Genetic Diversity, Runs of Homozygosity, and Selection Signatures in Native Japanese Chickens: Insights from Single-Nucleotide Polymorphisms
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Note
2.2. Chicken Population
2.3. RAD-Seq Analysis
2.4. Genomic Analysis
2.4.1. Diversity
2.4.2. Population Structure
2.4.3. Relationships
2.4.4. Runs of Homozygosity (ROH)
2.4.5. Selection Signature
3. Results
3.1. SNP Filtering
3.2. Genetic Diversity
3.3. Population Structure
3.4. Genetic Relationships
3.5. Runs of Homozygosity (ROH)
3.6. Selection Signature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The JAS (Japan Agricultural Standards) for Jidori Chicken Meat. Available online: https://www.tokutori.org/tori/en/jas (accessed on 14 July 2024).
- Tsudzuki, M. Japanese native chickens. In The Relationship Between Indigenous Animals and Humans in APEC Region; Chang, H.-L., Huang, Y.-C., Eds.; The Chinese Society of Animal Science: Taipei, Taiwan, 2003; pp. 91–116. [Google Scholar]
- Imamura, Y.; Tsudzuki, M.; Roskowski, S. (Eds.) Japanese Chickens: The Living Art of the World; Taurus Printing, Ltd.: Kazimierów, Poland, 2021; Volume 2, pp. 357–760. [Google Scholar]
- Gao, C.; Wang, K.; Hu, X.; Lei, Y.; Xu, C.; Tian, Y.; Sun, G.; Tian, Y.; Kang, X.; Li, W. Conservation priority and run of homozygosity pattern assessment of global chicken genetic resources. Poult. Sci. 2023, 102, 103030. [Google Scholar] [CrossRef] [PubMed]
- Talebi, R.; Szmatola, T.; Mészáros, G.; Qanbari, S. Runs of Homozygosity in Modern Chicken Revealed by Sequence Data. G3 2020, 10, 4615–4623. [Google Scholar] [CrossRef]
- Dementieva, N.V.; Kudinov, A.A.; Larkina, T.A.; Mitrofanova, O.V.; Dysin, A.P.; Terletsky, V.P.; Tynshchenko, V.I.; Griffin, D.K.; Romanov, M.N. Genetic variability in local and imported germplasm chicken populations as revealed by analyzing runs of homozygosity. Animals 2020, 10, 1887. [Google Scholar] [CrossRef]
- Tajima, A. Historical overview of poultry in Japan. J. Poult. Sci. 2023, 60, 2023015. [Google Scholar] [CrossRef] [PubMed]
- Johnsson, M.; Williams, M.J.; Jensen, P.; Wright, D. Genetical genomics of behavior: A novel chicken genomic model for anxiety behavior. Genetics 2016, 202, 327–340. [Google Scholar] [CrossRef]
- Falker-Gieske, C.; Bennewitz, J.; Tetens, J. The light response in chickens divergently selected for feather pecking behavior reveals mechanistic insights towards psychiatric disorders. Mol. Biol. Rep. 2022, 49, 1649–1654. [Google Scholar] [CrossRef]
- Shin, L.M.; Liberzon, I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 2010, 35, 169–191. [Google Scholar] [CrossRef] [PubMed]
- Koshinen, M.-K.; Hovatta, I. Genetic insights into the neurobiology of anxiety. Trends Neurosci. 2023, 46, 318–331. [Google Scholar] [CrossRef]
- Terashima, M.; Velasco, V.V.; Goto, N.; Tsudzuki, M.; Ishikawa, A. Differences in innate fear behaviour in native Japanese chickens. Br. Poult. Sci. 2023, 64, 448–455. [Google Scholar] [CrossRef]
- Yoshidome, K.; Fukano, N.; Ouchi, Y.; Tomonaga, S.; Cockrem, J.F.; Bungo, T. The use of behavioral tests of fearfulness in chicks to distinguish between the Japanese native chicken breeds, Tosa-Kukin and Yakido. Anim. Sci. J. 2021, 92, e13507. [Google Scholar] [CrossRef]
- Nakasai, E.; Tanizawa, H.; Takawaki, M.; Yanagita, K.; Kawakami, S.; Oka, T.; Tsudzuki, M.; Bungo, T. Age-dependent change of tonic immobility response in chicks of a native Japanese chicken breed, Tosa-Jidori. J. Poult. Sci. 2013, 50, 321–325. [Google Scholar] [CrossRef]
- Ishikawa, A.; Takanuma, T.; Hashimoto, N.; Goto, T.; Tsudzuki, M. New behavioral handling test reveals temperament differences in Native Japanese chickens. Animals 2023, 13, 3556. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, A.; Sakaguchi, M.; Nagano, A.J.; Suzuki, S. Genetic architecture of innate fear behavior in chickens. Behav. Genet. 2020, 50, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, T.; Sakaguchi, M.; Kawakami, S.-I.; Ishikawa, A. Identification of candidate genes responsible for innate fear behavior in the chicken. G3 2023, 13, jkac316. [Google Scholar] [CrossRef] [PubMed]
- Velasco, V.V.; Ochiai, T.; Tsudzuki, M.; Goto, N.; Ishikawa, A. Quantitative trait loci mapping of innate fear behavior in day-old F2 chickens of Japanese Oh-Shamo and White Leghorn breeds using restriction site-associated DNA sequencing. Poult. Sci. 2024, 103, 103228. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, A.; Takanuma, T.; Hashimoto, N.; Tsudzuki, M. Association between temperament and stress-related gene expression in day-old chickens. J. Poult. Sci. 2024, 61, 2024022. [Google Scholar] [CrossRef]
- Osman, S.A.M.; Sekino, M.; Nishihata, A.; Kobayashi, Y.; Takenaka, W.; Kinoshita, K.; Kuwayama, T.; Nishibori, M.; Yamamoto, Y.; Tsudzuki, M. The genetic variability and relationships of Japanese and foreign chickens assessed by microsatellite DNA profiling. Asian-Aust. J. Anim. Sci. 2006, 19, 1369–1378. [Google Scholar] [CrossRef]
- Hata, A.; Takenouchi, A.; Kinoshita, K.; Hirokawa, M.; Igawa, T.; Nunome, M.; Suzuki, T.; Tsudzuki, M. Geographic origin and genetic characteristics of Japanese indigenous chickens inferred from mitochondrial D-loop region and microsatellite DNA markers. Animals 2020, 10, 2074. [Google Scholar] [CrossRef]
- Romanov, M.N.; Shakhin, A.V.; Abdelmanova, A.S.; Volkova, N.A.; Efimov, D.N.; Fisinin, V.I.; Korshunova, L.G.; Anshakov, D.V.; Dotsev, A.V.; Griffin, D.K.; et al. Dissecting selective signatures and candidate genes in grandparent lines subject to high selection pressure for broiler production and in a local Russian chicken breed of Ushanka. Genes 2024, 15, 524. [Google Scholar] [CrossRef]
- Guo, Y.; Rubin, C.-J.; Rönneburg, T.; Wang, S.; Li, H.; Hu, X.; Carlborg, Ö. Whole-genome selective sweep analyses identifies the region and candidate gene associated with white earlobe color in Mediterranean chickens. Poult. Sci. 2024, 103, 103232. [Google Scholar] [CrossRef]
- Wu, S.; Dou, T.; Wang, K.; Yuan, S.; Yan, S.; Xu, Z.; Liu, Y.; Jian, Z.; Zhao, J.; Zhao, R.; et al. Artificial selection footprints in indigenous and commercial chicken genomes. BMC Genom. 2024, 25, 428. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.K.; Kimball, R.T.; Funk, E.R.; Kane, N.C.; Schield, D.R.; Spellman, G.M.; Safran, R.J. Estimating phylogenies from genomes: A beginners review of commonly used genomic data in vertebrate phylogenomics. J. Hered. 2023, 114, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Gruber, B.; Unmack, P.J.; Berry, O.F.; Georges, A. dartr: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 2018, 18, 691–699. [Google Scholar] [CrossRef]
- Knaus, B.J.; Grünwald, N.J. vcfR: A package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 2017, 17, 44–53. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Dray, S.; Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologist. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef]
- de Jong, M.J.; de Jong, J.F.; Hoelzel, A.R.; Janke, A. SambaR: An R package for fast, easy and reproducible population-genetic analyses of biallelic SNP data sets. Mol. Ecol. Resour. 2021, 21, 1369–1379. [Google Scholar] [CrossRef]
- Hedrick, P.W. Genetics of Population, 3rd ed.; Jones and Bartlett Publishers: Sudbury, MA, USA, 2005; pp. 413–436. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Francis, R.M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 2017, 17, 27–32. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2. WIREs Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Pembleton, L.W.; Cogan, N.O.I.; Forster, J.W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 2013, 13, 946–952. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Ceballos, F.C.; Joshi, P.K.; Clark, D.W.; Ramsay, M.; Wilson, J.F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 2018, 19, 220–234. [Google Scholar] [CrossRef]
- Whitlock, M.C.; Lotterhos, K.E. Reliable detection of loci responsible for local adaptation: Inference of a null model through trimming the distribution of FST. Am. Nat. 2015, 186, S24–S36. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-L.; Park, C.A.; Reecy, J.M. 2022. Bringing the animal QTLdb and CorrDB into the future: Meeting new challenges and providing updated services. Nucleic Acids Res. 2022, 50, D956–D961. [Google Scholar] [CrossRef] [PubMed]
- Tadano, R.; Nishibori, M.; Imamura, Y.; Matsuzaki, M.; Kinoshita, K.; Mizutani, M.; Nanikawa, T.; Tsudzuki, M. High genetic divergence in miniature breeds of Japanese native chickens compared to Red Junglefowl, as revealed by microsatellite analysis. Anim. Genet. 2008, 39, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Oka, T.; Ino, Y.; Nomura, K.; Kawashima, S.; Kuwayama, T.; Hanada, H.; Amano, T.; Takada, M.; Nakahata, N.; Hayashi, Y.; et al. Analysis of mtDNA sequences shows Japanese native chickens have multiple origins. Anim. Genet. 2007, 38, 287–293. [Google Scholar] [CrossRef]
- Zimmerman, S.J.; Aldridge, C.L.; Oyler-McCance, S.J. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species conservation concern. BMC Genom. 2020, 21, 382. [Google Scholar] [CrossRef]
- Pérez-González, J.; Carranza, J.; Anaya, G.; Broggini, C.; Vedel, G.; de la Peña, E.; Membrillo, A. Comparative analysis of microsatellite and SNP markers for genetic management of Red deer. Animals 2023, 13, 3374. [Google Scholar] [CrossRef]
- Fischer, M.C.; Rellstab, C.; Leuzinger, M.; Roumet, M.; Gugerli, F.; Shimizu, K.K.; Holderegger, R.; Widmer, A. Estimating genomic diversity and population differentiation—An empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom. 2017, 18, 69. [Google Scholar] [CrossRef]
- Nunome, M.; Kinoshita, K.; Ishishita, S.; Ohmori, Y.; Murai, A.; Matsuda, Y. Genetic diversity of 21 experimental chicken lines with diverse origins and genetic backgrounds. Exp. Anim. 2019, 68, 177–193. [Google Scholar] [CrossRef]
- Konomiya, T.; Ikeo, K.; Gojobori, T. Where is the origin of the Japanese gamecocks? Gene 2003, 317, 195–202. [Google Scholar] [CrossRef]
- Yonezawa, T.; Tsudzuki, M.; Imamura, Y.; Matsuzaki, M.; Matsunaga, S.; Fukagawa, S.; Ogawa, H.; Sasaki, T.; Akishinomiya, F.; Yamamoto, Y. The origin and history of native Japanese chickens based on the mitochondrial DNA. Arch. Lʼantropologia Etnol. 2020, 150, 67–88. [Google Scholar]
- Winkler, J.; Ramirez, G.A.; Thal, L.J.; Waite, J.J. Nerve growth factor (NGF) augments cortical and hippocampal cholinergic functioning after p75NGF receptor-mediated deafferentation but impairs inhibitory avoidance and induces fear-related behaviors. J. Neurosci. 2000, 20, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Nees, F.; Witt, S.H.; Flor, H. Neurogenetic approaches to stress and fear in humans as pathophysiological mechanisms for posttraumatic stress disorder. Biol. Psychiatry 2018, 83, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Lang, U.E.; Hellweg, R.; Bajbouj, M.; Gaus, V.; Sander, T.; Gallinat, J. Gender-dependent association of a functional NGF polymorphism with anxiety-related personality traits. Pharmacopsychiatry 2008, 41, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Kessi, M.; Chen, B.; Peng, J.; Tang, Y.; Olatoutou, E.; He, F.; Yang, L.; Yin, F. Intellectual disability and potassium channelopathies: A systematic review. Front. Genet. 2020, 11, 614. [Google Scholar] [CrossRef]
- Cassandri, M.; Smirnov, A.; Novelli, F.; Pitolli, C.; Agostini, M.; Malewicz, M.; Melino, G.; Raschellà, G. Zinc-finger proteins in health and disease. Cell Death Discov. 2017, 3, 17071. [Google Scholar] [CrossRef]
- Shimizu, T.; Hibi, M. Formation and patterning of the forebrain and olfactory system by zinc-finger genes Fezf1 and Fezf2. Dev. Growth Differ. 2009, 51, 221–231. [Google Scholar] [CrossRef]
- Hirata-Fukae, C.; Hirata, T. The zinc finger gene Fezf2 is required for the development of excitatory neurons in the basolateral complex of the amygdala. Dev. Dyn. 2014, 243, 1030–1036. [Google Scholar] [CrossRef]
- Taira, M.; Desforges, M.J. ZFPM1 necessary for development of serotonergic projections related to anxiety and contextual fear learning. J. Neurosci. 2021, 41, 3945–3947. [Google Scholar] [CrossRef]
Breed | Abbreviation | Number of Animals | Source 1 | |
---|---|---|---|---|
Male | Female | |||
Native Japanese chickens | ||||
Ingie | IG | 8 | JABPC | |
Nagoya | NAG | 10 | 3 | NLBCH |
Oh-Shamo | OSM | 12 | JABPC | |
Ryujin-Jidori | RYU | 10 | LPLESWP | |
Tosa-Jidori | TJI | 11 | JABPC | |
Tosa-Kukin | TKU | 10 | JABPC | |
Ukokkei | UK | 6 | 1 | JABPC |
Foreign chickens | ||||
White Plymouth Rock | WPR | 12 | NLBCH | |
Fayoumi inbred line | PNP | 11 | ARBC | |
White Leghorn G-line | WL-G | 16 | ARBC | |
White Leghorn T-line | WL-T | 10 | TCLM |
Population | Seg. Sites 1 | MAF 2 | Private Allele 3 | He 4 | π (pi) | θ (Theta) | Tajima’s D |
---|---|---|---|---|---|---|---|
IG | 11,364 | 0.53 | 0.10 | 0.10 | 0.09 | 0.10 | −0.01 * |
NAG | 11,323 | 0.47 | 0.12 | 0.10 | 0.10 | 0.09 | 0.01 ** |
OSM | 11,298 | 0.34 | 0.56 | 0.20 | 0.20 | 0.17 | 0.03 ** |
RYU | 11,281 | 0.49 | 0.10 | 0.11 | 0.09 | 0.10 | −0.01 ** |
TJI | 11,321 | 0.38 | 0.27 | 0.13 | 0.13 | 0.14 | −0.01 * |
TKU | 11,294 | 0.46 | 0.16 | 0.13 | 0.13 | 0.12 | 0.01 ** |
UK | 11,216 | 0.37 | 0.44 | 0.14 | 0.18 | 0.18 | 0.00 |
PNP | 11,384 | 0.86 | 0.01 | 0.01 | 0.04 | 0.04 | −0.01 ** |
WL-G | 11,191 | 0.40 | 0.09 | 0.06 | 0.07 | 0.08 | −0.01 ** |
WL-T | 11,100 | 0.41 | 0.22 | 0.17 | 0.13 | 0.12 | 0.01 ** |
WPR | 11,291 | 0.34 | 0.50 | 0.19 | 0.20 | 0.16 | 0.03 ** |
Marker ID | CHR 1 | Mb 1 | ROH Incidence | FST | Nearest Gene 1 | QTL 2 |
---|---|---|---|---|---|---|
marker106395 | 13 | 16.65 | 53.78 | 0.89 | Shroom Family Member 1 (SHROOM1) | Aggressiveness (17.4 Mb), feather pecking (17 Mb), receiving feather pecking (15.3) |
marker113615 | 17 | 1.86 | 57.98 | 0.90 | Zinc Finger Protein 618 (ZNF618) | |
marker123266 | 20 | 12.31 | 40.00 | 0.89 | Replication Termination Factor 2 Domain-Containing 1 (RTFDC1) | Tonic immobility (TI) duration (10.9–13.4) |
marker123400 | 20 | 12.81 | 39.00 | 0.86 | Zinc Finger Protein 217 (ZNF217) | |
marker128107 | 24 | 3.58 | 57.14 | 0.84 | LOC107055055 | TI duration (1.8–3 Mb), TI attempts (3.3–4.4 Mb), feather pecking (3.3 Mb) |
marker130448 | 26 | 3.41 | 59.66 | 0.89 | Potassium Voltage-Gated Channel Subfamily D Member 3 (KCND3) | Aggressiveness (2.6 Mb) |
marker130642 | 26 | 4.09 | 57.98 | 0.86 | Nerve Growth Factor (NGF) | Feather pecking (3.7 Mb) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco, V.V.; Tsudzuki, M.; Hashimoto, N.; Goto, N.; Ishikawa, A. Genetic Diversity, Runs of Homozygosity, and Selection Signatures in Native Japanese Chickens: Insights from Single-Nucleotide Polymorphisms. Animals 2024, 14, 3341. https://doi.org/10.3390/ani14223341
Velasco VV, Tsudzuki M, Hashimoto N, Goto N, Ishikawa A. Genetic Diversity, Runs of Homozygosity, and Selection Signatures in Native Japanese Chickens: Insights from Single-Nucleotide Polymorphisms. Animals. 2024; 14(22):3341. https://doi.org/10.3390/ani14223341
Chicago/Turabian StyleVelasco, Vanessa V., Masaoki Tsudzuki, Norikazu Hashimoto, Naoki Goto, and Akira Ishikawa. 2024. "Genetic Diversity, Runs of Homozygosity, and Selection Signatures in Native Japanese Chickens: Insights from Single-Nucleotide Polymorphisms" Animals 14, no. 22: 3341. https://doi.org/10.3390/ani14223341
APA StyleVelasco, V. V., Tsudzuki, M., Hashimoto, N., Goto, N., & Ishikawa, A. (2024). Genetic Diversity, Runs of Homozygosity, and Selection Signatures in Native Japanese Chickens: Insights from Single-Nucleotide Polymorphisms. Animals, 14(22), 3341. https://doi.org/10.3390/ani14223341