Determination and Prediction of Amino Acid Digestibility in Rapeseed Cake for Growing-Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sources of Rapeseed Cake Samples
2.2. Animals, Diets, and Experimental Design
2.3. Sample Collection and Preparation
2.4. Sample Analysis and Calculation
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition and AA Profile of Rapeseed Cake and Its Diet
3.2. AID and SID of CP and AA
3.3. Correlation Analysis and Prediction Equations for SID of CP and AA
4. Discussion
4.1. Chemical Composition and AA Profile of Rapeseed Cake
4.2. SID of AA in Rapeseed Cake
4.3. Correlation Analysis and Prediction Equations for SID of AA in Rapeseed Cake
4.4. Validate the Prediction Equations for SIDCP and SIDAA of Rapeseed Cake Based on Database
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rakita, S.; Kokic, B.; Manoni, M.; Mazzoleni, S.; Lin, P.; Luciano, A.; Ottoboni, M.; Cheli, F.; Pinotti, L. Cold-Pressed Oilseed Cakes as Alternative and Sustainable Feed Ingredients: A Review. Foods 2023, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Liu, X.; Xiao, Q.R.; Zhang, F.; Liu, N.; Tang, L.Z.; Wang, J.; Ma, X.K.; Tan, B.; Chen, J.S.; et al. Rapeseed Meal and Its Application in Pig Diet: A Review. Agriculture 2022, 12, 849. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Evaluation of Amino Acid and Energy Utilization in Feedstuff for Swine and Poultry Diets. Asian Australas J. Anim. Sci. 2014, 27, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Li, D.F. Nutrient Requirements of Swine in China; China Agriculture Press: Beijing, China, 2020. [Google Scholar]
- Liu, Y.H.; Oliveira, M.S.F.; Stein, H.H. Canola meal produced from high-protein or conventional varieties of canola seeds may substitute soybean meal in diets for gestating and lactating sows without compromising sow or litter productivity. J. Anim. Sci. 2018, 96, 5179–5187. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; Natl. Acad. Press: Washington, DC, USA, 2012. [Google Scholar]
- Stein, H.H.; Lagos, L.V.; Casas, G.A. Nutritional value of feed ingredients of plant origin fed to pigs. Anim. Feed. Sci. Technol. 2016, 218, 33–69. [Google Scholar] [CrossRef]
- Parr, C.K.; Liu, Y.; Parsons, C.M.; Stein, H.H. Effects of high-protein or conventional canola meal on growth performance, organ weights, bone ash, and blood characteristics of weanling pigs. J. Anim. Sci. 2015, 93, 2165–2173. [Google Scholar] [CrossRef]
- Li, R.; Tian, M.; Feng, G.; Hou, G.; Jiang, X.; Yang, G.; Xiang, Q.; Liu, X.; Long, C.; Huang, R.; et al. Determination and prediction of digestible energy, metabolizable energy, and standardized ileal digestibility of amino acids in barley for growing pig. Anim. Feed. Sci. Technol. 2023, 298, 115607. [Google Scholar] [CrossRef]
- Stein, H.H.; Sève, B.; Fuller, M.F.; Moughan, P.J.; de Lange, C.F.M. Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: Terminology and application. J. Anim. Sci. 2007, 85, 172–180. [Google Scholar] [CrossRef]
- Tian, Z.; Ji, Y.; Sun, L.; Xu, X.; Fan, D.; Zhong, H.; Liang, Z.; Gunther, F. Changes in production potentials of rapeseed in the Yangtze River Basin of China under climate change: A multi-model ensemble approach. J. Geogr. Sci. 2018, 28, 1700–1714. [Google Scholar] [CrossRef]
- Feng, G.; Li, R.; Jiang, X.; Yang, G.; Tian, M.; Xiang, Q.; Liu, X.; Ouyang, Q.; Long, C.; Huang, R.; et al. Prediction of available energy and amino acid digestibility of Chinese sorghum fed to growing–finishing pigs. J. Anim. Sci. 2023, 101, skad262. [Google Scholar] [CrossRef]
- Stein, H.H.; Shipley, C.F.; Easter, R.A. Technical note: A technique for inserting a T-cannula into the distal ileum of pregnant sows. J. Anim. Sci. 1998, 76, 1433–1436. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 18th ed.; Association of the Official Analytical Chemists: Arlington, VA, USA, 2006. [Google Scholar]
- Vansoest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- GB/T 15400-2018; Determination of Tryptophan in Feeds. Standards Press of China, National Standards Press of China Press: Beijing, China, 2018.
- GB 5009.246-2016; Determination of Titanium Dioxide in Food. Standards Press of China, National Standards Press of China Press: Beijing, China, 2016.
- Mathai, J.K. Digestible Indispensable Amino Acid Scores for Food Proteins; University of Illinois at Urbana-Champaign; UIUC Press: Urbana, IL, USA, 2018. [Google Scholar]
- Espinosa, C.; Fanelli, N.; Stein, H. Digestibility of amino acids and concentration of metabolizable energy are greater in high-oil corn than in conventional corn when fed to growing pigs. Anim. Feed. Sci. Technol. 2021, 280, 115040. [Google Scholar] [CrossRef]
- Son, A.R.; Hyun, Y.; Htoo, J.K.; Kim, B.G. Amino acid digestibility in copra expellers and palm kernel expellers by growing pigs. Anim. Feed. Sci. Technol. 2014, 187, 91–97. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, R.; Gao, L.; Liu, Z.; Chen, L.; Zhang, H. Effects of optimal carbohydrase mixtures on nutrient digestibility and digestible energy of corn-and wheat-based diets in growing pigs. Animals 2020, 10, 1846. [Google Scholar] [CrossRef] [PubMed]
- Li, P.L.; Wu, F.; Chen, Y.F.; Wang, J.R.; Guo, P.P.; Li, Z.C.; Liu, L.; Lai, C.H. Determination of the energy content and amino acid digestibility of double-low rapeseed cakes fed to growing pigs. Anim. Feed. Sci. Technol. 2015, 210, 243–253. [Google Scholar] [CrossRef]
- Azam, S.M.; Farhatullah, F.; Adnan Nasim, A.N.; Sikandar Shah, S.S.; Sidra Iqbal, S.I. Correlation studies for some agronomic and quality traits in Brassica napus L. Sarhad J. Agric. 2013, 29, 547–550. [Google Scholar]
- Liu, Y.; Song, M.; Maison, T.; Stein, H.H. Effects of protein concentration and heat treatment on concentration of digestible and metabolizable energy and on amino acid digestibility in four sources of canola meal fed to growing pigs. J. Anim. Sci. 2014, 92, 4466–4477. [Google Scholar] [CrossRef]
- Khajali, F.; Slominski, B.A. Factors that affect the nutritive value of canola meal for poultry. Poult. Sci. 2012, 91, 2564–2575. [Google Scholar] [CrossRef]
- Kiarie, E.; Romero, L.F.; Nyachoti, C.M. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 2013, 26, 71–88. [Google Scholar] [CrossRef]
- Le, M.H.A.; Buchet, A.D.G.; Beltranena, E.; Gerrits, W.J.J.; Zijlstra, R.T. Digestibility energy and amino acids of canola meal from two species (Brassica juncea and Brassica napus) fed to distal ileum cannulated grower pigs. J. Anim. Sci. 2012, 90, 218–220. [Google Scholar] [CrossRef]
- Maison, T.; Liu, Y.; Stein, H.H. Digestibility of energy and detergent fiber and digestible and metabolizable energy values in canola meal, 00-rapeseed meal, and 00-rapeseed expellers fed to growing pigs. J. Anim. Sci. 2015, 93, 652–660. [Google Scholar] [CrossRef]
- Mejicanos, G.; Sanjayan, N.; Kim, I.H.; Nyachoti, C.M. Recent advances in canola meal utilization in swine nutrition. J. Anim. Sci. Technol. 2016, 58, 7. [Google Scholar] [CrossRef]
- Mosenthin, R.; Messerschmidt, U.; Sauer, N.; Carré, P.; Quinsac, A.; Schöne, F. Effect of the desolventizing/toasting process on chemical composition and protein quality of rapeseed meal. J. Anim. Sci. Biotechnol. 2016, 7, 36. [Google Scholar] [CrossRef]
- Li, P.L.; Chen, Y.F.; Lyu, Z.Q.; Yu, S.B.; Wu, F.; Huang, B.B.; Liu, L.; Lai, C.H. Concentration of metabolizable energy and digestibility of amino acids in Chinese produced dehulled double-low rapeseed expellers and non-dehulled double-low rapeseed co-products fed to growing-finishing pigs. Anim. Feed. Sci. Technol. 2017, 234, 10–19. [Google Scholar] [CrossRef]
- Li, P.; Lyu, Z.; Wang, L.; Huang, B.; Lai, C. Nutritive values of double-low rapeseed expellers and rapeseed meal with or without supplementation of multi-enzyme in pigs. Can. J. Anim. Sci. 2020, 100, 729–738. [Google Scholar] [CrossRef]
- Brusov, V.; Stocklan, W.L.; Pick, R.I.; Meade, R.J. Limiting amino acids in a low-protein diet forgrowing pigs. J. Anim. Sci. 1966, 25, 1241–1246. [Google Scholar]
- Friesen, K.G.; Tokach, M.D.; Nelssen, J.L.; Goodband, R.D. A review of current amino acid estimates for swine 2. Compend. Contin. Educ. Pract. Vet. 1996, 18, 1368–1372. [Google Scholar]
- Zhang, H.; Hu, B.; Pang, W. Research Progress on Physiological Effects of Threonine in Pigs. Chin. J. Anim. Nutr. 2023, 35, 708–717. [Google Scholar]
- Lee, C.Y.; Song, A.A.-L.; Loh, T.C.; Rahim, R.A. Effects of lysine and methionine in a low crude protein diet on the growth performance and gene expression of immunity genes in broilers. Poult. Sci. 2020, 99, 2916–2925. [Google Scholar] [CrossRef]
- Maynard, C.W.; Kidd, M.T.; Chrystal, P.V.; McQuade, L.R.; McInerney, B.V.; Selle, P.H.; Liu, S.Y. Assessment of limiting dietary amino acids in broiler chickens offered reduced crude protein diets. Anim. Nutr. 2022, 10, 1–11. [Google Scholar] [CrossRef]
- Langer, S.; Fuller, M.F. Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: Effects on nitrogen retention and amino acid utilization. Br. J. Nutr. 2000, 83, 43–48. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, M.; Zhang, H.; He, J. Advance on Effects of Dietary Lysine Restriction in Pigs. Chin. J. Anim. Nutr. 2019, 31, 4909–4916. [Google Scholar]
- Hosseini, P.; Mohsenifar, K.; Rajaie, M.; Babaeinejad, T. Plant growth regulators affecting canola (Brasica napus L.) biochemistry including oil yield under drought stress. Physiol. Mol. Biol. Plants 2023, 29, 1663–1674. [Google Scholar] [CrossRef]
- Gu, J.; Hou, D.; Li, Y.; Chao, H.; Zhang, K.; Wang, H.; Xiang, J.; Raboanatahiry, N.; Wang, B.; Li, M. Integration of proteomic and genomic approaches to dissect seed germination vigor in Brassica napus seeds differing in oil content. BMC Plant Biol. 2019, 19, 21. [Google Scholar] [CrossRef]
- Stein, H.H.; Fuller, M.; Moughan, P.; Sève, B.; Mosenthin, R.; Jansman, A.; Fernández, J.; De Lange, C. Definition of apparent, true, and standardized ileal digestibility of amino acids in pigs. Livest. Sci. 2007, 109, 282–285. [Google Scholar] [CrossRef]
- Adeola, O.; Xue, P.; Cowieson, A.; Ajuwon, K. Basal endogenous losses of amino acids in protein nutrition research for swine and poultry. Anim. Feed. Sci. Technol. 2016, 221, 274–283. [Google Scholar] [CrossRef]
- Nursten, H.; Nursten, H.E. Nutritional Aspects. In Maillard Reaction; The Royal Society of Chemistry Press: London, UK, 2005. [Google Scholar]
- Seneviratne, R.W.; Beltranena, E.; Newkirk, R.W.; Goonewardene, L.A.; Zijlstra, R.T. Processing conditions affect nutrient digestibility of cold-pressed canola cake for grower pigs. J. Anim. Sci. 2011, 89, 2452–2461. [Google Scholar] [CrossRef]
- Eklund, M.; Sauer, N.; Schöne, F.; Messerschmidt, U.; Rosenfelder, P.; Htoo, J.; Mosenthin, R. Effect of processing of rapeseed under defined conditions in a pilot plant on chemical composition and standardized ileal amino acid digestibility in rapeseed meal for pigs. J. Anim. Sci. 2015, 93, 2813–2825. [Google Scholar] [CrossRef]
- Dégen, L.; Halas, V.; Tossenberger, J.; Babinszky, L. Dietary impact of NDF from different sources on the apparent ileal digestibility of amino acids. Acta Agrar. Kaposváriensis 2011, 15, 1–11. [Google Scholar]
- Dégen, L.; Halas, V.; Babinszky, L. Effect of dietary fibre on protein and fat digestibility and its consequences on diet formulation for growing and fattening pigs: A review. Acta Agric. Scand Sect. A 2007, 57, 1–9. [Google Scholar] [CrossRef]
- Almeida, F.N.; Htoo, J.K.; Thomson, J.; Stein, H.H. Effects of heat treatment on the apparent and standardized ileal digestibility of amino acids in canola meal fed to growing pigs. Anim. Feed. Sci. Technol. 2014, 187, 44–52. [Google Scholar] [CrossRef]
- Li, D.; Pengbin, X.; Liming, G.; Shijun, F.; Canghai, H. Determination of apparent ileal amino acid digestibility in rapeseed meal and cake processed at different temperatures using the direct and difference method with growing pigs. Arch. Anim. Nutr. 2002, 56, 339–349. [Google Scholar] [CrossRef]
- Heyer, C.M.E.; Wang, L.; Beltranena, E.; Zijlstra, R.T. Nutrient digestibility of extruded canola meal in ileal-cannulated growing pigs and effects of its feeding on diet nutrient digestibility and growth performance in weaned pigs. J. Anim. Sci. 2021, 99, skab135. [Google Scholar] [CrossRef]
- Lahaye, L.; Ganier, P.; Thibault, J.N.; Sève, B. Technological processes of feed manufacturing affect protein endogenous losses and amino acid availability for body protein deposition in pigs. Anim. Feed. Sci. Technol. 2004, 113, 141–156. [Google Scholar] [CrossRef]
- Messad, F.; Létourneau-Montminy, M.P.; Charbonneau, E.; Sauvant, D.; Guay, F. Meta-analysis of the amino acid digestibility of oilseed meal in growing pigs. Animal 2016, 10, 1635–1644. [Google Scholar] [CrossRef]
- Toghyani, M.; Rodgers, N.; Iji, P.A.; Swick, R.A. Standardized ileal amino acid digestibility of expeller-extracted canola meal subjected to different processing conditions for starter and grower broiler chickens. Poult. Sci. 2015, 94, 992–1002. [Google Scholar] [CrossRef]
- Hossen, I.; Hua, W.; Ting, L.; Mehmood, A.; Jingyi, S.; Duoxia, X.; Yanping, C.; Hongqing, W.; Zhipeng, G.; Kaiqi, Z.; et al. Phytochemicals and inflammatory bowel disease: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1321–1345. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Q.; Li, P.; Lai, C.; Li, D.; Zang, J.; Ni, S. Development and Validation of Equations for Predicting the Metabolizable Energy Value of Double-Low Rapeseed Cake for Growing Pigs. Animals 2021, 11, 1168. [Google Scholar] [CrossRef]
- Spiegel, C.; Bestetti, G.E.; Rossi, G.L.; Blum, J.W. Normal circulating triiodothyronine concentrations are maintained despite severe hypothyroidism in growing pigs fed rapeseed presscake meal. J. Nutr. 1993, 123, 1554–1561. [Google Scholar] [CrossRef]
- Ebert, E.C. The thyroid and the gut. J. Clin. Gastroenterol. 2010, 44, 402–406. [Google Scholar] [CrossRef]
- Daher, R.; Yazbeck, T.; Jaoude, J.B.; Abboud, B. Consequences of dysthyroidism on the digestive tract and viscera. World J. Gastroenterol. 2009, 15, 2834–2838. [Google Scholar] [CrossRef]
- Rezvani, M.; Kluth, H.; Bulang, M.; Rodehutscord, M. Variation in amino acid digestibility of rapeseed meal studied in caecectomised laying hens and relationship with chemical constituents. Br. Poult. Sci. 2012, 53, 665–674. [Google Scholar] [CrossRef]
- Seneviratne, R.W.; Young, M.G.; Beltranena, E.; Goonewardene, L.A.; Newkirk, R.W.; Zijlstra, R.T. The nutritional value of expeller-pressed canola meal for grower-finisher pigs. J. Anim. Sci. 2010, 88, 2073–2083. [Google Scholar] [CrossRef]
Sample Numbers | Colors * | Source of Variety | Heating Temperature and Time | Sources | Storage Conditions |
---|---|---|---|---|---|
RSC1 | brown | Brassica napus L. | 130 ± 10 °C, 30 min | Liupanshui city, Guizhou | Normal temperature, <3 months |
RSC2 | reddish brown | Brassica napus L. | 165 ± 15 °C, 25 min | Neijiang city, Sichuang | Normal temperature, <3 months |
RSC3 | yellowish green | Brassica napus L. | 115 ± 10 °C, 30 min | Huainan city, Anhui | Normal temperature, <3 months |
RSC4 | greener | Brassica napus L. | 40 ± 20 °C, 60~120 min | Hanzhong city, Shaanxi | Normal temperature, <3 months |
RSC5 | yellowish green | Brassica napus L. | 95 ± 10 °C, 25 min | Xuchang city, Henan | Normal temperature, <3 months |
RSC6 | yellowish green | Brassica napus L. | 115 ± 10 °C, 30 min | Xiantao city, Hubei | Normal temperature, <3 months |
RSC7 | reddish brown | Brassica napus L. | 165 ± 15 °C, 25 min | Huaihua city, Hunan | Normal temperature, <3 months |
RSC8 | brown | Brassica napus L. | 130 ± 10 °C, 30 min | Chongqing Municipality | Normal temperature, <3 months |
RSC9 | brown | Brassica napus L. | 130 ± 10 °C, 30 min | Xiangxiang city, Hunan | Normal temperature, <3 months |
RSC10 | yellowish brown | Brassica napus L. | 95 ± 10 °C, 60 min | Hanchuan city, Hubei | Normal temperature, <3 months |
Items | Experimental Diet | Nitrogen-Free Diet |
---|---|---|
Maize starch | 42.90 | 78.90 |
Rapeseed cake | 40.00 | |
Soybean oil | 3.00 | 3.00 |
Cellulose acetate | 4.00 | |
Sucrose | 10.00 | 10.00 |
Limestone | 0.5 | 0.5 |
Calcium phosphite (Ca(H2PO4)2) | 1.9 | 1.9 |
Titanium dioxide (TiO2) | 0.3 | 0.3 |
Sodium chloride (NaCl) | 0.4 | 0.4 |
Potassium carbonate (K2CO3) | 0.4 | 0.4 |
Magnesium oxide (MgO) | 0.1 | 0.1 |
Vitamin and mineral premix | 0.5 | 0.5 |
Total | 100.00 | 100.00 |
Items | Rapeseed Cake Number | Mean | CV (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RSC1 | RSC2 | RSC3 | RSC4 | RSC5 | RSC6 | RSC7 | RSC8 | RSC9 | RSC10 | |||
DM | 93.02 | 87.95 | 90 | 91.67 | 92.36 | 91.57 | 94.68 | 92.06 | 91.08 | 91.85 | 91.62 | 1.94 |
GE, MJ/kg | 19.08 | 19.07 | 18.6 | 19.47 | 18.45 | 20.11 | 20.84 | 18.94 | 18.72 | 19.18 | 19.25 | 3.8 |
CP | 43.61 | 38.66 | 38.48 | 39.33 | 42.78 | 35.15 | 38.37 | 41.73 | 36.67 | 36.76 | 39.15 | 7.07 |
EE | 7.96 | 5.81 | 7.98 | 7.76 | 6.46 | 11.76 | 9.73 | 7.54 | 7.92 | 8.13 | 8.11 | 32.79 |
Ash | 7.07 | 6.62 | 6.11 | 5.99 | 7.75 | 6.42 | 7.09 | 7.02 | 6.78 | 6.89 | 6.77 | 7.65 |
CF | 8.26 | 10.25 | 9.34 | 8.81 | 8.4 | 9.72 | 11.32 | 8.55 | 9.29 | 9.5 | 9.34 | 10.01 |
NDF | 30.87 | 44.25 | 24.19 | 23.27 | 21.89 | 26.61 | 48.61 | 27.77 | 29.3 | 25.12 | 30.19 | 29.94 |
ADF | 15.83 | 22.25 | 16.89 | 16.28 | 14.71 | 15.91 | 22.87 | 13.13 | 19.59 | 19.39 | 17.68 | 18.19 |
Ca | 0.58 | 0.58 | 0.5 | 0.57 | 0.62 | 0.56 | 0.59 | 0.57 | 0.62 | 0.6 | 0.58 | 5.92 |
TP | 1.25 | 1.08 | 0.92 | 1.19 | 1.19 | 1.05 | 1.3 | 1.27 | 1.17 | 1.18 | 1.16 | 9.67 |
TGS/(μmol/g) | 21.84 | 22.81 | 23.82 | 20.27 | 21.39 | 22.97 | 25.02 | 20.25 | 20.86 | 24.27 | 22.35 | 15.19 |
Essential amino acids, % | ||||||||||||
Arginine | 2.86 | 2.03 | 2.54 | 2.55 | 2.48 | 2.18 | 2.32 | 2.45 | 2.45 | 1.74 | 2.36 | 13.18 |
Histidine | 1.78 | 1.52 | 1.65 | 1.59 | 1.58 | 1.60 | 1.56 | 1.60 | 1.63 | 1.13 | 1.56 | 10.79 |
Isoleucine | 2.63 | 1.54 | 1.58 | 2.14 | 1.56 | 2.06 | 2.07 | 1.99 | 2.02 | 1.16 | 1.87 | 22.13 |
Leucine | 2.29 | 2.29 | 2.39 | 2.40 | 2.34 | 2.38 | 2.24 | 2.24 | 2.33 | 1.98 | 2.29 | 5.35 |
Lysine | 2.20 | 1.22 | 1.91 | 2.08 | 2.14 | 2.04 | 1.23 | 1.42 | 1.73 | 2.08 | 1.80 | 21.13 |
Methionine | 0.90 | 0.73 | 0.77 | 0.74 | 0.76 | 0.95 | 0.82 | 1.29 | 0.71 | 0.82 | 0.85 | 20.30 |
Phenylalanine | 1.96 | 1.61 | 1.69 | 1.21 | 1.66 | 1.25 | 1.14 | 1.16 | 1.10 | 1.48 | 1.43 | 20.55 |
Threonine | 1.97 | 1.65 | 1.64 | 1.60 | 1.73 | 1.66 | 1.45 | 1.58 | 1.59 | 1.20 | 1.61 | 12.14 |
Tryptophan | 0.36 | 0.30 | 0.25 | 0.28 | 0.29 | 0.29 | 0.37 | 0.36 | 0.27 | 0.33 | 0.31 | 13.41 |
Valine | 2.68 | 2.25 | 2.34 | 2.14 | 2.31 | 2.28 | 1.81 | 2.84 | 2.32 | 1.88 | 2.29 | 13.72 |
Non-essential amino acids, % | ||||||||||||
Alanine | 2.12 | 1.64 | 1.66 | 1.69 | 1.62 | 1.76 | 1.57 | 1.60 | 1.60 | 1.28 | 1.65 | 12.57 |
Aspartate | 3.17 | 2.39 | 2.67 | 2.49 | 2.49 | 2.53 | 2.36 | 2.47 | 2.48 | 1.99 | 2.50 | 11.73 |
Cystine | 1.14 | 1.05 | 1.11 | 1.03 | 1.23 | 1.69 | 1.10 | 1.14 | 1.13 | 1.01 | 1.16 | 16.67 |
Glutamine | 8.55 | 5.83 | 6.70 | 6.40 | 6.57 | 6.11 | 5.94 | 5.92 | 6.22 | 5.40 | 6.36 | 13.44 |
Glycine | 2.25 | 1.65 | 1.71 | 1.70 | 1.69 | 1.74 | 1.61 | 1.63 | 1.67 | 1.45 | 1.71 | 12.06 |
Proline | 2.28 | 1.83 | 1.87 | 3.91 | 2.07 | 3.17 | 3.44 | 3.71 | 2.24 | 1.95 | 2.65 | 30.92 |
Serine | 2.23 | 1.55 | 1.63 | 1.60 | 1.62 | 1.63 | 1.42 | 1.61 | 1.63 | 2.31 | 1.72 | 17.15 |
Tyrosine | 1.84 | 1.29 | 1.43 | 1.30 | 1.41 | 1.38 | 1.27 | 1.35 | 1.33 | 0.74 | 1.33 | 20.00 |
Rapeseed Cake Diet | Mean | CV (%) | N-Free Diet | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Items | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
DM,% | 90.85 | 90.20 | 90.61 | 90.36 | 92.34 | 91.11 | 92.89 | 92.46 | 90.89 | 91.30 | 91.30 | 1.03 | 90.28 |
CP,% | 17.71 | 12.94 | 14.04 | 14.19 | 13.88 | 14.18 | 12.82 | 14.21 | 13.52 | 11.59 | 13.91 | 11.33 | 1.45 |
Essential amino acids, % | |||||||||||||
Arginine | 1.15 | 0.80 | 1.00 | 0.99 | 0.97 | 0.84 | 0.89 | 0.96 | 0.96 | 0.67 | 0.92 | 14.00 | - |
Histidine | 0.72 | 0.60 | 0.65 | 0.62 | 0.62 | 0.61 | 0.59 | 0.62 | 0.64 | 0.44 | 0.61 | 11.52 | - |
Isoleucine | 1.05 | 0.61 | 0.62 | 0.83 | 0.61 | 0.79 | 0.79 | 0.78 | 0.78 | 0.45 | 0.73 | 22.69 | - |
Leucine | 0.92 | 0.90 | 0.94 | 0.93 | 0.92 | 0.91 | 0.86 | 0.88 | 0.91 | 0.77 | 0.89 | 5.68 | - |
Lysine | 0.89 | 0.48 | 0.75 | 0.81 | 0.84 | 0.78 | 0.47 | 0.56 | 0.67 | 0.80 | 0.70 | 21.43 | - |
Methionine | 0.36 | 0.29 | 0.30 | 0.29 | 0.30 | 0.36 | 0.32 | 0.51 | 0.28 | 0.32 | 0.33 | 20.46 | - |
Phenylalanine | 0.78 | 0.63 | 0.67 | 0.47 | 0.65 | 0.48 | 0.44 | 0.45 | 0.43 | 0.57 | 0.56 | 21.60 | - |
Threonine | 0.79 | 0.65 | 0.65 | 0.63 | 0.68 | 0.64 | 0.56 | 0.62 | 0.62 | 0.46 | 0.63 | 13.13 | - |
Tryptophan | 0.15 | 0.12 | 0.10 | 0.11 | 0.11 | 0.11 | 0.14 | 0.14 | 0.10 | 0.13 | 0.12 | 13.57 | - |
Valine | 1.08 | 0.89 | 0.92 | 0.83 | 0.90 | 0.88 | 0.69 | 1.11 | 0.90 | 0.72 | 0.89 | 14.72 | - |
Non-essential amino acids, % | - | ||||||||||||
Alanine | 0.86 | 0.65 | 0.65 | 0.66 | 0.63 | 0.68 | 0.60 | 0.63 | 0.62 | 0.49 | 0.65 | 14.02 | - |
Aspartate | 1.28 | 0.94 | 1.04 | 0.97 | 0.97 | 0.97 | 0.90 | 0.96 | 0.96 | 0.76 | 0.98 | 13.05 | - |
Cystine | 0.46 | 0.41 | 0.43 | 0.40 | 0.48 | 0.65 | 0.42 | 0.45 | 0.44 | 0.39 | 0.45 | 16.38 | 0.08 |
Glutamine | 3.40 | 2.30 | 2.64 | 2.48 | 2.59 | 2.36 | 2.26 | 2.31 | 2.41 | 2.08 | 2.48 | 14.48 | - |
Glycine | 0.91 | 0.65 | 0.68 | 0.66 | 0.67 | 0.67 | 0.61 | 0.64 | 0.65 | 0.56 | 0.67 | 13.47 | - |
Proline | 0.91 | 0.72 | 0.74 | 1.51 | 0.82 | 1.22 | 1.32 | 1.44 | 0.87 | 0.75 | 1.03 | 30.20 | 0.51 |
Serine | 0.89 | 0.61 | 0.64 | 0.62 | 0.63 | 0.63 | 0.54 | 0.63 | 0.63 | 0.89 | 0.67 | 17.53 | - |
Tyrosine | 0.74 | 0.51 | 0.56 | 0.50 | 0.55 | 0.53 | 0.48 | 0.53 | 0.52 | 0.29 | 0.52 | 21.18 | - |
Rapeseed Cake | Mean | SEM | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Items | RSC1 | RSC2 | RSC3 | RSC4 | RSC5 | RSC6 | RSC7 | RSC8 | RSC9 | RSC10 | |||
CP, % | 70.29 a | 52.19 de | 62.36 abc | 63.38 abc | 66.29 ab | 66.09 ab | 46.54 e | 54.76 cde | 60.46 bcd | 54.81 cde | 59.72 | 1.29 | <0.01 |
Essential amino acids, % | |||||||||||||
Arginine | 75.56 ab | 70.61 ab | 80.29 a | 77.19 ab | 75.38 ab | 78.09 ab | 75.59 ab | 73.39 ab | 79.82 ab | 68.94 b | 75.49 | 1.07 | 0.28 |
Histidine | 73.22 cd | 72.62 cd | 76.80 bc | 68.01 d | 67.27 d | 73.71 cd | 81.92 ab | 86.27 a | 88.41 a | 83.20 ab | 77.14 | 1.26 | <0.01 |
Isoleucine | 81.20 ab | 71.92 d | 72.45 cd | 80.09 ab | 76.50 bcd | 84.81 a | 78.38 abc | 78.73 ab | 81.65 ab | 66.13 e | 77.19 | 0.91 | <0.01 |
Leucine | 72.30 ab | 73.35 ab | 76.54 ab | 75.59 ab | 79.96 a | 81.19 a | 77.42 a | 60.59 bc | 51.72 c | 53.25 c | 70.19 | 2.04 | <0.01 |
Lysine | 64.34 a | 41.12 b | 65.21 a | 67.90 a | 71.61 a | 68.56 a | 39.94 b | 64.70 a | 64.12 a | 72.23 a | 61.97 | 2.16 | <0.01 |
Methionine | 64.76 b | 53.52 bc | 46.08 c | 58.70 bc | 49.67 c | 52.17 c | 83.92 a | 81.18 a | 81.99 a | 81.05 a | 65.31 | 2.39 | <0.01 |
Phenylalanine | 76.87 b | 74.26 b | 76.44 b | 67.30 c | 76.58 b | 75.29 a | 83.22 a | 88.51 a | 88.89 a | 85.34 a | 79.27 | 1.08 | <0.01 |
Threonine | 68.20 ab | 64.24 ab | 66.55 ab | 62.81 b | 65.36 ab | 71.63 ab | 66.37 ab | 68.24 ab | 75.86 a | 69.58 ab | 67.88 | 1.16 | 0.37 |
Tryptophan | 84.12 a | 80.20 ab | 73.75 c | 78.11 abc | 80.59 ab | 81.69 ab | 81.40 ab | 83.36 a | 75.91 bc | 79.98 ab | 79.91 | 0.68 | <0.01 |
Valine | 81.62 a | 77.76 ab | 77.99 ab | 80.57 ab | 83.36 a | 79.91 ab | 68.88 bc | 82.89 a | 82.55 a | 59.86 c | 77.54 | 1.48 | <0.01 |
Non-essential amino acids, % | |||||||||||||
Alanine | 73.80 ab | 68.54 ab | 70.70 ab | 69.53 ab | 73.43 ab | 74.34 a | 64.28 b | 68.89 ab | 75.35 a | 67.39 ab | 70.62 | 0.96 | 0.20 |
Aspartate | 73.74 | 67.17 | 71.78 | 69.05 | 72.67 | 73.33 | 66.47 | 67.98 | 73.88 | 66.22 | 70.23 | 0.88 | 0.21 |
Cystine | 67.90 bc | 66.84 bc | 71.11 abc | 64.24 c | 76.15 abc | 60.58 c | 80.28 ab | 83.27 a | 82.67 a | 69.21 bc | 72.23 | 1.56 | <0.01 |
Glutamine | 86.46 ab | 80.33 bc | 83.02 abc | 81.26 bc | 83.79 abc | 84.37 abc | 77.10 c | 82.10 bc | 89.62 a | 83.73 abc | 83.18 | 0.79 | <0.05 |
Glycine | 74.65 a | 63.50 ab | 66.55 ab | 62.44 ab | 60.50 ab | 62.30 ab | 32.28 c | 35.01 c | 56.10 b | 57.49 b | 57.08 | 2.17 | <0.01 |
Proline | 55.06 a | 47.90 ab | 52.08 ab | 63.70 a | 24.90 b | 50.26 ab | 44.90 ab | 63.77 a | 61.72 a | 46.77 ab | 51.11 | 2.83 | 0.33 |
Serine | 78.99 abc | 69.58 cd | 75.54 abc | 71.68 bcd | 75.14 abcd | 69.31 cd | 65.26 d | 74.37 bcd | 80.84 ab | 84.47 a | 74.52 | 1.16 | <0.01 |
Tyrosine | 79.09 a | 73.49 ab | 75.87 ab | 75.02 ab | 78.86 a | 79.40 a | 74.98 ab | 70.97 ab | 76.49 ab | 67.82 b | 75.20 | 0.92 | 0.09 |
IAAend | Mathai [18] | Espinosa et al. [19] | Son et al. [20] | Zhang et al. [21] | Li et al. [9] | Min | Max | Mean | Our Study |
---|---|---|---|---|---|---|---|---|---|
Arg | 1.01 | 0.89 | 2.14 | 0.14 | 0.43 | 0.14 | 2.14 | 0.92 | 1.96 |
His | 0.31 | 0.19 | 0.25 | 0.11 | 0.09 | 0.09 | 0.31 | 0.19 | 0.23 |
Ile | 0.57 | 0.32 | 0.37 | 0.18 | 0.28 | 0.18 | 0.57 | 0.34 | 0.56 |
Leu | 0.9 | 0.48 | 0.6 | 0.21 | 0.38 | 0.21 | 0.90 | 0.51 | 0.43 |
Lys | 0.91 | 0.62 | 0.54 | 0.09 | 0.36 | 0.09 | 0.91 | 0.50 | 0.08 |
Met | 0.16 | 0.08 | 0.11 | 0.04 | 0.08 | 0.04 | 0.16 | 0.09 | 0.15 |
Met + Cys | - | - | 0.32 | - | - | 0.32 | 0.32 | 0.32 | - |
Phe | 0.55 | 0.29 | 0.36 | 0.28 | 0.21 | 0.21 | 0.55 | 0.34 | 0.48 |
Thr | 0.86 | 0.55 | 0.67 | 0.41 | 0.48 | 0.41 | 0.86 | 0.59 | 0.8 |
Trp | 0.2 | 0.09 | 0.19 | - | 0.1 | 0.09 | 0.20 | 0.15 | 0.19 |
Val | 0.93 | 0.41 | 0.53 | 0.51 | 0.35 | 0.35 | 0.93 | 0.55 | 0.6 |
Ala | 1.01 | 0.68 | 1.43 | 0.26 | 0.61 | 0.26 | 1.43 | 0.80 | 1.01 |
Asp | 1.32 | 0.78 | 1.09 | 0.49 | 0.8 | 0.49 | 1.32 | 0.90 | 0.77 |
Cys | 0.29 | 0.2 | 0.2 | 0.14 | 0.07 | 0.07 | 0.29 | 0.18 | 0.04 |
Glu | 1.58 | 0.94 | 1.3 | 0.63 | 1.06 | 0.63 | 1.58 | 1.10 | 1.03 |
Gly | 2.57 | 1.94 | 3.77 | 0.61 | 1 | 0.61 | 3.77 | 1.98 | 1.02 |
Pro | - | - | 20.1 | 2.47 | 1.26 | 1.26 | 20.10 | 7.94 | 6.39 |
Ser | 0.8 | 0.55 | 0.84 | 0.35 | 0.49 | 0.35 | 0.84 | 0.61 | 0.64 |
Tyr | 0.45 | 0.25 | - | 0.38 | 0.14 | 0.14 | 0.45 | 0.31 | 0.63 |
CP | - | 20.27 | 36.3 | - | 10.71 | 10.71 | 36.30 | 22.43 | 21.24 |
Rapeseed Cake | Mean | SEM | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Items | RSC1 | RSC2 | RSC3 | RSC4 | RSC5 | RSC6 | RSC7 | RSC8 | RSC9 | RSC10 | |||
CP, % | 81.19 a | 67.00 de | 76.07 abc | 76.9 abc | 80.42 ab | 79.73 ab | 61.92 e | 68.59 cde | 74.74 abcd | 71.54 bcd | 73.81 | 1.18 | <0.001 |
Essential amino acids, % | |||||||||||||
Arginine | 91.04 | 92.55 | 98.09 | 95.04 | 93.9 | 99.27 | 96.06 | 92.23 | 98.4 | 95.48 | 95.21 | 1.02 | 0.72 |
Histidine | 76.17 cd | 76.14 cd | 80.05 bc | 71.42 d | 70.73 d | 77.16 cd | 85.56 ab | 89.71 a | 91.73 a | 88.07 ab | 80.68 | 1.27 | <0.01 |
Isoleucine | 86.05 ab | 80.22 bc | 80.72 bc | 86.21 ab | 85.04 ab | 91.28 a | 85 ab | 85.44 ab | 88.19 a | 77.55 c | 84.57 | 0.77 | <0.01 |
Leucine | 76.53 ab | 77.65 ab | 80.67 ab | 79.75 ab | 84.27 a | 85.48 a | 82.06 a | 65.11 bc | 56.01 c | 58.35 c | 74.59 | 2.02 | <0.01 |
Lysine | 65.13 a | 42.56 b | 66.14 a | 68.75 a | 72.45 a | 69.46 a | 41.45 b | 65.98 a | 65.16 a | 73.11 a | 63.02 | 2.14 | <0.01 |
Methionine | 68.50 b | 58.17 bc | 50.56 c | 63.35 bc | 54.25 c | 55.89 bc | 88.28 a | 83.89 a | 86.86 a | 85.35 a | 69.51 | 2.37 | <0.01 |
Phenylalanine | 82.48 bc | 81.12 bc | 82.99 bc | 76.56 c | 83.4 bc | 84.35 b | 93.44 a | 98.38 a | 99.03 a | 93.04 a | 87.48 | 1.17 | <0.01 |
Threonine | 77.48 ab | 75.38 b | 77.77 ab | 74.42 b | 76.23 ab | 83.11 ab | 79.75 ab | 80.25 ab | 87.66 a | 85.42 ab | 79.75 | 1.19 | 0.17 |
Tryptophan | 96.07 | 94.77 | 91.41 | 93.7 | 96.26 | 97.76 | 93.97 | 96.05 | 92.48 | 93.84 | 94.63 | 0.60 | 0.43 |
Valine | 86.98 a | 84.24 a | 84.28 a | 87.48 a | 89.87 a | 86.50 a | 77.49 ab | 88.21 a | 88.97 a | 67.88 c | 84.19 | 1.42 | <0.01 |
Non-essential amino acids, % | |||||||||||||
Alanine | 84.45 ab | 82.60 ab | 84.78 ab | 83.38 ab | 88.14 ab | 87.94 ab | 79.83 b | 83.77 ab | 90.09 a | 86.10 ab | 85.11 | 0.94 | 0.40 |
Aspartate | 79.25 | 74.56 | 78.49 | 76.27 | 80.00 | 80.57 | 74.43 | 75.40 | 81.17 | 75.46 | 77.56 | 0.85 | 0.47 |
Cystine | 76.69 bc | 76.51 bc | 80.32 abc | 74.20 c | 79.87 abc | 66.76 c | 90.02 ab | 92.42 a | 91.76 a | 79.52 abc | 80.80 | 1.58 | <0.01 |
Glutamine | 89.23 ab | 84.38 bc | 86.56 abc | 85.03 abc | 87.48 abc | 88.36 abc | 81.35 c | 86.24 abc | 93.52 a | 88.26 abc | 87.04 | 0.78 | <0.05 |
Glycine | 84.86 a | 77.54 cd | 80.22 a | 76.36 a | 74.57 a | 76.12 a | 47.70 b | 49.84 b | 70.30 a | 74.11 a | 71.16 | 2.09 | <0.01 |
Proline | 118.68 ab | 127.87 a | 130.46 a | 101.85 abc | 95.63 bc | 97.43 bc | 88.76 b | 103.74 abc | 128.22 a | 123.64 ab | 111.63 | 3.38 | <0.01 |
Serine | 85.58 ab | 79.05 b | 84.68 ab | 81.01 ab | 84.5 ab | 78.68 b | 76.25 b | 83.83 ab | 90.07 a | 91.06 a | 83.47 | 1.08 | 0.021 |
Tyrosine | 86.76 | 84.49 | 86.09 | 86.26 | 89.38 | 90.12 | 87.13 | 81.96 | 87.51 | 87.92 | 86.76 | 0.84 | 0.70 |
Items | Prediction Equations | RSD | R2 | p-Value |
---|---|---|---|---|
SIDCP | SIDCP = 90.124 − 0.540NDF | 4.39 | 0.58 | <0.05 |
SIDLys | SIDLys = 100.107 − 1.229NDF | 2.88 | 0.94 | <0.01 |
SIDLys | SIDLys = 90.662 − 0.234HT | 8.04 | 0.51 | <0.05 |
SIDVal | SIDVal = 151.012 − 2.990TGS | 4.69 | 0.57 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Feng, G.; Zhao, J.; Ouyang, Q.; Liu, X.; Jiang, X.; Deng, M.; Xie, Z.; Chen, F.; Zhou, X.; et al. Determination and Prediction of Amino Acid Digestibility in Rapeseed Cake for Growing-Finishing Pigs. Animals 2024, 14, 2764. https://doi.org/10.3390/ani14192764
Tang H, Feng G, Zhao J, Ouyang Q, Liu X, Jiang X, Deng M, Xie Z, Chen F, Zhou X, et al. Determination and Prediction of Amino Acid Digestibility in Rapeseed Cake for Growing-Finishing Pigs. Animals. 2024; 14(19):2764. https://doi.org/10.3390/ani14192764
Chicago/Turabian StyleTang, Hui, Ganyi Feng, Jingfeng Zhao, Qing Ouyang, Xiaojie Liu, Xianji Jiang, Menglong Deng, Zhengjun Xie, Fengming Chen, Xihong Zhou, and et al. 2024. "Determination and Prediction of Amino Acid Digestibility in Rapeseed Cake for Growing-Finishing Pigs" Animals 14, no. 19: 2764. https://doi.org/10.3390/ani14192764
APA StyleTang, H., Feng, G., Zhao, J., Ouyang, Q., Liu, X., Jiang, X., Deng, M., Xie, Z., Chen, F., Zhou, X., Li, R., & Yin, Y. (2024). Determination and Prediction of Amino Acid Digestibility in Rapeseed Cake for Growing-Finishing Pigs. Animals, 14(19), 2764. https://doi.org/10.3390/ani14192764