Effect of Guanidinoacetic Acid Supplementation on the Performance of Calves Fed Milk Replacer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Diets
2.2. Sample Collection and Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Milk Replacer
3.2. Plasma Concentrations of Guanidinoacetic Acid and Creatine
3.3. Growth Performance
3.4. Health Outcomes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brosnan, J.T.; Wijekoon, E.P.; Warford-Woolgar, L.; Trottier, N.L.; Brosnan, M.E.; Brunton, J.A.; Bertolo, R.F. Creatine synthesis is a major metabolic process in neonatal piglets and has important implications for amino acid metabolism and methyl balance. J. Nutr. 2009, 139, 1292–1297. [Google Scholar] [CrossRef] [PubMed]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T.; Brosnan, M.E. Creatine: Endogenous metabolite, dietary, and therapeutic supplement. Annu. Rev. Nutr. 2007, 27, 241–261. [Google Scholar] [CrossRef] [PubMed]
- Ardalan, M.; Batista, E.D.; Titgemeyer, E.C. Effect of post-ruminal guanidinoacetic acid supplementation on creatine synthesis and plasma homocysteine concentrations in cattle. J. Anim. Sci. 2020, 98, skaa072. [Google Scholar] [CrossRef]
- Ardalan, M.; Miesner, M.D.; Reinhardt, C.D.; Thomson, D.U.; Armendariz, C.K.; Smith, J.S.; Titgemeyer, E.C. Effects of guanidinoacetic acid supplementation on nitrogen retention and methionine flux in cattle. J. Anim. Sci. 2021, 99, skab172. [Google Scholar] [CrossRef]
- Li, S.Y.; Wang, C.; Wu, Z.Z.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Chen, L.; Zhang, L.Y.; Pei, C.X.; et al. Effects of guanidinoacetic acid supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Angus bulls. Animal 2020, 14, 2535–2542. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Zhang, J.; Liu, Q.; Guo, G.; Huo, W.J.; Pei, C.X.; Chen, L.; Zhang, Y.L. Guanidinoacetic acid and betaine supplementation have positive effects on growth performance, nutrient digestion and rumen fermentation in Angus bulls. Anim. Feed Sci. Technol. 2021, 276, 114923. [Google Scholar] [CrossRef]
- Liu, Y.J.; Chen, J.Z.; Wang, D.H.; Wu, M.J.; Zheng, C.; Wu, Z.Z.; Wang, C.; Liu, Q.; Zhang, J.; Guo, G.; et al. Effects of guanidinoacetic acid and coated folic acid supplementation on growth performance, nutrient digestion and hepatic gene expression in Angus bulls. Br. J. Nutr. 2021, 126, 510–517. [Google Scholar] [CrossRef]
- Li, Z.; Liang, H.; Xin, J.; Xu, L.; Li, M.; Yu, H.; Zhang, W.; Ge, Y.; Li, Y.; Qu, M. Effects of dietary guanidinoacetic acid on the feed efficiency, blood measures, and meat quality of Jinjiang bulls. Front. Vet. Sci. 2021, 8, 684295. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, H.H.; Zhang, G.J.; Zhang, Y.H.; Liu, B.; Huang, S.; Guyader, J.; Zhong, R.Z. Supplementation of guanidinoacetic acid and rumen-protected methionine increased growth performance and meat quality of Tan lambs. Anim. Biosci. 2022, 35, 1556–1565. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Song, P.; Zhao, J.; Zhang, J.; Zhao, J. Skeletal muscle mass, meat quality and antioxidant status in growing lambs supplemented with guanidinoacetic acid. Meat Sci. 2022, 192, 108906. [Google Scholar] [CrossRef]
- Zhang, S.; Zang, C.; Pan, J.; Ma, C.; Wang, C.; Li, X.; Cai, W.; Yang, K. Effects of dietary guanidinoacetic acid on growth performance, guanidinoacetic acid absorption and creatine metabolism of lambs. PLoS ONE 2022, 17, e0264864. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Safety and efficacy of a feed additive consisting of guanidinoacetic acid for all animal species (Alzchem Trostberg GmbH). EFSA J. 2022, 20, 7269. [Google Scholar] [CrossRef]
- Food and Drug Administration, United States (FDA). Code of Federal Regulations, Title 21—Food and Drugs, Section 573.496—Guanidinoacetic Acid. 2021. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=573&showFR=1 (accessed on 18 September 2024).
- Deelen, S.M.; Ollivett, T.L.; Haines, D.M.; Leslie, K.E. Evaluation of a Brix refractometer to estimate serum immunoglobulin G concentration in neonatal dairy calves. J. Dairy Sci. 2014, 97, 3838–3844. [Google Scholar] [CrossRef] [PubMed]
- McGuirk, S.M.; Peek, S.F. Timely diagnosis of dairy calf respiratory disease using a standardized scoring system. Anim. Health Res. Rev. 2014, 15, 145–147. [Google Scholar] [CrossRef]
- Undersander, D.J. Forage Analyses Procedures; National Forage Testing Association: Omaha, NE, USA, 1993. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; AOAC International: Arlington, VA, USA, 1997. [Google Scholar]
- Bowers, G.N.; Rains, T.C. Measurement of total calcium in biological fluids: Flame atomic absorption spectrometry. Methods Enzymol. 1988, 158, 302–319. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Richards, C.J.; Pederson, J.F.; Britton, R.A.; Stock, R.A.; Krehbiel, C.R. In vitro starch disappearance procedure modifications. Anim. Feed Sci. Technol. 1995, 55, 35–45. [Google Scholar] [CrossRef]
- Edison, E.E.; Brosnan, M.E.; Aziz, K.; Brosnan, J.T. Creatine and guanidinoacetate content of human milk and infant formulas: Implications for creatine deficiency syndromes and amino acid metabolism. Br. J. Nutr. 2013, 110, 1075–1078. [Google Scholar] [CrossRef]
- Speer, H.F.; Pearl, K.A.; Titgemeyer, E.C. Relative bioavailability of guanidinoacetic acid delivered ruminally or abomasally to cattle. J. Anim. Sci. 2020, 98, skaa282. [Google Scholar] [CrossRef]
- Speer, H.F.; Grant, M.S.; Miesner, M.D.; Titgemeyer, E.C. Effect of guanidinoacetic acid supplementation on nitrogen retention and methionine methyl group flux in growing steers fed corn-based diets. J. Anim. Sci. 2022, 100, skac283. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.P.; Nissim, I.; Brosnan, M.E.; Brosnan, J.T. Creatine synthesis: Hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E256–E261. [Google Scholar] [CrossRef] [PubMed]
- Kertz, A.F. Perspective and commentary: Dairy calf feeding and nutrition major variables and subsequent performance. Appl. Anim. Sci. 2023, 39, 449–455. [Google Scholar] [CrossRef]
- Sousa, L.C.O.; Matos, E.M.A.; Santos, M.M.; Detmann, E.; Sampaio, C.B.; Sancler-Silva, Y.F.R.; Renno, L.N.; Serao, N.V.L.; Paulino, P.V.R.; Resende, T.L.; et al. Dietary guanidinoacetic acid as arginine spare molecule for beef cows at late gestation: Effects on cow’s performance and metabolism, and offspring growth and development. Anim. Feed. Sci. Technol. 2024, 315, 116047. [Google Scholar] [CrossRef]
- van Keulen, P.; Khan, M.A.; Dijkstra, J.; Knol, F.; McCoard, S.A. Effect of arginine or glutamine supplementation and milk feeding allowance on small intestine development in calves. J. Dairy Sci. 2020, 103, 4754–4764. [Google Scholar] [CrossRef] [PubMed]
- Bodine, S.C.; Stitt, T.N.; Gonzalez, M.; Kline, W.O.; Stover, G.L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J.C.; Glass, D.J.; et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001, 3, 1014–1019. [Google Scholar] [CrossRef]
- Hulbert, L.E.; Moisa, S.J. Stress, immunity, and the management of calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef]
- Wang, L.S.; Shi, B.M.; Shan, A.S.; Zhang, Y.Y. Effects of guanidinoacetic acid on growth performance, meat quality and antioxidation in growing-finishing pigs. J. Anim. Vet. Adv. 2012, 11, 631–636. [Google Scholar] [CrossRef]
- Vailati-Riboni, M.; Zhou, Z.; Jacometo, C.B.; Minuti, A.; Trevisi, E.; Luchini, D.N.; Loor, J.J. Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. J. Dairy Sci. 2017, 100, 3958–3968. [Google Scholar] [CrossRef]
- Bredahl, E.C.; Eckerson, J.M.; Tracy, S.M.; McDonald, T.L.; Drescher, K.M. The role of creatine in the development and activation of immune responses. Nutrients 2021, 13, 751. [Google Scholar] [CrossRef]
Item (% of Dry Matter) | Milk Replacer 1 | Starter Feed 2 |
---|---|---|
Dry matter (% of as fed) | 97.00 | 95.16 |
Organic matter | 94.98 | 93.61 |
Crude protein | 25.33 | 20.55 |
Neutral detergent fiber | - | 16.94 |
Acid detergent fiber | - | 10.65 |
Starch | - | 33.4 |
Ether extract | 23.81 | 3.61 |
Calcium | 0.86 | 1.25 |
Phosphorus | 0.65 | 0.55 |
Creatine | 0.0227 | - |
GAA, g/d 1 | p-Value for GAA | |||||
---|---|---|---|---|---|---|
Plasma | 0 | 1 | 2 | SEM 2 | Linear | Quadratic |
Guanidinoacetic acid (mg/L) | ||||||
Day 14 | 0.44 | 0.49 | 0.65 | 0.057 | <0.001 | 0.34 |
Day 28 | 0.36 | 0.50 | 0.72 | |||
Day 42 | 0.47 | 0.55 | 0.64 | |||
Creatine 3 (mg/L) | ||||||
Day 14 | 18.1 | 24.6 | 26.7 | 1.33 | <0.01 | 0.57 |
Day 28 | 17.1 | 19.4 | 23.6 | |||
Day 42 | 20.9 | 22.3 | 22.9 |
GAA, g/d 1 | p-Value | |||||
---|---|---|---|---|---|---|
Item | 0 | 1 | 2 | SEM 2 | Linear | Quadratic |
n | 13 | 14 | 14 | |||
Bodyweight (kg) | ||||||
Day 0 | 39.9 | 41.5 | 40.7 | 0.98 | 0.27 | 0.06 |
Day 42 | 69.3 | 73.8 | 73.8 | 2.46 | 0.14 | 0.40 |
Day 59 | 91.2 | 98.3 | 98.6 | 3.39 | 0.09 | 0.35 |
Hip height (cm) | ||||||
Day 0 | 61.2 | 61.8 | 62.3 | 0.84 | 0.17 | 0.97 |
Day 42 | 68.7 | 70.1 | 70.2 | 1.00 | 0.20 | 0.51 |
Day 0 to 42 gain | 7.4 | 8.3 | 7.9 | 0.77 | 0.63 | 0.51 |
Average daily gain (kg/d) | ||||||
Day 0 to 42 | 0.69 | 0.77 | 0.79 | 0.049 | 0.15 | 0.58 |
Day 42 to 59 | 1.30 | 1.45 | 1.46 | 0.074 | 0.14 | 0.43 |
Day 0 to 59 | 0.86 | 0.97 | 0.98 | 0.049 | 0.09 | 0.45 |
Milk dry matter intake (kg/d) | ||||||
Day 0 to42 | 0.809 | 0.812 | 0.815 | 0.012 | 0.72 | 0.97 |
Day 42 to 59 | 0.374 | 0.374 | 0.374 | 0.0003 | 0.21 | 0.46 |
Days 0 to 59 | 0.683 | 0.686 | 0.688 | 0.0089 | 0.71 | 0.99 |
Starter dry matter intake (kg/d) | ||||||
Day 0 to 42 | 0.201 | 0.278 | 0.286 | 0.034 | 0.06 | 0.36 |
Day 42 to 59 | 1.694 | 1.995 | 2.024 | 0.132 | 0.07 | 0.38 |
Day 0 to 59 | 0.631 | 0.772 | 0.786 | 0.060 | 0.06 | 0.36 |
Total dry matter intake (kg/d) | ||||||
Day 0 to 42 | 1.011 | 1.090 | 1.101 | 0.041 | 0.10 | 0.47 |
Day 42 to 59 | 2.067 | 2.369 | 2.398 | 0.132 | 0.07 | 0.38 |
Day 0 to 59 | 1.315 | 1.458 | 1.475 | 0.064 | 0.07 | 0.39 |
Gain/feed (kg:kg) | ||||||
Day 0 to 42 | 0.677 | 0.697 | 0.709 | 0.026 | 0.38 | 0.89 |
Day 42 to 59 | 0.626 | 0.621 | 0.609 | 0.016 | 0.47 | 0.89 |
Day 0 to 59 | 0.653 | 0.661 | 0.663 | 0.012 | 0.55 | 0.83 |
GAA, g/d 1 | p-Value | |||||
---|---|---|---|---|---|---|
Item/Period/Score | 0 | 1 | 2 | SEM 2 | Linear | Quadratic |
Respiratory score 3 | ------ % of days ------ | |||||
Days 0 to 42 | ||||||
0 | 80.9 | 83.2 | 82.5 | 3.0 | 0.71 | 0.67 |
1 | 13.8 | 10.5 | 12.6 | 1.6 | 0.60 | 0.16 |
2 | 4.2 | 4.4 | 3.4 | 1.3 | 0.68 | 0.71 |
3 | 1.0 | 1.4 | 1.3 | 0.5 | 0.69 | 0.72 |
4+ | 0.1 | 0.5 | 0.2 | 0.2 | 0.77 | 0.12 |
Days 42 to 59 | ||||||
0 | 93.8 | 92.1 | 94.6 | 1.9 | 0.73 | 0.30 |
1 | 5.5 | 7.1 | 4.9 | 1.7 | 0.77 | 0.33 |
2 | 0.5 | 0.8 | 0.4 | 0.5 | 0.88 | 0.49 |
3 | - | - | - | - | - | - |
4+ | - | - | - | - | - | - |
Fecal score 4 | ||||||
Days 0 to 42 | ||||||
0 | 36.6 | 40.4 | 38.7 | 2.7 | 0.58 | 0.40 |
1 | 40.2 | 38.6 | 40.4 | 1.6 | 0.92 | 0.37 |
2 | 18.0 | 15.3 | 17.0 | 1.9 | 0.70 | 0.33 |
3 | 5.2 | 5.6 | 3.9 | 1.2 | 0.43 | 0.47 |
Days 42 to 59 | ||||||
0 | 63.3 | 56.6 | 58.7 | 3.4 | 0.36 | 0.30 |
1 | 33.5 | 40.4 | 36.4 | 2.6 | 0.44 | 0.10 |
2 | 3.2 | 2.9 | 4.4 | 2.0 | 0.66 | 0.72 |
3 | 0.0 | 0.0 | 0.4 | 0.2 | 0.25 | 0.49 |
Electrolyte | doses 5 | |||||
Days 0 to 42 | 1.9 | 2.4 | 1.7 | 0.7 | 0.81 | 0.50 |
Days 42 to 59 | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hazlewood, K.J.; Zumbaugh, C.A.; Jones, C.K.; Atkinson, E.M.; Tingler, H.L.R.; Inhuber, V.K.; Brouk, M.J.; Antony, R.M.; Titgemeyer, E.C. Effect of Guanidinoacetic Acid Supplementation on the Performance of Calves Fed Milk Replacer. Animals 2024, 14, 2757. https://doi.org/10.3390/ani14192757
Hazlewood KJ, Zumbaugh CA, Jones CK, Atkinson EM, Tingler HLR, Inhuber VK, Brouk MJ, Antony RM, Titgemeyer EC. Effect of Guanidinoacetic Acid Supplementation on the Performance of Calves Fed Milk Replacer. Animals. 2024; 14(19):2757. https://doi.org/10.3390/ani14192757
Chicago/Turabian StyleHazlewood, Kathryn J., Charles A. Zumbaugh, Cassandra K. Jones, Emily M. Atkinson, Hannah L. R. Tingler, Vivienne K. Inhuber, Micheal J. Brouk, Reshma M. Antony, and Evan C. Titgemeyer. 2024. "Effect of Guanidinoacetic Acid Supplementation on the Performance of Calves Fed Milk Replacer" Animals 14, no. 19: 2757. https://doi.org/10.3390/ani14192757
APA StyleHazlewood, K. J., Zumbaugh, C. A., Jones, C. K., Atkinson, E. M., Tingler, H. L. R., Inhuber, V. K., Brouk, M. J., Antony, R. M., & Titgemeyer, E. C. (2024). Effect of Guanidinoacetic Acid Supplementation on the Performance of Calves Fed Milk Replacer. Animals, 14(19), 2757. https://doi.org/10.3390/ani14192757