0.124 | 0.950 |
Valerate | 1.33 | 1.50 | 1.20 | 1.41 | 0.34 | 0.936 | 0.923 | 0.894 | 0.538 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybicka, A.; Medel, P.; Gómez, E.; Carro, M.D.; García, J. Different Physiochemical Properties of Novel Fibre Sources in the Diet of Weaned Pigs Influence Animal Performance, Nutrient Digestibility, and Caecal Fermentation. Animals 2024, 14, 2612. https://doi.org/10.3390/ani14172612
Rybicka A, Medel P, Gómez E, Carro MD, García J. Different Physiochemical Properties of Novel Fibre Sources in the Diet of Weaned Pigs Influence Animal Performance, Nutrient Digestibility, and Caecal Fermentation. Animals. 2024; 14(17):2612. https://doi.org/10.3390/ani14172612
Chicago/Turabian StyleRybicka, Agnieszka, Pedro Medel, Emilio Gómez, María Dolores Carro, and Javier García. 2024. "Different Physiochemical Properties of Novel Fibre Sources in the Diet of Weaned Pigs Influence Animal Performance, Nutrient Digestibility, and Caecal Fermentation" Animals 14, no. 17: 2612. https://doi.org/10.3390/ani14172612
APA StyleRybicka, A., Medel, P., Gómez, E., Carro, M. D., & García, J. (2024). Different Physiochemical Properties of Novel Fibre Sources in the Diet of Weaned Pigs Influence Animal Performance, Nutrient Digestibility, and Caecal Fermentation. Animals, 14(17), 2612. https://doi.org/10.3390/ani14172612