An Innovative Approach: The Usage of N-Acetylcysteine in the Therapy of Pneumonia in Neonatal Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Management
2.2. Experimental Design
2.3. Clinical Scoring Respiratory System
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maier, G.; Love, W.; Karle, B.; Dubrovsky, S.; Williams, D.; Champagne, J.; Anderson, R.; Rowe, J.; Lehenbauer, T.; Van Eenennaam, A.; et al. Management factors associated with bovine respiratory disease in preweaned calves on California dairies: The BRD 100 study. J. Dairy Sci. 2019, 102, 7288–7305. [Google Scholar] [CrossRef] [PubMed]
- Studer, E.; Schönecker, L.; Meylan, M.; Stucki, D.; Dijkman, R.; Holwerda, M.; Glaus, A.; Becker, J. Prevalence of BRD-Related Viral Pathogens in the Upper Respiratory Tract of Swiss Veal Calves. Animals 2021, 11, 1940. [Google Scholar] [CrossRef] [PubMed]
- Dubrovsky, S.; Van Eenennaam, A.; Aly, S.; Karle, B.; Rossitto, P.V.; Overton, M.; Lehenbauer, T.; Fadel, J. Preweaning cost of bovine respiratory disease (BRD) and cost-benefit of implementation of preventative measures in calves on California dairies: The BRD 10K study. J. Dairy Sci. 2020, 103, 1583–1597. [Google Scholar] [CrossRef] [PubMed]
- Blakebrough-Hall, C.; McMeniman, J.P.; González, L.A. An evaluation of the economic effects of bovine respiratory disease on animal performance, carcass traits, and economic outcomes in feedlot cattle defined using four BRD diagnosis methods. J. Anim. Sci. 2020, 98, skaa005. [Google Scholar] [CrossRef]
- Vestweber, J.G. Respiratory problems of newborn calves. Vet. Clin. N. Am. Food Anim. Pract. 1997, 13, 411–424. [Google Scholar] [CrossRef]
- Wells, S.; Dargatz, D.; Ott, S. Factors associated with mortality to 21 days of life in dairy heifers in the United States. Prev. Vet. Med. 1996, 29, 9–19. [Google Scholar] [CrossRef]
- Lombard, J.; Garry, F.; Tomlinson, S.; Garber, L. Impacts of dystocia on health and survival of dairy calves. J. Dairy Sci. 2007, 90, 1751–1760. [Google Scholar] [CrossRef]
- Sanchez-Salcedo, J.; Bonilla-Jaime, H.; Lozano, M.G.; Hernandez-Arteaga, S.; Greenwell-Beare, V.; Vega-Manriquez, X.; Gonzalez-Hernandez, M.; Orozco-Gregorio, H. Therapeutics of neonatal asphyxia in production animals: A review. Vet. Med. 2019, 64, 191–203. [Google Scholar] [CrossRef]
- Murray, C.F.; Veira, D.M.; Nadalin, A.L.; Haines, D.M.; Jackson, M.L.; Pearl, D.L.; Leslie, K.E. The effect of dystocia on physiological and behavioral characteristics related to vitality and passive transfer of immunoglobulins in newborn Holstein calves. Can. J. Vet. Res. 2015, 79, 109–119. [Google Scholar]
- Shakespeare, A.S. Aspiration lung disorders in bovines: A case report and review. J. S. Afr. Vet. Assoc. 2012, 83, 7. [Google Scholar] [CrossRef]
- Fiore, E.; Lisuzzo, A.; Beltrame, A.; Contiero, B.; Schiavon, E.; Mazzotta, E. Clinical follow-up in fattening bulls affected by Bovine Respiratory Disease (BRD) after pharmacological treatment with Tulathromycin and Ketoprofen: Clinical score and ultrasonographic evaluations. Large Anim. Rev. 2021, 27, 243–249. [Google Scholar]
- Gülersoy, E.; Balıkçı, C.; Günal, İ.; Şahan, A. Haemotological alterations in calves with acute respiratory distress syndrome due to aspiration pneumonia: A prospective study. Arch. Vet. Med. 2023, 16, 69–85. [Google Scholar] [CrossRef]
- Tenório, M.C.d.S.; Graciliano, N.G.; Moura, F.; de Oliveira, A.C.M.; Goulart, M.O.F. N-acetylcysteine (NAC): Impacts on human health. Antioxidants 2021, 10, 967. [Google Scholar] [CrossRef]
- Tieu, S.; Charchoglyan, A.; Paulsen, L.; Wagter-Lesperance, L.C.; Shandilya, U.K.; Bridle, B.W.; Mallard, B.A.; Karrow, N.A. N-Acetylcysteine and Its Immunomodulatory Properties in Humans and Domesticated Animals. Antioxidants 2023, 12, 1867. [Google Scholar] [CrossRef] [PubMed]
- Mokra, D.; Mokry, J.; Barosova, R.; Hanusrichterova, J. Advances in the Use of N-Acetylcysteine in Chronic Respiratory Diseases. Antioxidants 2023, 12, 1713. [Google Scholar] [CrossRef] [PubMed]
- Tras, B.; Dinç, D.A.; Üney, K. The effect of N-acetylcysteine on the treatment of clinical endometritis and pregnancy rate in dairy cows. Eurasian J. Vet. Sci. 2014, 30, 133. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Ali, I.; Li, L.; Wang, G. N-acetylcysteine modulates non-esterified fatty acid-induced pyroptosis and inflammation in granulosa cells. Mol. Immun. 2020, 127, 157–163. [Google Scholar] [CrossRef]
- Caissie, M.D.; Gartley, C.J.; Scholtz, E.L.; Hewson, J.; Johnson, R.; Chenier, T. The effects of treatment with N-acetyl cysteine on clinical signs in persistent breeding-induced endometritis susceptible mares. J. Equine Vet. Sci. 2020, 92, 103142. [Google Scholar] [CrossRef]
- Eroshenko, D.; Polyudova, T.; Korobov, V. N-acetylcysteine inhibits growth, adhesio n and biofilm formation of Gram-positive skin pathogens. Microb. Pathog. 2017, 105, 145–152. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, L.; Yi, D.; Wu, G. N-acetylcysteine and intestinal health: A focus on mechanisms of its actions. Front. Biosci. Landmark Ed. 2015, 20, 872–891. [Google Scholar] [CrossRef]
- Sadowska, A.M. N-Acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease. Ther. Adv. Respir. Dis. 2012, 6, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Calzetta, L.; Rinaldi, B.; Page, C.; Rosano, G.; Rogliani, P.; Matera, M.G. Management of chronic obstructive pulmonary disease in patients with cardiovascular diseases. Drugs 2017, 77, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, R.; Ok, M. Clinical efficacy of combinations of nebulised fluticasone, salbutamol and furosemide on lung function in premature calves with respiratory distress syndrome. Vet. Med. 2017, 62, 541–552. [Google Scholar] [CrossRef]
- Wadhwa, D.; Wadhwa, D.R.; Kumari, M.; Katoch, B.S. Therapeutic efficacy of Enrofloxacin (QuinIntas) in Neonatal Calf Pneumonia. Intas Polivet 2006, 7, 54–55. [Google Scholar]
- Vaena, M.P.; Sumathi, B.R. Thearapeutic Management of Neonatal Calf Pneumonia in HF calf—A Case Report. Vet. World 2011, 4, 84. [Google Scholar]
- Yang, F.; Liu, L.; Li, X.; Luo, J.; Zhang, Z.; Yan, Z.; Zhang, S.; Li, H. N-Acetylcysteine-mediated modulation of antibiotic susceptibility of bovine mastitis pathogens. J. Dairy Sci. 2016, 99, 4300–4302. [Google Scholar] [CrossRef]
- Vermorel, M.; Vernet, J.; Saido, T.; Dardillat, C.; Demigne, C.; Davicco, M.-J. Energy metabolism and thermoregulation in the newborn calf; effect of calving conditions. Can. J. Anim. Sci. 1989, 69, 113–122. [Google Scholar] [CrossRef]
- McGuirk, S.M. Disease Management of Dairy Calves and Heifers. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 139–153. [Google Scholar] [CrossRef]
- Vandermeulen, J.; Bahr, C.; Johnston, D.; Earley, B.; Tullo, E.; Fontana, I.; Guarino, M.; Exadaktylos, V.; Berckmans, D. Early recognition of bovine respiratory disease in calves using automated continuous monitoring of cough sounds. Comput. Electron. Agric. 2016, 129, 15–26. [Google Scholar] [CrossRef]
- Martin, M.; Kleinhenz, M.D.; Montgomery, S.R.; Blasi, D.A.; Almes, K.M.; Baysinger, A.K.; Coetzee, J.F. Assessment of diagnostic accuracy of biomarkers to assess lung consolidation in calves with induced bacterial pneumonia using receiver operating characteristic curves. J. Anim. Sci. 2022, 100, skab368. [Google Scholar] [CrossRef]
- Donlon, J.D.; Mee, J.F.; McAloon, C.G. Prevalence of respiratory disease in Irish preweaned dairy calves using hierarchical Bayesian latent class analysis. Front. Vet. Sci. 2023, 10, 1149929. [Google Scholar] [CrossRef] [PubMed]
- Andrews, A.H. Calf pneumonia costs. Cattle Pract. 2000, 8, 109–114. [Google Scholar]
- Binversie, E.; Ruegg, P.; Combs, D.; Ollivett, T. Randomized clinical trial to assess the effect of antibiotic therapy on health and growth of preweaned dairy calves diagnosed with respiratory disease using respiratory scoring and lung ultrasound. J. Dairy Sci. 2020, 103, 11723–11735. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.F. Building designs to optimise health. Cattle Pract. 2000, 8, 127–130. [Google Scholar]
- Mijares, S.; Edwards-Callaway, L.; Roman-Muniz, I.N.; Coetzee, J.F.; Applegate, T.J.; Cramer, M.C. Veterinarians’ perspectives of pain, treatment, and diagnostics for bovine respiratory disease in preweaned dairy calves. Front. Pain Res. 2023, 4, 1076100. [Google Scholar] [CrossRef]
- Bojkovski, J.; Borozan, S.; Jožef, I.; Šamanc, H. Colostrum ingredients before and after calving in Holstein-Frisian Cows. Vet. Rec. 2005, 156, 744–745. [Google Scholar] [CrossRef]
- Hanzlicek, G.A.; White, B.J.; Spire, M.F. Pre-weaning Calf Pneumonia and Management Considerations in Beef Cattle Operations. In Proceedings of the American Association of Bovine Practitioners Conference Proceedings, Charlotte, NC, USA, 25–27 September 2008; pp. 97–103. [Google Scholar]
- Panciera, R.J.; Confer, A.W. Pathogenesis and pathology of bovine pneumonia. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 191–214. [Google Scholar] [CrossRef]
- Hodgins, D.C.; Conlon, J.A.; Shewen, P.E. Respiratory Viruses and Bacteria in Cattle. In Polymicrobial Diseases; Brogden, K.A., Guthmiller, J.M., Eds.; ASM Press: Washington, DC, USA, 2002; Chapter 12. [Google Scholar]
- Welling, V.; Lundeheim, N.; Bengtsson, B. A pilot study in sweden on efficacy of benzylpenicillin, oxytetracycline, and florfenicol in treatment of acute undifferentiated respiratory disease in calves. Antibiotics 2020, 9, 736. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J. Nutr. Metab. 2021, 2021, 9949453. [Google Scholar] [CrossRef]
- CVMP. Acetyl Cysteine; Summary report. EMEA/MRL/96; European Agency for the Evaluation of Medicinal Products: London, UK, 2019. [Google Scholar]
- Xu, C.C.; Yang, S.F.; Zhu, L.H.; Cai, X.; Sheng, Y.S.; Zhu, S.W.; Xu, J.X. Regulation of N-acetyl cysteine on gut redox status and major microbiota in weaned piglets. J. Anim. Sci. 2014, 92, 1504–1511. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, J.; Hou, Y.; Yi, D.; Ding, B.; Xie, J.; Zhang, Y.; Chen, H.; Wu, T.; Zhao, D.; et al. N-Acetylcysteine supplementation alleviates intestinal injury in piglets infected by porcine epidemic diarrhea virus. Amino Acids 2017, 49, 1931–1943. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, B.D.; Knight, J.W. Effects of N-acetyl-cysteine and N-acetyl-cysteine-amide supplementation on in vitro matured porcine oocytes. Reprod. Domest. Anim. 2010, 45, 755–759. [Google Scholar] [PubMed]
- Fu, K.; Chen, X.; Guo, W.; Zhou, Z.; Zhang, Y.; Ji, T.; Yang, P.; Tian, X.; Wang, W.; Zou, Y. Effects of n acetylcysteine on the expression of genes associated with reproductive performance in the goat uterus during early gestation. Animals 2022, 12, 2431. [Google Scholar] [CrossRef] [PubMed]
- Petkova, T.; Rusenova, N.; Danova, S.; Milanova, A. Effect of N-Acetyl-L-cysteine on Activity of doxycycline against Bio-film-forming Bacterial Strains. Antibiotics 2023, 12, 1187. [Google Scholar] [CrossRef] [PubMed]
- Council Regulation (EEC) No 2377/90 of 26 June 1990 Laying Down a Community Procedure for the Establishment of Maximum Residue Limits of Veterinary Medicinal Products in Foodstuffs of Animal Origin. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01990R2377-20080816 (accessed on 1 June 2024).
- Kang, K.S.; Shin, S.; Lee, S.I. N-acetylcysteine modulates cyclophosphamide-induced immunosuppression, liver injury, and oxidative stress in miniature pigs. J. Anim. Sci. Technol. 2020, 62, 348–355. [Google Scholar] [CrossRef]
- Elnagar, H.A.; Wafa, W.M.; Abdel-Khalek, A.-K.E.-S. Oral or intrauterine N-acetyl cysteine treatment as a strategy for improving the reproductive efficiency and antioxidant capacity of lactating cows. Adv. Anim. Vet. Sci. 2022, 10, 1841. [Google Scholar] [CrossRef]
- Gaykwad, C.; Garkhal, J.; Chethan, G.E.; Nandi, S.; De, U.K. Amelioration of oxidative stress using N-acetylcysteine in canine parvoviral enteritis. J. Vet. Pharmacol. Ther. 2018, 41, 68–75. [Google Scholar] [CrossRef]
- Fu, S.; Tian, X.; Li, J.; Yuan, Y.; He, J.; Peng, C.; Guo, L.; Ye, C.; Liu, Y.; Zong, B.; et al. Metagenomic Sequencing Analysis of the Effects of Acetylcysteine on the Pig Gut Microbiome. Microbiol. Res. 2023, 14, 1956–1968. [Google Scholar] [CrossRef]
- Timsit, E.; Tison, N.; Booker, C.W.; Buczinski, S. Association of lung lesions measured by thoracic ultrasonography at first diagnosis of bronchopneumonia with relapse rate and growth performance in feedlot cattle. J. Vet. Intern. Med. 2019, 33, 1540–1546. [Google Scholar] [CrossRef]
- Virtala, A.-M.; Mechor, G.; Gröhn, Y.; Erb, H. The Effect of Calfhood Diseases on Growth of Female Dairy Calves During the First 3 Months of Life in New York State. J. Dairy Sci. 1996, 79, 1040–1049. [Google Scholar] [CrossRef]
- Wrotek, S.; Jędrzejewski, T.; Piotrowski, J.; Kozak, W. N-Acetyl-l-cysteine exacerbates generation of IL-10 in cells stimulated with endotoxin in vitro and produces antipyresis via IL-10 dependent pathway in vivo. Immunol. Lett. 2016, 177, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Palacio, J.R.; Markert, U.R.; Martínez, P. Anti-inflammatory properties of N-acetylcysteine on lipopolysaccharide-activated macrophages. Inflamm. Res. 2011, 60, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Radomska-Leśniewska, D.; Skopiński, P. N-acetylcysteine as an Anti-oxidant and Anti-inflammatory Drug and its Some Clinical Applications. Cent. Eur. J. Immunol. 2012, 37, 57–66. [Google Scholar]
- Zhang, Q.; Li, P.; Li, H.; Yi, D.; Guo, S.; Wang, L.; Zhao, D.; Wang, C.; Wu, T.; Hou, Y. Multifaceted Effects and Mechanisms of-Acetylcysteine on Intestinal Injury in a Porcine Epidemic Diarrhea Virus-Infected Porcine Model. Mol. Nutr. Food Res. 2022, 66, e2200369. [Google Scholar] [CrossRef]
- Du, X.; Shi, Z.; Peng, Z.; Zhao, C.; Zhang, Y.; Wang, Z.; Li, X.; Liu, G.; Li, X. Acetoacetate induces hepatocytes apoptosis by the ROS-mediated MAPKs pathway in ketotic cows. J. Cell. Physiol. 2017, 232, 3296–3308. [Google Scholar] [CrossRef]
- González, F.D.; Muiño, R.; Pereira, V.; Campos, R.; Benedito, J.L. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. J. Vet. Sci. 2011, 12, 251–255. [Google Scholar] [CrossRef]
- Blasi, F.; Page, C.; Rossolini, G.M.; Pallecchi, L.; Matera, M.G.; Rogliani, P.; Cazzola, M. The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir. Med. 2016, 117, 190–197. [Google Scholar] [CrossRef]
- Demir, P.A.; Aydin, E.; Ayvazoglu, C. Estimation of the economic losses related to calf mortalities kars province, in Turkey. Kafkas Univ. Vet. Fak. Derg. 2019, 25, 283. [Google Scholar]
- Tilling, O. Case Study: Calf Pneumonia. Livestock 2012, 17, 14–18. [Google Scholar] [CrossRef]
n = 40 | Regression Summary for Dependent Variables: Time Resolution (Group 0 i 1) R = 0.92012484 R2 = 0.84662972 Adjusted R2 = 0.83833944 F(2,37) = 102.12 p | |||||
---|---|---|---|---|---|---|
b * | Std. Err. of b * | b | Std. Err. of b | t (37) | p-Value | |
Intercept | −1258.41 | 127.42 | −9.88 | <0.00 | ||
Group | −0.56 | 0.06 | −27.74 | 3.22 | −8.63 | <0.00 |
Temp (C) | 0.68 | 0.06 | 32.91 | 3.15 | 10.45 | <0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ninković, M.; Žutić, J.; Tasić, A.; Arsić, S.; Bojkovski, J.; Zdravković, N. An Innovative Approach: The Usage of N-Acetylcysteine in the Therapy of Pneumonia in Neonatal Calves. Animals 2024, 14, 2852. https://doi.org/10.3390/ani14192852
Ninković M, Žutić J, Tasić A, Arsić S, Bojkovski J, Zdravković N. An Innovative Approach: The Usage of N-Acetylcysteine in the Therapy of Pneumonia in Neonatal Calves. Animals. 2024; 14(19):2852. https://doi.org/10.3390/ani14192852
Chicago/Turabian StyleNinković, Milan, Jadranka Žutić, Aleksandra Tasić, Sveta Arsić, Jovan Bojkovski, and Nemanja Zdravković. 2024. "An Innovative Approach: The Usage of N-Acetylcysteine in the Therapy of Pneumonia in Neonatal Calves" Animals 14, no. 19: 2852. https://doi.org/10.3390/ani14192852
APA StyleNinković, M., Žutić, J., Tasić, A., Arsić, S., Bojkovski, J., & Zdravković, N. (2024). An Innovative Approach: The Usage of N-Acetylcysteine in the Therapy of Pneumonia in Neonatal Calves. Animals, 14(19), 2852. https://doi.org/10.3390/ani14192852