An Automatic Movement Monitoring Method for Group-Housed Pigs
Simple Summary
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Pigsty Environment
2.2. Equipment Preparation
2.3. Data Collection and Processing
2.4. Dataset Establishment
2.5. Movement Monitoring Method for Group-Housed Pigs
2.5.1. Detection Model for Group-Housed Pigs
2.5.2. Location of the Pig Center Point
2.5.3. Determination of the Position of the Group-Housed Pigs
2.5.4. Calculation of Group-Housed Pig Movement Distance
3. Results
3.1. Training the Detection Model
3.2. Group-Housed Pig Movement Analysis
3.3. Movement Distance of Group-Housed Pigs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Food and Agriculture Statistical Yearbook 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- OECD and Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2023–2032. 2023. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2023-2032_08801ab7-en (accessed on 25 January 2024).
- Li, Y.; Wang, C.; Huang, S.; Liu, Z.; Wang, H. Space allowance determination by considering its coeffect with toy provision on production performance, behavior and physiology for grouped growing pigs. Livest. Sci. 2021, 243, 104389. [Google Scholar] [CrossRef]
- Phillips, C.J. Farm Animal Welfare—From the Farmers’ Perspective. Animals 2024, 14, 671. [Google Scholar] [CrossRef] [PubMed]
- Kopler, I.; Marchaim, U.; Tikász, I.E.; Opaliński, S.; Kokin, E.; Mallinger, K.; Neubauer, T.; Gunnarsson, S.; Soerensen, C.; Phillips, C.J.; et al. Farmers’ perspectives of the benefits and risks in precision livestock farming in the EU pig and poultry sectors. Animals 2023, 13, 2868. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. ChickTrack–a quantitative tracking tool for measuring chicken activity. Measurement 2022, 191, 110819. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, S.; Xia, F.; Xu, A.; Ye, J. Research on the lying pattern of grouped pigs using unsupervised clustering and deep learning. Livest. Sci. 2022, 260, 104946. [Google Scholar] [CrossRef]
- Xu, J.; Ye, J.; Zhou, S.; Xu, A. Automatic quantification and assessment of grouped pig movement using the XGBoost and YOLOv5s models. Biosyst. Eng. 2023, 230, 145–158. [Google Scholar] [CrossRef]
- Tallet, C.; Brajon, S. Pig-human interactions: Creating a positive perception of humans to ensure pig welfare. In Advances in Pig Welfare; Elsevier: Amsterdam, The Netherlands, 2024; pp. 409–428. [Google Scholar]
- Pfeifer, M.; Eggemann, L.; Kransmann, J.; Schmitt, A.; Hessel, E. Inter-and intra-observer reliability of animal welfare indicators for the on-farm self-assessment of fattening pigs. Animal 2019, 13, 1712–1720. [Google Scholar] [CrossRef]
- Tzanidakis, C.; Simitzis, P.; Arvanitis, K.; Panagakis, P. An overview of the current trends in precision pig farming technologies. Livest. Sci. 2021, 249, 104530. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Sturm, B.; Olsson, A.-C.; Jeppsson, K.-H.; Müller, S.; Edwards, S.; Hensel, O. Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine. Comput. Electron. Agric. 2019, 156, 475–481. [Google Scholar] [CrossRef]
- Hansen, M.F.; Smith, M.L.; Smith, L.N.; Salter, M.G.; Baxter, E.M.; Farish, M.; Grieve, B. Towards on-farm pig face recognition using convolutional neural networks. Comput. Ind. 2018, 98, 145–152. [Google Scholar] [CrossRef]
- Pan, Z.; Chen, H.; Zhong, W.; Wang, A.; Zheng, C. A CNN-based animal behavior recognition algorithm for wearable devices. IEEE Sens. J. 2023, 23, 5156–5164. [Google Scholar] [CrossRef]
- Maselyne, J.; Saeys, W.; De Ketelaere, B.; Mertens, K.; Vangeyte, J.; Hessel, E.F.; Millet, S.; Van Nuffel, A. Validation of a High Frequency Radio Frequency Identification (HF RFID) system for registering feeding patterns of growing-finishing pigs. Comput. Electron. Agric. 2014, 102, 10–18. [Google Scholar] [CrossRef]
- Dong, Y.; Bonde, A.; Codling, J.R.; Bannis, A.; Cao, J.; Macon, A.; Rohrer, G.; Miles, J.; Sharma, S.; Brown-Brandl, T.; et al. PigSense: Structural vibration-based activity and health monitoring system for pigs. ACM Trans. Sens. Netw. 2023, 20, 1–43. [Google Scholar] [CrossRef]
- Larsen, M.L.; Wang, M.; Willems, S.; Liu, D.; Norton, T. Automatic detection of locomotor play in young pigs: A proof of concept. Biosyst. Eng. 2023, 229, 154–166. [Google Scholar] [CrossRef]
- Wei, J.; Tang, X.; Liu, J.; Zhang, Z. Detection of Pig Movement and Aggression Using Deep Learning Approaches. Animals 2023, 13, 3074. [Google Scholar] [CrossRef]
- Melfsen, A.; Lepsien, A.; Bosselmann, J.; Koschmider, A.; Hartung, E. Describing Behavior Sequences of Fattening Pigs Using Process Mining on Video Data and Automated Pig Behavior Recognition. Agriculture 2023, 13, 1639. [Google Scholar] [CrossRef]
- Ho, K.-Y.; Tsai, Y.-J.; Kuo, Y.-F. Automatic monitoring of lactation frequency of sows and movement quantification of newborn piglets in farrowing houses using convolutional neural networks. Comput. Electron. Agric. 2021, 189, 106376. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, J.; Shen, M.; Liu, L. Activity detection of suckling piglets based on motion area analysis using frame differences in combination with convolution neural network. Comput. Electron. Agric. 2022, 194, 106741. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLO 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 25 January 2024).
- Tu, G.J.; Jørgensen, E. Vision analysis and prediction for estimation of pig weight in slaughter pens. Expert Syst. Appl. 2023, 220, 119684. [Google Scholar] [CrossRef]
- Zhong, Z.; Yang, J. A novel pig-body multi-feature representation method based on multi-source image fusion. Measurement 2022, 204, 111968. [Google Scholar] [CrossRef]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9157–9166. [Google Scholar]
- Dwyer, B.; Nelson, J.; Hansen, T. Roboflow 2024. Available online: https://roboflow.com (accessed on 25 January 2024).
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Del Valle, J.E.; Pereira, D.F.; Neto, M.M.; Gabriel Filho, L.R.A.; Salgado, D.D. Unrest index for estimating thermal comfort of poultry birds (Gallus gallus domesticus) using computer vision techniques. Biosyst. Eng. 2021, 206, 123–134. [Google Scholar] [CrossRef]
- Ekkel, E.D.; Spoolder, H.A.; Hulsegge, I.; Hopster, H. Lying characteristics as determinants for space requirements in pigs. Appl. Anim. Behav. Sci. 2003, 80, 19–30. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, W.; Jiao, P.; Ma, C.; Yang, J. Multi-object extraction from topview group-housed pig images based on adaptive partitioning and multilevel thresholding segmentation. Biosyst. Eng. 2015, 135, 54–60. [Google Scholar] [CrossRef]
- Tian, K.; Li, J.; Zeng, J.; Evans, A.; Zhang, L. Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm. Comput. Electron. Agric. 2019, 165, 104962. [Google Scholar] [CrossRef]
- Ma, Z.; Tao, Z.; Du, X.; Yu, Y.; Wu, C. Automatic detection of crop root rows in paddy fields based on straight-line clustering algorithm and supervised learning method. Biosyst. Eng. 2021, 211, 63–76. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-Means++: The Advantages of Careful Seeding; Stanford: Palo Alto, CA, USA, 2006. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA, 2–4 August 1996; AAAI Press: Menlo Park, CA, USA, 1996; Volume 96, pp. 226–231. [Google Scholar]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 1–22. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Ma, J.; Su, W.; Li, H. Real-Time Steel Surface Defect Detection with Improved Multi-Scale YOLO-v5. Processes 2023, 11, 1357. [Google Scholar] [CrossRef]
- Juul, L.; Kristensen, T.; Theil, P.; Therkildsen, M.; Kongsted, A. Effect of two different feeding strategies on energy intake from pasture, feed efficiency and growth performance of growing-finishing pigs in a mobile pasture system. Livest. Sci. 2021, 252, 104690. [Google Scholar] [CrossRef]
- Stäbler, R.; Patzkéwitsch, D.; Reese, S.; Erhard, M.; Hartmannsgruber, S. Behavior of domestic pigs under near-natural forest conditions with ad libitum supplementary feeding. J. Vet. Behav. 2022, 48, 20–35. [Google Scholar] [CrossRef]
[17] | [20] | [21] | [8] | [18] | Our Approach | |
---|---|---|---|---|---|---|
Algorithm | CNN + LSTM | EfficientNet + LSTM | YOLOv5s + frame difference | YOLOv5s + XGBoost | GAM-YOLOv8 | YOLOv8m-seg + spatial moment + AC |
Data range | 14:00–22:00 h 18:00–22:00 h | 6:00–22:00 h | 21:00–15:00 h | Full day | Daytime | Full day |
Site | Farrowing pen | Farrowing pen | Farrowing pen | Pigpen | Pigpen | Pigpen |
Object | Piglets | Piglets | Piglets | Pigs | Pigs | Pigs |
Processing level | Bounding box | Bounding box | Frame | Bounding box | Bounding box | Pixel |
Pig location | N/A | Yes | N/A | Yes | N/A | Yes |
Displacement calculation | N/A | Yes | N/A | N/A | Yes | Yes |
Performance | 88% (Precision) | 87.9% (mAP50 [40]) | 93.6% (Precision) | 99% (mAP50) | 96.2% (mAP50) | 96% (mAP50-95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Xu, A.; Ye, J.; Zhou, S.; Weng, X.; Bao, S. An Automatic Movement Monitoring Method for Group-Housed Pigs. Animals 2024, 14, 2985. https://doi.org/10.3390/ani14202985
Liang Z, Xu A, Ye J, Zhou S, Weng X, Bao S. An Automatic Movement Monitoring Method for Group-Housed Pigs. Animals. 2024; 14(20):2985. https://doi.org/10.3390/ani14202985
Chicago/Turabian StyleLiang, Ziyuan, Aijun Xu, Junhua Ye, Suyin Zhou, Xiaoxing Weng, and Sian Bao. 2024. "An Automatic Movement Monitoring Method for Group-Housed Pigs" Animals 14, no. 20: 2985. https://doi.org/10.3390/ani14202985
APA StyleLiang, Z., Xu, A., Ye, J., Zhou, S., Weng, X., & Bao, S. (2024). An Automatic Movement Monitoring Method for Group-Housed Pigs. Animals, 14(20), 2985. https://doi.org/10.3390/ani14202985