Unveiling the Genetic Architecture of Semen Traits in Thai Native Roosters: A Comprehensive Analysis Using Random Regression and Spline Function Models
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics and Animal Management
2.2. Semen Collection and Evaluation
2.3. Genetic Model and Statistical Analysis
- SP4:
- SP5:
- SP6:
- SP8:
- For : , and ; For ,
- where is at the knot ith; is the semen collection according to rooster age (months), situated between knots and .
- For semen collection, the placement of knots was based on phenotypic characteristics observed during specific months. Various knot positions were identified and labeled SP4 to SP8, corresponding to the stages of deteriorating semen quality. For SP4, knots were placed at a roosted age of 9, 25, 37, and 54 months; SP5 knots were placed at 9, 17, 25, 37, and 54 months; SP6 knots were placed at 9, 17, 25, 37, 45, and 54 months; and SP8 knots were positioned at 9, 17, 25, 29, 37, 41, 45, and 54 months.
- The second-order Legendre polynomial function (LG2; Gengler et al. [40]) was as follows:
- LG2:
- where , , , , is the current month of semen data collection, is the first month of semen data collection, and is the last month of semen data collection.
2.4. Genetic Model Selection Criteria
3. Results
3.1. Descriptive Statistics of Semen Traits
3.2. Selection of the Optimum Model and Heritability Values
3.3. Heritability Estimates
3.4. Genetic and Phenotypic Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boonkum, W.; Chankitisakul, V.; Kananit, S.; Kenchaiwong, W. Heat stress effects on the genetics of growth traits in Thai native chickens (Pradu Hang dum). Anim. Biosci. 2024, 37, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Teinlek, P.; Siripattarapravat, K.; Tirawattanawanich, C. Genetic diversity analysis of Thai indigenous chickens based on complete sequences of mitochondrial DNA D-loop region. Asian-Australas. J. Anim. Sci. 2018, 31, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Boonyanuwat, K.; Thummabutra, S.; Sookmanee, N.; Vatchavalkhu, V.; Siripholvat, V. Influences of major histocompatibility complex class Ihaplotypes on avian influenza virus disease traits in Thai indigenous chickens. Anim. Sci. J. 2006, 77, 285–289. [Google Scholar] [CrossRef]
- Padhi, M.K. Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica 2016, 2016, 2604685. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, I.A.; Shamim, A.; Shad, M.K.; Ashari, H.; Yusuf, I. Circular economy-based integrated farming system for indigenous chicken: Fostering food security and sustainability. J. Clean. Prod. 2024, 436, 140368. [Google Scholar] [CrossRef]
- Chaikuad, N.; Loengbudnark, W.; Chankitisakul, V.; Boonkum, W. Genetic comparisons of body weight, average daily gain, and breast circumference between slow-growing Thai native chickens (Pradu Hang dum) raised on-site farm and on-station. Vet. Sci. 2023, 10, 11. [Google Scholar] [CrossRef]
- Chomchuen, K.; Tuntiyasawasdikul, V.; Chankitisakul, V.; Boonkum, W. Genetic evaluation of body weights and egg production traits using a multi-trait animal model and selection index in Thai native synthetic chickens (Kaimook e-san2). Animals 2022, 12, 335. [Google Scholar] [CrossRef]
- Loengbudnark, W.; Chankitisakul, V.; Boonkum, W. The genetic impact of heat stress on the egg production of Thai native chickens (Pradu Hang dum). PLoS ONE 2023, 18, e0281328. [Google Scholar] [CrossRef] [PubMed]
- Promwatee, N.; Laopaiboon, B.; Vongpralub, T.; Phasuk, Y.; Kunhareang, S.; Boonkum, W.; Duangjinda, M. Insulin-like growth factor I gene polymorphism associated with growth and carcass traits in Thai synthetic chickens. Genet. Mol. Res. 2013, 12, 4332–4341. [Google Scholar] [CrossRef]
- Mavi, G.K.; Dubey, P.P.; Cheema, R.S.; Bansal, B.K. Characterization of fertility associated sperm proteins in Aseel and Rhode Island Red chicken breeds. Anim Prod Sci. 2019, 203, 94–104. [Google Scholar] [CrossRef]
- Pimprasert, M.; Kheawkanha, T.; Boonkum, W.; Chankitisakul, V. Influence of semen collection frequency and seasonal variations on fresh and frozen semen quality in Thai native roosters. Animals 2023, 13, 573. [Google Scholar] [CrossRef] [PubMed]
- Chomsrimek, N.; Choktanasiri, W.; Wongkularb, A.; O-Prasertsawat, P. Effect of time between ejaculation and analysis on sperm motility. Thai J. Obstet. Gynaecol. 2008, 16, 109–114. [Google Scholar]
- Robinson, J.A.B.; Buhr, M.M. Impact of genetic selection on management of boar replacement. Theriogenology 2005, 63, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Tanjungsari, A.; Andaruisworo, S.; Yuniati, E. The breeding of free-range chickens and purebred chickens with artificial insemination technology on fertility and hatchability using manual incubator. IOP Conf. Ser. Earth Environ. Sci. 2023, 1168, 012027. [Google Scholar] [CrossRef]
- Sonseeda, P.; Vongpralub, T.; Laopaiboon, B. Effects of environmental factors, ages and breeds on semen characteristics in Thai indigenous chickens: A one-year study. Thai J. Vet. Med. 2013, 43, 347–352. [Google Scholar] [CrossRef]
- Mohan, J.; Sharma, S.K.; Kolluri, G.; Dhama, K. History of artificial insemination in poultry, its components and significance. World’s Poult. Sci. J. 2018, 74, 475–488. [Google Scholar] [CrossRef]
- Tarif, A.M.d.M.; Bhuiyan, M.M.U.; Ferdousy, R.N.; Juyena, N.S.; Mollah, M.d.B.R. Evaluation of semen quality among four chicken lines. IOSR J. Agri. Vet. Sci. 2013, 6, 7–13. [Google Scholar] [CrossRef]
- Santiago-Moreno, J.; Castaño, C.; Toledano-Díaz, A.; Coloma, M.A.; López-Sebastián, A.; Prieto, M.T.; Campo, J.L. Semen cryopreservation for the creation of a Spanish poultry breeds cryobank: Optimization of freezing rate and equilibration time. Poult. Sci. 2011, 90, 2047–2053. [Google Scholar] [CrossRef]
- Wolf, J.; Smital, J. Effects in genetic evaluation for semen traits in Czech Large White and Czech Landrace boars. Czech J. Anim. Sci. 2009, 8, 349–358. [Google Scholar] [CrossRef]
- Isaac, U.; Udoh, U.; Nosike, R. Effect of genotype on semen quality traits of main and reciprocal crossbred chickens. Nig. J. Anim. Prod. 2019, 46, 32–39. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Nikousefat, Z.; Tufarelli, V.; Javdani, M.; Rana, N.; Laudadio, V. Effect of vitamin e in heat-stressed poultry. World’s Poult. Sci. J. 2011, 67, 469–478. [Google Scholar] [CrossRef]
- Hu, J.; Chen, L.; Wen, J.; Zhao, G.P.; Zheng, M.Q.; Liu, R.R.; Liu, W.P.; Zhao, L.H.; Liu, G.F.; Wang, Z.W. Estimation of the genetic parameters of semen quality in Beijing-You chickens. Poult. Sci. 2013, 92, 2606–2612. [Google Scholar] [CrossRef]
- Parker, H.M.; McDaniel, C.D. Selection of young broiler breeders for semen quality improves hatchability in an industry field trial. J. Appl. Poult. Res. 2002, 11, 250–259. [Google Scholar] [CrossRef]
- Liang, W.; He, Y.; Zhu, T.; Zhang, B.; Liu, S.; Guo, H.; Liu, P.; Liu, H.; Li, D.; Kang, X.; et al. Dietary restriction promote sperm remodeling in aged roosters based on transcriptome analysis. BMC Genom. 2024, 25, 680. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, U.; Prince, L.L.L.; Rajaravindra, K.S.; Haunshi, S.; Niranjan, M.; Chatterjee, R.N. Analysis of (co) variance components and estimation of breeding value of growth and production traits in Dahlem Red chicken using pedigree relationship in an animal model. PLoS ONE 2021, 16, e0247779. [Google Scholar] [CrossRef] [PubMed]
- Tongsiri, S.; Van der Werf, J.H.J.; Li, L.; Jeyaruban, M.G.; Wolcott, M.L.; Hermesch, S.; Chormai, T. Using random regression models to estimate genetic variation in growth pattern and its association with sexual maturity of Thai native chickens. Br. Poult. Sci. 2020, 61, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Ndung’u, C.W.; Okeno, T.O.; Muasya, T.K. Pooled parameter estimates for traits of economic importance in indigenous chicken in the tropics. Livest. Sci. 2020, 239, 104102. [Google Scholar] [CrossRef]
- Schaeffer, L.R. Application of random regression models in animal breeding. Livest. Prod. Sci. 2004, 86, 35–45. [Google Scholar] [CrossRef]
- Boligon, A.A.; Baldi, F.; Mercadante, M.E.; Lobo, R.B.; Pereira, R.J.; Albuquerque, L.G. Breeding value accuracy estimates for growth traits using random regression and multi-trait models in Nelore cattle. Genet. Mol. Res. 2011, 10, 1227–1236. [Google Scholar] [CrossRef]
- Boligon, A.A.; Mercadante, M.E.Z.; Lôbo, R.B.; Baldi, F.; Albuquerque, L.G. Random regression analyses using B-spline functions to model growth of Nellore cattle. Animal 2012, 6, 212–220. [Google Scholar] [CrossRef]
- Wolc, A.; Arango, J.; Settar, P.; O’Sullivan, N.P.; Dekkers, J.C.M. Evaluation of egg production in layers using random regression models. Poult. Sci. 2011, 1, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.T.; Yang, R.Q.; Yang, N. Estimation of genetic parameters for cumulative egg numbers in a broiler dam line by using a random regression model. Poult. Sci. 2007, 86, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Anang, A.; Mielenz, N.; Schüler, L. Monthly model for genetic evaluation of laying hens ii. random regression. Br. Poult. Sci. 2002, 43, 384–390. [Google Scholar] [CrossRef]
- Burrows, W.H.; Quinn, J.P. The collection of spermatozoa from the domestic fowl and turkey. Poult. Sci. 1937, 16, 19–24. [Google Scholar] [CrossRef]
- Chankitisakul, V.; Boonkum, W.; Kaewkanha, T.; Pimprasert, M.; Ratchamak, R.; Authaida, S.; Thananurak, P. Fertilizing ability and survivability of rooster sperm diluted with a novel semen extender supplemented with serine for practical use on small holder farms. Poult. Sci. 2022, 101, 102188. [Google Scholar] [CrossRef]
- Peters, S.O.; Shoyebo, O.D.; Ilori, B.M.; Ozoje, M.O.; Ikeobi, C.O.N.; Adebambo, O.A. Semen quality traits of seven strain of chickens raised in the humid tropics. Int. J. Poult. Sci. 2008, 7, 949–953. [Google Scholar] [CrossRef]
- Daryatmo, I.M.; Juiputta, J.; Chankitisakul, V.; Boonkum, W. Genetic selection approach for semen characteristics in Thai native grandparent roosters (Pradu Hang Dum) using random regression test-day models and selection indices. Animals 2024, 14, 1881. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, S.; Lourenco, D.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs. Available online: https://nce.ads.uga.edu/html/projects/programs/docs/blupf90_all8.pdf (accessed on 9 August 2019).
- Misztal, I. Properties of random regression models using linear splines. J. Anim. Breed. Genet. 2006, 123, 74–80. [Google Scholar] [CrossRef]
- Gengler, N.; Tijani, A.; Wiggans, G.R.; Misztal, I. Estimation of (co) variance function coefficients for test day yield with expectation-maximization restricted maximum likelihood algorithm. J Dairy Sci. 1999, 82, 1849.e1–1849.e23. [Google Scholar] [CrossRef]
- Fouad, A.; El-Senousey, H.; Ruan, D.; Xia, W.; Chen, W.; Wang, S.; Zheng, C. Nutritional modulation of fertility in male poultry. Poult. Sci. 2020, 99, 5637–5646. [Google Scholar] [CrossRef]
- Kamar, G. The influence of semen characteristics on hatching results of chicken eggs. Poult. Sci. 1960, 39, 188–192. [Google Scholar] [CrossRef]
- Mussa, N.J.; Boonkum, W.; Chankitisakul, V. Semen quality traits of two Thai native chickens producing a high and a low of semen volumes. Vet. Sci. 2023, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Adeoye, G.; Oleforuh-Okoleh, V.; Chukwuemeka, U. Influence of breed type and age on spermatological traits of Nigerian local chickens. Agro-Science 2018, 16, 11–16. [Google Scholar] [CrossRef]
- Surai, P.; Fisinin, V. Selenium in poultry breeder nutrition: An update. Anim. Feed. Sci. Technol. 2014, 191, 1–15. [Google Scholar] [CrossRef]
- Wolf, D.; Byrd, W.; Dandekar, P.; Quigley, M. Sperm concentration and the fertilization of human eggs in vitro. Biol. Reprod. 1984, 31, 837–848. [Google Scholar] [CrossRef]
- Islam, M.S.; Faruque, S.; Huda, M.E.; Sumon, M.R.A.; Ali, M.Z. Seasonal variation of semen quality among the three genotypes of native chicken. Ukr. J. Vet. Agric. Sci. 2024, 7, 35–40. [Google Scholar] [CrossRef]
- Kim, H.; Choi, J.S.; Yang, B.S.; Ko, Y.G.; Kim, J.H.; Choi, S.B.; Kim, S.W. A comparison of reproductive ability on various korean native chicken. Reprod. Dev. Biol. 2011, 35, 391–394. [Google Scholar]
- Madeddu, M.; Zaniboni, L.; Marelli, S.P.; Tognoli, C.; Belcredito, S.; Iaffaldano, N.; Di Iorio, M.; Cerolini, S. Selection of male donors in local chicken breeds to implement the Italian semen cryobank: Variability in semen quality, freezability and fertility. Vet. Sci. 2024, 11, 148. [Google Scholar] [CrossRef]
- Sherman, C.; Rahim, E.; Olsson, M.; Careau, V. The more pieces, the better the puzzle: Sperm concentration increases gametic compatibility. Ecol. Evol. 2015, 5, 4354–4364. [Google Scholar] [CrossRef]
- Oliveira, D.; Pereira, K.; Carneiro, A.; Muniz, J.; Carneiro, P.; Malhado, C.; Junior, A. Spline functions and nonlinear models for modeling the growth of sheep in Northeast Brazil. Braz. J. Biom. 2023, 41, 265–273. [Google Scholar] [CrossRef]
- Mookprom, S.; Boonkum, W.; Kunhareang, S.; Siripanya, S.; Duangjinda, M. Genetic evaluation of egg production curve in Thai native chickens by random regression and spline models. Poult. Sci. 2017, 96, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Baldi, F.; Alencar, M.; Albuquerque, L. Random regression analyses using B-splines functions to model growth from birth to adult age in Canchim cattle. J. Anim. Breed. Genet. 2010, 127, 433–441. [Google Scholar] [CrossRef]
- Aggrey, S. Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poult. Sci. 2002, 81, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, A. Prospective approaches to avoid flock fertility problems: Predictive assessment of sperm function traits in poultry. Poult. Sci. 1999, 78, 437–443. [Google Scholar] [CrossRef] [PubMed]
- King’ori, A.M. Review of the factors that influence egg fertility and hatchabilty in poultry. Int. J. Poult. Sci. 2011, 10, 483–492. [Google Scholar] [CrossRef]
- Dekkers, J.C.M. Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. J. Anim Sci. 2004, 13, E313–E328. [Google Scholar]
- Goddard, M.E.; Hayes, B.J. Mapping genes for complex traits in domestic animals and their use in breeding programs. Nat. Rev. Genet. 2009, 10, 381–391. [Google Scholar] [CrossRef]
- Thepnarong, S.; Thiengtham, J.; Sopannarath, P. Genetic parameters of semen quality traits in Betong chicken (KU Line). Khon Kaen Agric. J. 2019, 47, 1057–1066. [Google Scholar]
- Wolc, A.; Arango, J.; Settar, P.; Fulton, J.E.; O’Sullivan, N.P.; Dekkers, J.C.M. Genetics of male reproductive performance in White Leghorns. Poult. Sci. 2019, 98, 2729–2733. [Google Scholar] [CrossRef]
- Soller, M.; Snapir, N.; Schindler, H. Heritability of semen quantity, concentration and motility in White rock roosters, and their genetic correlation with rate of gain. Poult. Sci. 1965, 44, 1527–1529. [Google Scholar] [CrossRef]
- Ansah, G.A.; Chan, C.W.; Touchburn, S.P.; Buckland, R.B. Selection for low yolk cholesterol in Leghorn-type chickens. Poult. Sci. 1985, 64, 1–5. [Google Scholar] [CrossRef]
- Plaengkaeo, S.; Duangjinda, M.; Boonkum, W.; Stalder, K.; Mabry, J. Genetic evaluation of sow survival in Thailand commercial farms using random regression models. Livest. Sci. 2020, 233, 103970. [Google Scholar] [CrossRef]
- Eilers, P.; Marx, B. Flexible smoothing with B-splines and penalties. Stat. Sci. 1996, 11, 89–121. [Google Scholar] [CrossRef]
- Bohmanova, J.; Miglior, F.; Miglior, F.; Jamrozik, J.; Misztal, I.; Sullivan, P. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows. J. Dairy Sci. 2008, 91, 3627–3638. [Google Scholar] [CrossRef]
- Mota, L.; Martins, P.; Littiere, T.; Abreu, L.; Silva, M.; Bonafé, C. Genetic evaluation and selection response for growth in meat-type quail through random regression models using B-spline functions and Legendre polynomials. Animal 2017, 12, 667–674. [Google Scholar] [CrossRef]
- Pereira, R.; Bignardi, A.; Faro, L.; Verneque, R.; Filho, A.; Albuquerque, L. Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle. J. Dairy Sci. 2013, 96, 565–574. [Google Scholar] [CrossRef]
- Kabir, M.; Oni, O.; Akpa, G. Osborne Selection index and semen traits interrelationships in Rhode Island Red and White breeder cocks. Int. J. Poult. Sci. 2007, 6, 999–1002. [Google Scholar] [CrossRef]
- Tesfay, H.H.; Sun, Y.; Li, Y.; Shi, L.; Fan, J.; Wang, P.; Zong, Y.; Ni, A.; Ma, H.; Mani, A.I.; et al. Comparative studies of semen quality traits and sperm kinematic parameters in relation to fertility rate between 2 genetic groups of breed lines. Poult. Sci. 2020, 99, 6139–6146. [Google Scholar] [CrossRef]
- Mann, T.; Lutwak-Mann, C. Male reproductive function and the composition of semen: General considerations. In Male Reproductive Function and Semen; Springer: London, UK, 1981. [Google Scholar]
- Hodge, M.; Rindfleish, S.; Heras-Saldana, S.; Stephen, C.; Pant, S. Heritability and genetic parameters for semen traits in Australian sheep. Animals 2022, 12, 2946. [Google Scholar] [CrossRef]
- Nawab, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W.; Zhao, Y.; Nawab, Y.; Li, K.; Xiao, M.; et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef]
Trait | Model | MSE | R2 | −2logL | AIC | h2 | |
---|---|---|---|---|---|---|---|
Mass movement | LG2 | 9.862 | 0.505 | 19 | 21 | 0.750 | 0.115 |
SP4 | 10.357 | 0.499 | 25 | 27 | 0.742 | 0.114 | |
SP5 | 9.762 | 0.527 | 12 | 15 | 0.765 | 0.115 | |
SP6 | 9.350 | 0.555 | 8 | 9 | 0.825 | 0.117 | |
SP8 | 9.346 | 0.559 | 0 | 0 | 0.842 | 0.118 | |
Semen volume | LG2 | 8.232 | 0.308 | 19 | 21 | 0.790 | 0.233 |
SP4 | 8.526 | 0.288 | 25 | 27 | 0.782 | 0.230 | |
SP5 | 7.822 | 0.332 | 12 | 15 | 0.792 | 0.232 | |
SP6 | 7.217 | 0.343 | 8 | 9 | 0.826 | 0.236 | |
SP8 | 7.209 | 0.347 | 0 | 0 | 0.844 | 0.238 | |
Sperm concentration | LG2 | 10.152 | 0.334 | 19 | 21 | 0.782 | 0.130 |
SP4 | 11.029 | 0.325 | 25 | 27 | 0.777 | 0.121 | |
SP5 | 9.753 | 0.340 | 12 | 15 | 0.799 | 0.130 | |
SP6 | 9.450 | 0.355 | 8 | 9 | 0.815 | 0.133 | |
SP8 | 9.430 | 0.362 | 0 | 0 | 0.834 | 0.133 |
Model | Trait | Mass Movement | Semen Volume | Sperm Concentration |
---|---|---|---|---|
LG2 | Mass movement | - | 0.522 | 0.589 |
Semen volume | 0.565 | - | 0.629 | |
Sperm concentration | 0.644 | 0.688 | - | |
SP4 | Mass movement | - | 0.501 | 0.515 |
Semen volume | 0.515 | - | 0.546 | |
Sperm concentration | 0.530 | 0.577 | - | |
SP5 | Mass movement | - | 0.538 | 0.614 |
Semen volume | 0.577 | - | 0.672 | |
Sperm concentration | 0.635 | 0.732 | - | |
SP6 | Mass movement | - | 0.545 | 0.638 |
Semen volume | 0.580 | - | 0.699 | |
Sperm concentration | 0.677 | 0.745 | - | |
SP8 | Mass movement | - | 0.552 | 0.644 |
Semen volume | 0.590 | - | 0.729 | |
Sperm concentration | 0.689 | 0.755 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daryatmo, I.M.; Juiputta, J.; Chankitisakul, V.; Boonkum, W. Unveiling the Genetic Architecture of Semen Traits in Thai Native Roosters: A Comprehensive Analysis Using Random Regression and Spline Function Models. Animals 2024, 14, 2853. https://doi.org/10.3390/ani14192853
Daryatmo IM, Juiputta J, Chankitisakul V, Boonkum W. Unveiling the Genetic Architecture of Semen Traits in Thai Native Roosters: A Comprehensive Analysis Using Random Regression and Spline Function Models. Animals. 2024; 14(19):2853. https://doi.org/10.3390/ani14192853
Chicago/Turabian StyleDaryatmo, Iin Mulyawati, Jiraporn Juiputta, Vibuntita Chankitisakul, and Wuttigrai Boonkum. 2024. "Unveiling the Genetic Architecture of Semen Traits in Thai Native Roosters: A Comprehensive Analysis Using Random Regression and Spline Function Models" Animals 14, no. 19: 2853. https://doi.org/10.3390/ani14192853
APA StyleDaryatmo, I. M., Juiputta, J., Chankitisakul, V., & Boonkum, W. (2024). Unveiling the Genetic Architecture of Semen Traits in Thai Native Roosters: A Comprehensive Analysis Using Random Regression and Spline Function Models. Animals, 14(19), 2853. https://doi.org/10.3390/ani14192853