Hemp Seed (Cannabis sativa L.) Varieties: Lipids Profile and Antioxidant Capacity for Monogastric Nutrition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Plant Material Samples
2.2. Sample Preparation
2.3. Proximate Chemical Analysis
2.4. Analysis of Fatty Acids, and Calculation of Nutritional and Quality Indices
2.5. Extraction Procedures
2.6. Total Phenolic and Antioxidant Activity Analyses
2.7. HPLC Analysis of Phenolic Compound N-trans-Caffeoyltyramine
2.8. Statistical Evaluation
3. Results
3.1. Nutritional Composition of Hemp Seeds
3.2. Fatty Acids’ Profiles, Nutritional, and Quality Indices
3.3. Total Phenolic Content and Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lanzoni, D.; Mercogliano, F.; Rebucci, R.; Bani, C.; Pinotti, L.; Di Lorenzo, C.; Savoini, G.; Baldi, A.; Giromini, C. Phenolic Profile and Antioxidant Activity of Hemp Co-Products Following Green Chemical Extraction and Ex Vivo Digestion. Ital. J. Anim. Sci. 2024, 23, 651–663. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Review: Feed Demand Landscape and Implications of Food-Not Feed Strategy for Food Security and Climate Change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- European Union (EU). Farm to Fork Strategy—For a Fair, Healthy and Environmentally-Friendly FoodSystem PDF Report. 2020. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 13 September 2024).
- Rupasinghe, H.P.V.; Davis, A.; Kumar, S.K.; Murray, B.; Zheljazkov, V.D. Industrial Hemp (Cannabis sativa Subsp. Sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Rehman, M.; Fahad, S.; Du, G.; Cheng, X.; Yang, Y.; Tang, K.; Liu, L.; Liu, F.-H.; Deng, G. Evaluation of Hemp (Cannabis sativa L.) as an Industrial Crop: A Review. Environ. Sci. Pollut. Res. 2021, 28, 52832–52843. [Google Scholar] [CrossRef]
- European Union (EU). Commission Regulation (EU) 2022/1104 of 1 July 2022, Amending Regulation (EU) No 68/2013 on the Catalogue of Feed Materials. 2022. Available online: http://data.europa.eu/eli/reg/2022/1104/oj (accessed on 15 September 2024).
- EFSA (European Food Safety Authority). Scientific Opinion: Dietary Reference Values for Fats, Including Sat-Urated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar]
- Cozma, A.; Andrei, S.; Pintea, A.; Miere, D.; Filip, L.; Loghin, F.; Ferlay, A. Effect of Hemp Seed Oil Supplementation on Plasma Lipid Profile, Liver Function, Milk Fatty Acid, Cholesterol, and Vitamin A Concentrations in Carpathian Goats. Czech J. Anim. Sci. 2015, 60, 289–301. [Google Scholar] [CrossRef]
- Parker, T.D.; Adams, D.A.; Zhou, K.; Harris, M.; Yu, L. Fatty Acid Composition and Oxidative Stability of Cold-pressed Edible Seed Oils. J. Food Sci. 2003, 68, 1240–1243. [Google Scholar] [CrossRef]
- Mierliță, D. Effects of Diets Containing Hemp Seeds or Hemp Cake on Fatty Acid Composition and Oxidative Stability of Sheep Milk. S. Afr. J. Anim. Sci. 2018, 48, 504. [Google Scholar] [CrossRef]
- Rodriguez-Leyva, D.; Pierce, G.N. The Cardiac and Haemostatic Effects of Dietary Hempseed. Nutr. Metab. 2010, 7, 32. [Google Scholar] [CrossRef]
- Vodolazska, D.; Lauridsen, C. Effects of Dietary Hemp Seed Oil to Sows on Fatty Acid Profiles, Nutritional and Immune Status of Piglets. J. Anim. Sci. Biotechnol. 2020, 11, 28. [Google Scholar] [CrossRef]
- Rizzo, G.; Storz, M.A.; Calapai, G. The Role of Hemp (Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition. Foods 2023, 12, 3505. [Google Scholar] [CrossRef] [PubMed]
- Atalay, S.; Jarocka-karpowicz, I.; Skrzydlewskas, E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants 2020, 9, 21. [Google Scholar] [CrossRef]
- Chen, T.; He, J.; Zhang, J.; Li, X.; Zhang, H.; Hao, J.; Li, L. The Isolation and Identification of Two Compounds with Predominant Radical Scavenging Activity in Hempseed (Seed of Cannabis sativa L.). Food Chem. 2012, 134, 1030–1037. [Google Scholar] [CrossRef]
- Skřivan, M.; Englmaierová, M.; Taubner, T.; Skřivanová, E. Effects of Dietary Hemp Seed and Flaxseed on Growth Performance, Meat Fatty Acid Compositions, Liver Tocopherol Concentration and Bone Strength of Cockerels. Animals 2020, 10, 458. [Google Scholar] [CrossRef]
- Arango, S.; Guzzo, N.; Raffrenato, E.; Bailoni, L. Effect of Dietary Hemp Cake Inclusion on the In Vivo and Post Mortem Performances of Holstein Veal Calves. Animals 2022, 12, 2922. [Google Scholar] [CrossRef]
- Quarantelli, A.; Righi, F.; Renzi, M.; Bonomi, A. Processi Ossidativi Negli Alimenti Di Origine Vegetale. Ann. Fac. Med. Vet. Parma 2003, 23, 181–202. [Google Scholar]
- Fernández, S.; Carreras, T.; Castro, R.; Perelmuter, K.; Giorgi, V.; Vila, A.; Rosales, A.; Pazos, M.; Moyna, G.; Carrera, I.; et al. A Comparative Study of Supercritical Fluid and Ethanol Extracts of Cannabis Inflorescences: Chemical Profile and Biological Activity. J. Supercritic Fluids 2021, 179, 2022. [Google Scholar] [CrossRef]
- AL Ubeed, H.M.S.; Brennan, C.S.; Schanknecht, E.; Alsherbiny, M.A.; Saifullah, M.; Nguyen, K.; Vuong, Q.V. Potential Applications of Hemp (Cannabis sativa L.) Extracts and Their Phytochemicals as Functional Ingredients in Food and Medicinal Supplements: A Narrative Review. Int. J. Food Sci. Technol. 2022, 57, 7542–7555. [Google Scholar] [CrossRef]
- Mierlita, D.; Teușdea, A.C.; Matei, M.; Pascal, C.; Simeanu, D.; Pop, I.M. Effect of Dietary Incorporation of Hemp Seeds Alone or with Dried Fruit Pomace on Laying Hens’ Performance and on Lipid Composition and Oxidation Status of Egg Yolks. Animals 2024, 14, 750. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Sharma, B.; Gupta, A.; Shah, A.K.; Mahmud, M.M.C.; Agrawal, S.; Singh, J.; Rasane, P.; Shukla, A.C.; et al. Nutraceutical Potential, Phytochemistry of Hemp Seed (Cannabis sativa L.) and Its Application in Food and Feed: A Review. Food Chem. Adv. 2024, 4, 100671. [Google Scholar] [CrossRef]
- Horne, M.R.L. Bast Fibres: Hemp Cultivation and Production. In Handbook of Natural Fibres; Woodhead Publishing: Sawston, UK, 2012; Volume 1, pp. 114–145. ISBN 978-1-84569-697-9. [Google Scholar]
- Ely, K.; Fike, J. Industrial Hemp and Hemp Byproducts as Sustainable Feedstuffs in Livestock Diets. In Cannabis/Hemp for Sustainable Agriculture and Materials; Agrawal, D.C., Kumar, R., Dhanasekaran, M., Eds.; Springer: Singapore, 2022; pp. 145–162. ISBN 978-981-16-8778-5. [Google Scholar]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists International, 21st ed.; AOAC: Washington, DC, USA, 2019. [Google Scholar]
- Christie, W.W. Preparation of Ester Derivatives of Fatty Acids for Chromatographic Analysis. In Advances in Lipid Methodology–Two; Christie, W.W., Ed.; Oily Press: Dundee, Scotland, 1993; pp. 69–111. [Google Scholar]
- Oteri, M.; Gresta, F.; Costale, A.; Lo Presti, V.; Meineri, G.; Chiofalo, B. Amaranthus Hypochondriacus l. As a Sustainable Source of Nutrients and Bioactive Compounds for Animal Feeding. Antioxidants 2021, 10, 876. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Luciano, G.; Pauselli, M.; Servili, M.; Mourvaki, E.; Serra, A.; Monahan, F.J.; Lanza, M.; Priolo, A.; Zinnai, A.; Mele, M. Dietary Olive Cake Reduces the Oxidation of Lipids, Including Cholesterol, in Lamb Meat Enriched in Polyunsaturated Fatty Acids. Meat Sci. 2013, 93, 703–714. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benkirane, C.; Mansouri, F.; Ben Moumen, A.; Taaifi, Y.; Melhaoui, R.; Caid, H.S.; Fauconnier, M.L.; Elamrani, A.; Abid, M. Phenolic Profiles of Non-Industrial Hemp (Cannabis sativa L.) Seed Varieties Collected from Four Different Moroccan Regions. Int. J. Food Sci. Technol. 2023, 58, 1367–1381. [Google Scholar] [CrossRef]
- Alonso-Esteban, J.I.; González-Fernández, M.J.; Fabrikov, D.; Torija-Isasa, E.; Sánchez-Mata, M.D.C.; Guil-Guerrero, J.L. Hemp (Cannabis sativa L.) Varieties: Fatty Acid Profiles and Upgrading of γ-Linolenic Acid–Containing Hemp Seed Oils. Eur. J. Lipid Sci. Technol. 2020, 122, 1900445. [Google Scholar] [CrossRef]
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the Quality of Protein from Hemp Seed (Cannabis sativa L.) Products Through the Use of the Protein Digestibility-Corrected Amino Acid Score Method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Klir, Ž.; Novoselec, J.; Antunović, Z. An Overview on the Use of Hemp (Cannabis sativa L.) in Animal Nutrition. Poliopriveda 2019, 25, 52–61. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Razmaitė, V.; Pileckas, V.; Bliznikas, S.; Šiukščius, A. Fatty Acid Composition of Cannabis sativa, Linum Usitatissimum and Camelina Sativa Seeds Harvested in Lithuania for Food Use. Foods 2021, 10, 1902. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Zhang, Z.; Duncan, G.J.; Morris, A.; Scobbie, L.; Henderson, D.; Morrice, P.; Russell, W.R.; Duncan, S.H.; Neacsu, M. Bioprocessing of Hempseed (Cannabis sativa L.) Food By-Products Increased Nutrient and Phytochemical In Vitro Bioavailability during Digestion and Microbial Fermentation. Appl. Sci. 2023, 13, 5781. [Google Scholar] [CrossRef]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed Composition of Ten Industrial Hemp Cultivars Approved for Production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef]
- Mayengbam, S.; Lambert, J.E.; Parnell, J.A.; Tunnicliffe, J.M.; Nicolucci, A.C.; Han, J.; Sturzenegger, T.; Shearer, J.; Mickiewicz, B.; Vogel, H.J.; et al. Impact of Dietary Fiber Supplementation on Modulating Microbiota–Host–Metabolic Axes in Obesity. J. Nutr. Biochem. 2019, 64, 228–236. [Google Scholar] [CrossRef]
- Czerwonka, M.; Białek, A. Fatty Acid Composition of Pseudocereals and Seeds Used as Functional Food Ingredients. Life 2023, 13, 217. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; García Maroto, F.F.; Giménez Giménez, A. Fatty Acid Profiles from Forty-Nine Plant Species That Are Potential New Sources of γ-Linolenic Acid. J. Am. Oil Chem. Soc. 2001, 78, 677–684. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zhao, J.; Wang, W.; Griffin, J.; Li, Y.; Bean, S.; Tilley, M.; Wang, D. Hempseed as a Nutritious and Healthy Human Food or Animal Feed Source: A Review. Int. J. Food Sci. Technol. 2021, 56, 530–543. [Google Scholar] [CrossRef]
- Jing, M.; Zhao, S.; House, J.D. Performance and Tissue Fatty Acid Profile of Broiler Chickens and Laying Hens Fed Hemp Oil and HempOmegaTM. Poult. Sci. 2017, 96, 1809–1819. [Google Scholar] [CrossRef]
- Benkirane, C.; Ben Moumen, A.; Fauconnier, M.L.; Belhaj, K.; Abid, M.; Caid, H.S.; Elamrani, A.; Mansouri, F. Bioactive Compounds from Hemp (Cannabis sativa L.) Seeds: Optimization of Phenolic Antioxidant Extraction Using Simplex Lattice Mixture Design and HPLC-DAD/ESI-MS2 Analysis. RSC Adv. 2022, 12, 25764–25777. [Google Scholar] [CrossRef]
- Taaifi, Y.; Belhaj, K.; Mansouri, F.; Rbah, Y.; Melhaoui, R.; Houmy, N.; Ben Moumen, A.; Azeroual, E.; Addi, M.; Elamrani, A.; et al. The Effect of Feeding Laying Hens with Nonindustrial Hemp Seed on the Fatty Acid Profile, Cholesterol Level, and Tocopherol Composition of Egg Yolk. Int. J. Food Sci. 2023, 2023, 1360276. [Google Scholar] [CrossRef] [PubMed]
- Ying, Q.; Wojciechowska, P.; Siger, A.; Kaczmarek, A.; Rudzińska, M. Phytochemical Content, Oxidative Stability, and Nutritional Properties of Unconventional Cold-Pressed Edible Oils. J. Food Nutr. Res. 2018, 6, 476–485. [Google Scholar] [CrossRef]
- Kang, M.J.; Shin, M.S.; Park, J.N.; Lee, S.S. The Effects of Polyunsaturated:Saturated Fatty Acids Ratios and Peroxidisability Index Values of Dietary Fats on Serum Lipid Profiles and Hepatic Enzyme Activities in Rats. Br. J. Nutr. 2005, 94, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Montserrat-de la Paz, S.; Marín-Aguilar, F.; García-Giménez, M.D.; Fernández-Arche, M.A. Hemp (Cannabis sativa L.) Seed Oil: Analytical and Phytochemical Characterization of the Unsaponifiable Fraction. J. Agric. Food Chem. 2014, 62, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and Functional Effects of Plant-Derived Omega-3 Fatty Acids in Humans. Prog. Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef]
- Chilton, F.H.; Dutta, R.; Reynolds, L.M.; Sergeant, S.; Mathias, R.A.; Seeds, M.C. Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases. Nutrients 2017, 9, 1165. [Google Scholar] [CrossRef]
- Kapoor, R.; Huang, Y.-S. Gamma Linolenic Acid: An Antiinflammatory Omega-6 Fatty Acid. Curr. Pharm. Biotechnol. 2006, 7, 531–534. [Google Scholar] [CrossRef]
- Kawamura, A.; Ooyama, K.; Kojima, K.; Kachi, H.; Abe, T.; Amano, K.; Aoyama, T. Dietary Supplementation of Gamma-Linolenic Acid Improves Skin Parameters in Subjects with Dry Skin and Mild Atopic Dermatitis. J. Oleo Sci. 2011, 60, 597–607. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Toşa, M.I.; Dulf, E.H. Simultaneous Enrichment of Grape Pomace with γ-Linolenic Acid and Carotenoids by Solid-State Fermentation with Zygomycetes Fungi and Antioxidant Potential of the Bioprocessed Substrates. Food Chem. 2020, 310, 125927. [Google Scholar] [CrossRef]
- Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and Antioxidant Potential of Cold-Pressed Oils—Possible Strategies to Improve Oil Stability. Foods 2020, 9, 1630. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.E.M.; Darwish, S.M.; Ayad, E.H.E.; El-Hamahmy, R.M. Egyptian Mango By-Product 1. Compositional Quality of Mango Seed Kernel. Food Chem. 2007, 103, 1134–1140. [Google Scholar] [CrossRef]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect of Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [PubMed]
- Ingallina, C.; Sobolev, A.P.; Circi, S.; Spano, M.; Fraschetti, C.; Filippi, A.; Di Sotto, A.; Di Giacomo, S.; Mazzoccanti, G.; Gasparrini, F.; et al. Cannabis sativa L. Inflorescences from Monoecious Cultivars Grown in Central Italy: An Untargeted Chemical Characterization from Early Flowering to Ripening. Molecules 2020, 25, 1908. [Google Scholar] [CrossRef]
- Kalinowska, M.; Płońska, A.; Trusiak, M.; Gołębiewska, E.; Gorlewska-Pietluszenko, A. Comparing the Extraction Methods, Chemical Composition, Phenolic Contents and Antioxidant Activity of Edible Oils from Cannabis sativa and Silybum Marianu Seeds. Sci. Rep. 2022, 12, 20609. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comparative Study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Rotta, E.M.; Haminiuk, C.W.I.; Maldaner, L.; Visentainer, J.V. Determination of Antioxidant Activity and Phenolic Compounds of Muntingia Calabura Linn. Peel by HPLC-DAD and UPLC-ESI-MS/MS. Int. J. Food Sci. Technol. 2017, 52, 954–963. [Google Scholar] [CrossRef]
- Dong, J.-W.; Cai, L.; Xing, Y.; Yu, J.; Ding, Z.-T. Re-Evaluation of ABTS·+ Assay for Total Antioxidant Capacity of Natural Products. Nat. Prod. Commun. 2015, 10, 2169–2172. [Google Scholar] [CrossRef]
Genotype | |||||
---|---|---|---|---|---|
Enectarol | Carmaenecta | Enectaliana | SEM | Pr(>F) | |
(ER) | (CE) | (EL) | |||
DM | 93.16 b | 92.10 c | 93.46 a | 0.016 | 1.23 × 10−12 |
CP | 24.33 c | 24.91 b | 25.23 a | 0.051 | 1.708 × 10−6 |
Total lipid | 30.93 a | 30.19 b | 30.14 b | 0.095 | 3.708 × 10−4 |
CF | 24.42 b | 20.98 c | 25.58 a | 0.088 | 1.061 × 10−10 |
Ash | 3.54 c | 5.41 a | 5.10 b | 0.025 | 3.464 × 10−12 |
Starch | 9.72 b | 10.47 a | 9.76 b | 0.120 | 2.559 × 10−3 |
TDF | 33.12 b | 27.57 c | 33.92 a | 0.120 | 6.083 × 10−11 |
IDF | 31.38 a | 26.13 b | 31.55 a | 0.187 | 9.118 × 10−9 |
SDF | 1.74 b | 1.44 b | 2.37 a | 0.080 | 5.422 × 10−5 |
Genotype | |||||
---|---|---|---|---|---|
Enectarol | Carmaenecta | Enectaliana | SEM | Pr(>F) | |
(ER) | (CE) | (EL) | |||
Myristic acid | 0.04 | 0.04 | 0.04 | 0.002 | 0.311 |
Myristoleic acid | 0.03 a | 0.01 b | 0.03 a | 0.003 | 0.016 |
Palmitic acid | 7.90 b | 7.89 b | 8.29 a | 0.007 | 5.717 × 10−3 |
Palmitoleic acid | 0.15 a | 0.11 b | 0.11 b | 0.006 | 1.831 × 10−3 |
Heptadecanoic acid | 0.05 b | 0.06 a | 0.06 ab | 0.003 | 0.044 |
Heptadecenoic acid | 0.04 a | 0.03 b | 0.03 b | 0.001 | 7.128 × 10−3 |
Stearic acid | 2.59 b | 2.39 c | 2.92 a | 0.023 | 1.847 × 10−7 |
Oleic acid | 14.97 a | 12.77 b | 11.45 c | 0.118 | 2.068 × 10−8 |
Vaccenic acid, cis | 0.96 a | 0.95 a | 0.88 b | 0.016 | 9.453 × 10−3 |
Linoleic acid | 53.17 c | 54.86 a | 53.83 b | 0.113 | 8.015 × 10−6 |
γ-Linolenic acid | 0.54 c | 1.21 b | 1.80 a | 0.022 | 6.920 × 10−11 |
α-Linolenic acid | 17.56 b | 17.79 b | 18.44 a | 0.140 | 4.064 × 10−3 |
Arachidic acid | 0.79 b | 0.78 b | 0.86 a | 0.013 | 3.114 × 10−3 |
Eicosaenoic acid | 0.38 | 0.37 | 0.39 | 0.008 | 0.394 |
Eicosadienoic acid | 0.06 ab | 0.05 b | 0.07 a | 0.003 | 0.019 |
Dihomo-γ-linolenic acid | 0.03 b | 0.03 b | 0.04 a | 0.002 | 2.061 × 10−3 |
Eicosatrienoic acid | 0.03 a | 0.01 b | 0.02 ab | 0.003 | 0.025 |
Arachidonic acid | 0.04 a | 0.01 b | 0.01 b | 0.003 | 2.356 × 10−4 |
Behenic acid | 0.38 ab | 0.36 b | 0.39 a | 0.006 | 0.027 |
Erucic acid | 0.05 | 0.04 | 0.04 | 0.003 | 0.569 |
Tricosanoic acid | 0.07 a | 0.06 b | 0.07 ab | 0.003 | 0.025 |
Lignoceric acid | 0.20 | 0.19 | 0.19 | 0.006 | 0.412 |
Docosaesaenoic acid | 0.03 b | 0.05 a | 0.05 a | 0.002 | 1.574 × 10−4 |
Nervonic acid | 0.03 b | 0.04 ab | 0.05 a | 0.003 | 1.362 × 10−3 |
Genotype | |||||
---|---|---|---|---|---|
Enectarol | Carmaenecta | Enectaliana | SEM | Pr(>F) | |
(ER) | (CE) | (EL) | |||
SFA | 11.99 b | 11.75 b | 12.79 a | 0.102 | 1.209 × 10−4 |
MUFA | 16.59 a | 14.33 b | 12.97 c | 0.140 | 7.246 × 10−8 |
PUFA | 71.43 b | 73.92 a | 74.25 a | 0.237 | 2.421 × 10−5 |
SFA/UFA | 0.14 b | 0.13 b | 0.15 a | 0.001 | 9.476 × 10−5 |
n3 | 17.62 b | 17.85 b | 18.51 a | 0.138 | 3.450 × 10−3 |
n6 | 53.77 b | 56.11 a | 55.67 a | 0.120 | 5.504 × 10−7 |
n3/n6 | 0.33 a | 0.32 b | 0.33 a | 0.002 | 2.625 × 10−3 |
AI | 0.09 b | 0.09 b | 0.10 a | 0.001 | 2.775 × 10−3 |
TI | 0.12 b | 0.12 b | 0.13 a | 0.001 | 3.946 × 10−3 |
H/H | 10.84 a | 10.77 a | 10.10 b | 0.103 | 9.459 × 10−4 |
PI | 89.80 b | 93.30 a | 94.84 a | 0.378 | 1.833 × 10−5 |
n6/n3 | 3.05 b | 3.14 a | 3.01 b | 0.019 | 2.293 × 10−3 |
PUFA/SFA | 5.95 b | 6.29 a | 5.79 b | 0.069 | 2.001 × 10−3 |
Genotype | |||||
---|---|---|---|---|---|
Enectarol (ER) | Carmaenecta (CE) | Enectaliana (EL) | SEM | Pr(>F) | |
TPC | 0.51 a | 0.35 b | 0.23 c | 0.015 | 4.065 × 10−5 |
DPPH• | 0.06 b | 0.07 b | 0.13 a | 0.063 | 3.216 × 10−4 |
ABTS•+ | 4.33 a | 2.72 b | 1.01 c | 0.115 | 2.927 × 10−6 |
N-trans-Caffeoyltyramine | 0.2147 a | 0.1732 a | 0.0655 b | 0.022 | 7.736 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosso, E.; Armone, R.; Costale, A.; Meineri, G.; Chiofalo, B. Hemp Seed (Cannabis sativa L.) Varieties: Lipids Profile and Antioxidant Capacity for Monogastric Nutrition. Animals 2024, 14, 2699. https://doi.org/10.3390/ani14182699
Rosso E, Armone R, Costale A, Meineri G, Chiofalo B. Hemp Seed (Cannabis sativa L.) Varieties: Lipids Profile and Antioxidant Capacity for Monogastric Nutrition. Animals. 2024; 14(18):2699. https://doi.org/10.3390/ani14182699
Chicago/Turabian StyleRosso, Elena, Rosangela Armone, Annalisa Costale, Giorgia Meineri, and Biagina Chiofalo. 2024. "Hemp Seed (Cannabis sativa L.) Varieties: Lipids Profile and Antioxidant Capacity for Monogastric Nutrition" Animals 14, no. 18: 2699. https://doi.org/10.3390/ani14182699
APA StyleRosso, E., Armone, R., Costale, A., Meineri, G., & Chiofalo, B. (2024). Hemp Seed (Cannabis sativa L.) Varieties: Lipids Profile and Antioxidant Capacity for Monogastric Nutrition. Animals, 14(18), 2699. https://doi.org/10.3390/ani14182699