Facilitation of Evolution by Plasticity Scales with Phenotypic Complexity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Algorithm 1. Plasticity guided evolution |
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sol, D.; Lapiedra, O.; Gonzalez-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 2013, 85, 1101–1112. [Google Scholar] [CrossRef]
- Matesanz, S.; Horgan-Kobelski, T.; Sultan, S.E. Phenotypic Plasticity and Population Differentiation in an Ongoing Species Invasion. PLoS ONE 2012, 7, e44955. [Google Scholar] [CrossRef] [PubMed]
- Bateson, P.; Gluckman, P. Plasticity, Robustness, Development and Evolution; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Sultan, S.E. Plant developmental responses to the environment: Eco-devo insights. Curr. Opin. Plant Biol. 2010, 13, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Kappeler, P.M.; Barrett, L.; Blumstein, D.T.; Clutton-Brock, T.H. Constraints and flexibility in mammmalian social behaviour: Introduction and synthesis. Philos. T. Roy. Soc. B 2013, 368, 20120337. [Google Scholar] [CrossRef] [PubMed]
- Snell-Rood, E.C. An overview of the evolutioary causes and consequences of behavioural plasticity. Anim. Behav. 2013, 85, 1004–1011. [Google Scholar] [CrossRef]
- Ruell, E.W.; Handelsman, C.A.; Hawkins, C.L.; Sofaer, H.R.; Ghalambor, C.K.; Angeloni, L. Fear, food and sexual ornamentation: Plasticity of colour development in Trinidadian guppies. Proc. R. Soc. B Biol. Sci. 2013, 280, 2012–2019. [Google Scholar] [CrossRef]
- Dukas, R. Effects of learning on evolution: Robustness, innovation and speciation. Anim. Behav. 2013, 85, 1023–1030. [Google Scholar] [CrossRef]
- Baldwin, J.M. A New Factor in Evolution. Amer Nat. 1896, 30, 441–451. [Google Scholar] [CrossRef]
- Lloyd Morgan, C. On modification and variation. Science 1896, 4, 733–740. [Google Scholar] [CrossRef]
- Osborn, H.F. Ontogenic and phylogenic variation. Science 1896, 4, 786–789. [Google Scholar] [CrossRef]
- Spalding, D.A. Instinct, with original observations on young animals. Macmillan’s Mag. 1873, 27, 282–293. [Google Scholar]
- Bateson, P. The return of the whole organism. J. Biosci. 2005, 30, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hardy, A.C. The Living Stream: A Restatement of Evolution Theory and Its Relation to the Spirit of Man; Collins: London, UK, 1965. [Google Scholar]
- Tierney, A.J. The evolution of learned and innate behavior: Contributions from genetics and neurobiology to a theory of behavioral evolution. Anim. Learn. Behav. 1986, 14, 339–348. [Google Scholar] [CrossRef]
- Bateson, P.P.G. Behavioural development and evolutionary processes. In Current Problems in Sociobiology; King’s College Sociobiology Group, Ed.; Cambridge University Press: Cambridge, UK, 1982; pp. 133–152. [Google Scholar]
- Bateson, P. The active role of behaviour in evolution. In Process and Metaphors in Evolution; Ho, M.-W., Fox, S., Eds.; Wiley: Chichester, UK, 1988; pp. 191–207. [Google Scholar]
- Bateson, P. The impact of the organism on its descendants. Genet. Res. Int. 2011, 2012, 640612. [Google Scholar] [CrossRef]
- Gottlieb, G. Individual Development and Evolution: The Genesis of Novel Behavior; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Wcislo, W.T. Behavioral Environments and Evolutionary Change. Ann. Rev. Ecol. Syst. 1989, 20, 137–169. [Google Scholar] [CrossRef]
- Vancassel, M. Behavioural development and adaptation: An assimilation of some of Waddington’s ideas? Behal. Proc. 1990, 22, 23–31. [Google Scholar] [CrossRef]
- Avital, E.; Jablonka, E. Animal Traditions: Behavioural Inheritance in Evolution; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Jablonka, E.; Lamb, M.J. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life and Mind; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- West-Eberhard, M.J. Developmental Plasticity and Evolution; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Pigliucci, M.; Murren, C.J.; Schlichting, C.D. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 2006, 209, 2362–2367. [Google Scholar] [CrossRef]
- Ancel, L.W. A Quantitative Model of the Simpson–Baldwin Effect. J. Theor. Biol. 1999, 196, 197–209. [Google Scholar] [CrossRef]
- Ancel, L.W. Undermining the Baldwin Expediting Effect: Does Phenotypic Plasticity Accelerate Evolution? Theor. Popul. Biol. 2000, 58, 307–319. [Google Scholar] [CrossRef]
- Borenstein, E.; Meilijson, I.; Ruppin, E. The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes. J. Evol. Biol. 2006, 19, 1555–1570. [Google Scholar] [CrossRef]
- Borenstein, E.; Feldman, M.W.; Aoki, K. Evolution of learning in fluctuating environments: When selection favors both social and exploratory individual learning. Evolution 2008, 62, 586–602. [Google Scholar] [CrossRef] [PubMed]
- Mills, R.; Watson, R.A. On crossing fitness valleys with the Baldwin effect. Proc. Artif. Life 2006, 10, 493–499. [Google Scholar]
- Paenke, I.; Kawecki, T.J.; Sendhoff, B. The Influence of Learning on Evolution: A Mathematical Framework. Artif. Life 2009, 15, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Hinton, G.E.; Nowlan, S.J. How learning can guide evolution. Complex. Syst. 1987, 1, 495–502. [Google Scholar]
- Ackley, D.H.; Littman, M.L. Interactions between evolution and learning. In Artificial Life II: Santa Fe Institute Studies in the Sciences of Complexity; Langton, C., Ed.; Addison-Wesley: Redwood City, CA, USA, 1991; pp. 487–509. [Google Scholar]
- Nolfi, S.; Parisi, D.; Elman, J.L. Learning and Evolution in Neural Networks. Adapt. Behav. 1994, 3, 5–28. [Google Scholar] [CrossRef]
- Bull, L. On the Baldwin Effect. Artif. Life 1999, 5, 241–246. [Google Scholar] [CrossRef]
- Red’ko, V.G.; Mosalov, O.P.; Prokhorov, D.V. A model of evolution and learning. Neural Netw. 2005, 18, 738–745. [Google Scholar] [CrossRef]
- Suzuki, R.; Arita, T. The Dynamic Changes in Roles of Learning through the Baldwin Effect. Artif. Life 2007, 13, 31–43. [Google Scholar] [CrossRef]
- Weber, B.H.; Depew, D.J. (Eds.) Evolution and Learning the Baldwin Effect Reconsidered; MIT Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Dawkins, R. The Blind Watchmaker; Norton: New York, NY, USA, 1986. [Google Scholar]
- Lenski, R.E.; Ofria, C.; Pennock, R.T.; Adami, C. The evolutionary origin of complex features. Nature 2003, 423, 139–144. [Google Scholar] [CrossRef]
- Crombach, A.; Hogeweg, P. Evolution of evolvability in gene regulatory networks. PLoS Comput. Biol. 2008, 4, e1000112. [Google Scholar] [CrossRef]
- Draghi, J.A.; Whitlock, M.C. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 2012, 66, 2891–2902. [Google Scholar] [CrossRef] [PubMed]
- van Gestel, J.; Weissing, F.J. Regulatory mechanisms link phenotypic plasticity to evolvability. Sci. Rep. 2016, 6, 24524. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, L.; Bennati, S.; Helbing, D. How learning can change the course of evolution. PLoS ONE 2019, 14, e0219502. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.A.; Szathmáry, E. How Can Evolution Learn? Trends Ecol. Evol. 2016, 31, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Brun-Usan, M.; Rago, A.; Thies, C.; Uller, T.; Watson, R.A. Development and selective grain make plasticity ‘take the lead’ in adaptive evolution. BMC Ecol. Evol. 2021, 21, 205. [Google Scholar] [CrossRef]
- Chevin, L.M.; Leung, C.; Le Rouzic, A.; Uller, T. Using phenotypic plasticity to understand the structure and evolution of the genotype-phenotype map. Genetica 2022, 150, 209–221. [Google Scholar] [CrossRef]
- Lee, U.; Mortola, E.N.; Kim, E.J.; Long, M. Evolution and maintenance of phenotypic plasticity. Biosystems 2022, 222, 104791. [Google Scholar] [CrossRef]
- Ng, E.T.H.; Kinjo, A.R. Plasticity-led evolution as an intrinsic property of developmental gene regulatory networks. Sci. Rep. 2023, 13, 19830. [Google Scholar] [CrossRef]
- Romero-Mujalli, D.; Fuchs, L.I.R.; Haase, M.; Hildebrandt, J.P.; Weissing, F.J.; Revilla, T.A. Emergence of phenotypic plasticity through epigenetic mechanisms. Evol. Lett. 2024, 8, 561–574. [Google Scholar] [CrossRef]
- Wyles, J.S.; Kunkel, J.G.; Wilson, A.C. Birds, behavior, and anatomical evolution. Proc. Natl. Acad. Sci. USA 1983, 80, 4394–4397. [Google Scholar] [CrossRef]
- Sol, D.; Duncan, R.P.; Blackburn, T.M.; Cassey, P.; Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl. Acad. Sci. USA 2005, 102, 5460–5465. [Google Scholar] [CrossRef] [PubMed]
- Reader, S.M.; Laland, K.N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl. Acad. Sci. USA 2002, 99, 4436–4441. [Google Scholar] [CrossRef] [PubMed]
- Badyaev, A.V. Evolutionary significance of phenotypic accommodation in novel environment: An empirical test of the Baldwin effect. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1125–1141. [Google Scholar] [CrossRef]
- Anokhin, P.K. Biology and Neurophysiology of the Conditioned Reflex and Its Role in Adaptive Behavior; Pergamon Press: Oxford, UK, 1974. [Google Scholar]
- Leopold, D.A.; Rhodes, G. A comparative view of face perception. J. Comp. Psychol. 2010, 124, 233–251. [Google Scholar] [CrossRef] [PubMed]
- Fontanari, J.F.; Meir, R. The effect of learning on the evolution of asexual populations. Complex. Syst. 1990, 4, 401–414. [Google Scholar]
- Dopazo, H.; Gordon, M.B.; Perazzo, R.; Risau-Gusman, S. A Model for the Interaction of Learning and Evolution. Bull. Math. Biol. 2001, 63, 117–134. [Google Scholar] [CrossRef]
- Bergman, A.; Feldman, M.W. On the Evolution of Learning: Representation of a Stochastic Environment. Theor. Popul. Biol. 1995, 48, 251–276. [Google Scholar] [CrossRef]
- Anderson, R.W. Learning and evolution: A quantitative genetics approach. J. Theor. Biol. 1995, 175, 89–101. [Google Scholar] [CrossRef]
- Suzuki, R.; Arita, T. Interactions between learning and evolution: The outstanding strategy generated by the Baldwin effect. Biosystems 2004, 77, 57–71. [Google Scholar] [CrossRef]
- Pfennig, D.W.; Wund, M.A.; Snell-Rood, E.C.; Cruickshank, T.; Schlichting, C.D.; Moczek, A.P. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 2010, 25, 459–487. [Google Scholar] [CrossRef]
- van Nimwegen, E.; Crutchfield, J.P. Optimizing Epochal Evolutionary Search: Population-Size Dependent Theory. Mach. Learn. 2001, 45, 77–114. [Google Scholar] [CrossRef]
- Carruthers, P.; Laurence, S.; Stich, S. (Eds.) The Innate Mind: Volume 2: Culture and Cognition; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Land, M.F. Animal Eyes; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Lamb, T.D.; Collin, S.P.; Pugh, E.N. Evolution of the vertebrate eye: Opsins, photoreceptors, retina and eye cup. Nat. Rev. Neurosci. 2007, 8, 960–976. [Google Scholar] [CrossRef] [PubMed]
- Britten, R.J.; Davidson, E.H. Gene regulation for higher cells: A Theory. Science 1969, 165, 349–357. [Google Scholar] [CrossRef]
- Carroll, S.B. Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom; Norton: New York, NY, USA, 2005. [Google Scholar]
- Valiant, L. Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World; Basic Books: New York, NY, USA, 2013. [Google Scholar]
- Robinson, B.W.; Dukas, R. The influence of phenotypic modification on evolution: The Baldwin effect and modern perspectives. Oikos 1999, 85, 582–589. [Google Scholar] [CrossRef]
- Price, T.D.; Qvarnström, A.; Irwin, D.E. The role of phenotypic plasticity in driving genetic evolution. Proc. Biol. Sci. 2003, 270, 1433–1440. [Google Scholar] [CrossRef]
- Bateson, P.; Martin, P. Play, Playfulness, Creativity and Innovation; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Reader, S.M.; Hager, Y.; Laland, K.N. The evolution of primate general and cultural intelligence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 1017–1027. [Google Scholar] [CrossRef]
Parameter | Description | Value(s) |
---|---|---|
N | population size | 500 |
ng | number of generations in simulated evolution | 25,000 |
L | number of loci in genotype | 4000 |
A | number of alleles per gene locus | 5 |
µ | probability of point mutation | 10−6–10−3 |
f | number of functional systems per individual in the simulation | Pe/C |
Pe | number of phenotypic elements per individual | 2000 |
C | number of phenotypic elements required to acquire a new functional system (i.e., the complexity of new system acquisition) | 10, 20, 40 |
pe | probability of filling in missing phenotypic elements in the terminal system during learning trial | 0.5 |
t | number of learning trials | 0, 1, 5, 10 |
ei | a string of zeroes and ones that describes the composition of the ith functional system | |
m | the number of missed elements in an incomplete functional system |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burtsev, M.; Anokhin, K.; Bateson, P. Facilitation of Evolution by Plasticity Scales with Phenotypic Complexity. Animals 2024, 14, 2804. https://doi.org/10.3390/ani14192804
Burtsev M, Anokhin K, Bateson P. Facilitation of Evolution by Plasticity Scales with Phenotypic Complexity. Animals. 2024; 14(19):2804. https://doi.org/10.3390/ani14192804
Chicago/Turabian StyleBurtsev, Mikhail, Konstantin Anokhin, and Patrick Bateson. 2024. "Facilitation of Evolution by Plasticity Scales with Phenotypic Complexity" Animals 14, no. 19: 2804. https://doi.org/10.3390/ani14192804
APA StyleBurtsev, M., Anokhin, K., & Bateson, P. (2024). Facilitation of Evolution by Plasticity Scales with Phenotypic Complexity. Animals, 14(19), 2804. https://doi.org/10.3390/ani14192804