Promising Probiotic Candidates for Sustainable Aquaculture: An Updated Review
Simple Summary
Abstract
1. Introduction
2. Probiotics and Their Possible Mode of Action
3. Application of Promising Probiotics in Fish
3.1. Gram-Positives
3.2. Bifidobacterium
3.3. Brevibacillus
3.4. Clostridium
3.5. Microbacterium and Mixtures
3.6. Micrococcus
3.7. Paenibacillus
4. Gram-Negatives
4.1. Acinetobacter
4.2. Aeromonas
4.3. Alcaligenes
4.4. Enterobacter
4.5. Phaeobacter
4.6. Pseudoalteromonas
4.7. Pseudomonas
4.8. Psychrobacter
4.9. Shewanella
4.10. Vibrio
5. Application of Probiotics in Shellfish
6. Gram-Positives
6.1. Clostridium
6.2. Microbacterium
6.3. Paenibacillus
7. Gram-Negatives
7.1. Aeromonas
7.2. Enterobacter
7.3. Paenibacillus
7.4. Phaeobacter
7.5. Pseudoalteromonas
7.6. Pseudomonas
7.7. Vibrio
8. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Doan, H.; Sumon, M.A.A.; Tran, H.Q.; Le, C.X.; Mohammady, E.Y.; El-Haroun, E.R.; Hoseinifar, S.H.; Ringo, E.; Stejskal, V.; Dawood, M.A. Role of β-glucan on finfish and shellfish health and well-being: A systematic review and meta-analysis. Rev. Aquac. 2024, 16, 1996–2009. [Google Scholar] [CrossRef]
- Vivekanandhan, G.; Savithamani, K.; Hatha, A.; Lakshmanaperumalsamy, P. Antibiotic resistance of Aeromonas hydrophila isolated from marketed fish and prawn of South India. Int. J. Food Microbiol. 2002, 76, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Rowley, A.F.; Powell, A. Invertebrate immune systems–specific, quasi-specific, or nonspecific? J. Immunol. 2007, 179, 7209–7214. [Google Scholar] [CrossRef] [PubMed]
- Lilly, D.M.; Stillwell, R.H. Probiotics: Growth-promoting factors produced by microorganisms. Science 1965, 147, 747–748. [Google Scholar] [CrossRef]
- Dittmann, K.K.; Rasmussen, B.B.; Castex, M.; Gram, L.; Bentzon-Tilia, M. The aquaculture microbiome at the centre of business creation. Microb. Biotechnol. 2017, 10, 1279. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sun, Y.; Wang, A.; Zhou, Z. Probiotics as means of diseases control in aquaculture, A Review of current knowledge and future perspectives. Front. Microbiol. 2018, 9, 2429. [Google Scholar] [CrossRef]
- Ringø, E. Probiotics in shellfish aquaculture. Aquac. Fish. 2020, 5, 1–27. [Google Scholar] [CrossRef]
- Ringø, E.; Hoseinifar, S.H.; Ghosh, K.; Doan, H.V.; Beck, B.R.; Song, S.K. Lactic Acid Bacteria in Finfish—An Update. Front. Microbiol. 2018, 9, 1818. [Google Scholar] [CrossRef]
- Ringø, E.; Van Doan, H.; Lee, S.H.; Soltani, M.; Hoseinifar, S.H.; Harikrishnan, R.; Song, S.K. Probiotics, lactic acid bacteria and bacilli: Interesting supplementation for aquaculture. J. Appl. Microbiol. 2020, 129, 116–136. [Google Scholar] [CrossRef]
- Ringø, E.; Doan, H.V.; Lee, S.; Song, S.K. Lactic acid bacteria in shellfish: Possibilities and challenges. Rev. Fish. Sci. Aquac. 2020, 28, 139–169. [Google Scholar] [CrossRef]
- Soltani, M.; Ghosh, K.; Hoseinifar, S.H.; Kumar, V.; Lymbery, A.J.; Roy, S.; Ringø, E. Genus bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev. Fish. Sci. Aquac. 2019, 27, 331–379. [Google Scholar] [CrossRef]
- Van Doan, H. Bacillus spp. Aquaculture—Mechanisms and Applications: An Update View. In Probiotic Bacteria and Postbiotic Metabolites: Role in Animal and Human Health; Mojgani, N., Dadar, M., Eds.; Springer: Singapore, 2021; pp. 1–59. [Google Scholar]
- Soltani, M.; Abu-Elala, N.; Ringø, E. Bacillus Probiotics in Fish Culture. In Bacillus Probiotics for Sustainable Aquaculture; CRC Press: Boca Raton, FL, USA, 2024; pp. 169–191. [Google Scholar]
- Soltani, M.; Ahmadivand, S.; Ringø, E. Bacillus as Probiotics in Shellfish Culture. In Bacillus Probiotics for Sustainable Aquaculture; CRC Press: Boca Raton, FL, USA, 2024; pp. 192–207. [Google Scholar]
- Vijayaram, S.; Chou, C.-C.; Razafindralambo, H.; Ghafarifarsani, H.; Divsalar, E.; Van Doan, H. Bacillus sp. as potential probiotics for use in tilapia fish farming aquaculture—A review. Ann. Anim. Sci. 2024, 24, 995–1006. [Google Scholar] [CrossRef]
- Ghosh, K.; Harikrishnan, R.; Mukhopadhyay, A.; Ringø, E. Fungi and Actinobacteria: Alternative Probiotics for Sustainable Aquaculture. Fishes 2023, 8, 575. [Google Scholar] [CrossRef]
- Van Doan, H.; Hoseinifar, S.H.; Ringø, E.; Ángeles Esteban, M.; Dadar, M.; Dawood, M.A.O.; Faggio, C. Host-Associated Probiotics: A Key Factor in Sustainable Aquaculture. Rev. Fish. Sci. Aquac. 2019, 28, 16–42. [Google Scholar] [CrossRef]
- Ringø, E.; Li, X.; Doan, H.v.; Ghosh, K. Interesting probiotic bacteria other than the more widely used lactic acid bacteria and bacilli in finfish. Front. Mar. Sci. 2022, 9, 848037. [Google Scholar] [CrossRef]
- Rohani, M.F.; Islam, S.M.; Hossain, M.K.; Ferdous, Z.; Siddik, M.A.; Nuruzzaman, M.; Padeniya, U.; Brown, C.; Shahjahan, M. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish Shellfish Immunol. 2022, 120, 569–589. [Google Scholar] [CrossRef]
- Li, X.; Ringø, E.; Hoseinifar, S.H.; Lauzon, H.; Birkbeck, H.; Yang, D. Adherence and colonisation of microorganisms in the fish gastrointestinal tract. Rev. Aquac. 2018, 11, 603–618. [Google Scholar] [CrossRef]
- Pereira, W.A.; Mendonça, C.M.N.; Urquiza, A.V.; Marteinsson, V.Þ.; LeBlanc, J.G.; Cotter, P.D.; Villalobos, E.F.; Romero, J.; Oliveira, R.P. Use of probiotic bacteria and bacteriocins as an alternative to antibiotics in aquaculture. Microorganisms 2022, 10, 1705. [Google Scholar] [CrossRef]
- Nayak, S.K. Probiotics and immunity: A fish perspective. Fish Shellfish Immunol. 2010, 29, 2–14. [Google Scholar] [CrossRef]
- Xu, P.; Cui, K.; Chen, L.; Chen, S.; Wang, Z. Effect of dietary Bifidobacterium animalis subsp. lactis BLa80 on growth, immune response, antioxidant capacity, and intestinal microbiota of juvenile Japanese seabass (Lateolabrax japonicus). Aquac. Int. 2024, 32, 1749–1769. [Google Scholar] [CrossRef]
- Yisa, T.; Ibrahim, O.; Tsadu, S.; Yakubu, U. Effect of Probiotics (Lactobacillus acidophilus and Bifidobacterium bifidum) as Immune Stimulant on Hybrid Catfish Heteroclarias. Microbiol. Res. J. Int. 2015, 9, 1–6. [Google Scholar] [CrossRef]
- Ayyat, M.S.; Labib, H.M.; Mahmoud, H.K. A Probiotic Cocktail as a Growth Promoter in Nile Tilapia (Oreochromis niloticus). J. Appl. Aquac. 2014, 26, 208–215. [Google Scholar] [CrossRef]
- Sahandi, J.; Jafaryan, H.; Soltani, M.; Ebrahimi, P. The Use of Two Bifidobacterium Strains Enhanced Growth Performance and Nutrient Utilization of Rainbow Trout (Oncorhynchus mykiss) Fry. Probiot. Antimicrob. Proteins 2019, 11, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Dima, M.F.; Sîrbu, E.; Patriche, N.; Cristea, V.; Coadă, M.T.; Plăcintă, S. Effects of multi-strain probiotics on the growth and hematological profile in juvenile carp (Cyprinus carpio, Linnaeus 1758). Carpathian J. Food Sci. Technol. 2022, 14, 5–20. [Google Scholar]
- Silva, V.V.; Salomão, R.A.S.; Mareco, E.A.; Dal Pai, M.; Santos, V.B. Probiotic additive affects muscle growth of Nile tilapia (Oreochromis niloticus). Aquac. Res. 2021, 52, 2061–2069. [Google Scholar] [CrossRef]
- Sayed Hassani, M.H.; Jourdehi, A.Y.; Zelti, A.H.; Masouleh, A.S.; Lakani, F.B. Effects of commercial superzist probiotic on growth performance and hematological and immune indices in fingerlings Acipenser baerii. Aquac. Int. 2020, 28, 377–387. [Google Scholar] [CrossRef]
- Naderi Farsani, M.; Meshkini, S.; Manaffar, R. Growth performance, immune response, antioxidant capacity and disease resistance against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss) as influenced through singular or combined consumption of resveratrol and two-strain probiotics. Aquac. Nutr. 2021, 27, 2587–2599. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Tang, Y.; Sun, B.; Huang, J.; Song, X. Pseudoalteromonas probiotics as potential biocontrol agents improve the survival of Penaeus vannamei challenged with acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus. Aquaculture 2018, 494, 30–36. [Google Scholar] [CrossRef]
- Khalafalla, M.M.; Ibrahim, S.A.; Zayed, M.M.; Awad, M.N.; Mohamed, R.A. Effect of a dietary mixture of beneficial bacteria on growth performance, health condition, chemical composition, and water quality of Nile Tilapia, Oreochromis niloticus fingerlings. J. Aquat. Food Prod. Technol. 2020, 29, 823–835. [Google Scholar] [CrossRef]
- Bhujel, R.C.; Jha, D.K.; Anal, A.K. Effects of probiotic doses on the survival and growth of hatchlings, fry, and advanced fry of Rohu (Labeo rohita Hamilton). J. Appl. Aquac. 2020, 32, 34–52. [Google Scholar] [CrossRef]
- Cavalcante, R.B.; Telli, G.S.; Tachibana, L.; de Carla Dias, D.; Oshiro, E.; Natori, M.M.; da Silva, W.F.; Ranzani-Paiva, M.J. Probiotics, Prebiotics and Synbiotics for Nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquac. Rep. 2020, 17, 100343. [Google Scholar] [CrossRef]
- Mahdhi, A.; Kamoun, F.; Messina, C.; Santulli, A.; Bakhrouf, A. Probiotic properties of Brevibacillus brevis and its influence on sea bass (Dicentrarchus labrax) larval rearing. Afr. J. Microbiol. Res. 2012, 6, 6487–6495. [Google Scholar] [CrossRef]
- Farris, N.W.; Hamidoghli, A.; Bae, J.; Won, S.; Choi, W.; Biró, J.; Lee, S.; Bai, S.C. Dietary supplementation with γ-aminobutyric acid improves growth, digestive enzyme activity, non-specific immunity and disease resistance against Streptococcus iniae in juvenile olive flounder, Paralichthys olivaceus. Animals 2022, 12, 248. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, Z.; Dai, X.; Liu, M.; Zhang, D.; Zeng, Y.; Zeng, D.; Ni, X.; Pan, K. Addition of Brevibacillus laterosporus to the rearing water enhances the water quality, growth performance, antioxidant capacity, and digestive enzyme activity of crucian carp Carassius auratus. Fish. Sci. 2023, 89, 659–670. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Zhang, Z.; Wang, C. Microbiomic and metabonomic analysis provide new insights into the enhanced intestinal health in large-size largemouth bass (Micropterus salmoides) when fed novel proteins: Novel proteins are promising foods for future aquaculture. Aquaculture 2023, 563, 739019. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Jin, J.; Han, D.; Zhu, X.; Liu, H.; Zhang, Z.; Yang, Y.; Xie, S. Effects of the Replacement of Dietary Fishmeal by the Blend of Tenebrio molitor Meal, Chlorella Meal, Clostridium Autoethanogenum Protein, and Cottonseed Protein Concentrate on Growth, Protein Utilization, and Intestinal Health of Gibel Carp (Carassius gibelio, CAS Ⅴ). Aquac. Nutr. 2024, 2024, 5019899. [Google Scholar]
- Yan, B.; Han, J.; Sun, Y.; Lei, L.; Yuan, J.; Qiao, Z.; Men, J.; Wang, X.; Guo, Y.; Wang, Q. Probiotics ameliorate growth retardation of glyphosate by regulating intestinal microbiota and metabolites in crucian carp (Carassius auratus). Sci. Total Environ. 2022, 851, 158260. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, X.-F.; He, S.; Feng, H.; Li, L. Dietary supplementation of exogenous probiotics affects growth performance and gut health by regulating gut microbiota in Chinese Perch (Siniperca chuatsi). Aquaculture 2022, 547, 737405. [Google Scholar] [CrossRef]
- Bi, X.; Lv, C.; Wang, M.; Chen, Y.; Lv, X.; Hua, S.; Zhang, X.; Yang, D.; Zhao, J.; Mu, C. Effects of dietary supplementation of Clostridium butyricum H129 on growth performance and intestinal health of turbot, Scophthalmus maximus. Aquac. Rep. 2023, 30, 101544. [Google Scholar] [CrossRef]
- Tran, N.T.; Liang, H.; Li, J.; Deng, T.; Zhang, M.; Li, S. Health benefits of butyrate and its producing bacterium, Clostridium butyricum, on aquatic animals. Fish Shellfish Immunol. Rep. 2023, 4, 100088. [Google Scholar] [CrossRef]
- Yang, K.; Xun, P.; Huang, J.; Jiang, K.; Huang, X.; Yu, W.; Xu, C.; Lin, H. Effects of dietary Clostridium butyricum on the growth performance and intestinal health of hybrid groupers (Epinephelus lanceolatus♂ × E. fuscoguttatus♀). Aquac. Rep. 2023, 30, 101588. [Google Scholar] [CrossRef]
- Skjermo, J.; Bakke, I.; Dahle, S.W.; Vadstein, O. Probiotic strains introduced through live feed and rearing water have low colonizing success in developing Atlantic cod larvae. Aquaculture 2015, 438, 17–23. [Google Scholar] [CrossRef]
- Lee, S.-J.; Kim, S.H.; Noh, D.-I.; Lee, Y.-S.; Kim, T.-R.; Hasan, M.T.; Lee, E.-W.; Jang, W.J. Combination of Host-Associated Rummeliibacillus sp. and Microbacterium sp. Positively Modulated the Growth, Feed Utilization, and Intestinal Microbial Population of Olive Flounder (Paralichthys olivaceus). Biology 2023, 12, 1443. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.L.; Liu, Z.Y.; Jian, J.T.; Ye, J.D.; Sun, Y.Z. Host-associated Bacillus siamensis and Lactococcus petauri improved growth performance, innate immunity, antioxidant activity and ammonia tolerance in juvenile Japanese seabass (Lateolabrax japonicus). Aquac. Nutr. 2021, 27, 2739–2748. [Google Scholar] [CrossRef]
- Nurhidayu, A.; Ina-Salwany, M.; Daud, H.M.; Harmin, S. Isolation, screening and characterization of potential probiotics from farmed tiger grouper (Epinephelus fuscoguttatus). Afr. J. Microbiol. Res. 2012, 6, 1924–1933. [Google Scholar] [CrossRef]
- Chen, S.-W.; Liu, C.-H.; Hu, S.-Y. Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and Streptococcus iniae in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2019, 84, 695–703. [Google Scholar] [CrossRef]
- Lin, P.-H.; Chen, S.-W.; Wen, Z.-H.; Hu, S.-Y. Administration of the potential probiotic Paenibacillus ehimensis NPUST1 enhances expression of indicator genes associated with nutrient metabolism, growth and innate immunity against Aeromonas hydrophila and Streptococcus indie infections in zebrafish (Danio rerio). Fishes 2022, 7, 386. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, P.; Dhawan, A. Paenibacillus polymyxa as a water additive improved immune response of Cyprinus carpio and disease resistance against Aeromonas hydrophila. Aquac. Rep. 2016, 4, 86–92. [Google Scholar] [CrossRef]
- Midhun, S.J.; Arun, D.; Neethu, S.; Vysakh, A.; Radhakrishnan, E.K.; Jyothis, M. Administration of probiotic Paenibacillus polymyxa HGA4C induces morphometric, enzymatic and gene expression changes in Oreochromis niloticus. Aquaculture 2019, 508, 52–59. [Google Scholar] [CrossRef]
- Yang, S.; Jin, D.; Li, H.; Jiang, L.; Cui, J.; Huang, W.; Rang, J.; Li, Y.; Xia, L. Screening of new Paenibacillus polymyxa S3 and its disease resistance of grass carp (Ctenopharyngodon idellus). J. Fish Dis. 2023, 46, 17–29. [Google Scholar] [CrossRef]
- Liao, Z.-H.; Huang, H.-T.; Lin, Y.-R.; Chen, B.-Y.; Lee, Y.-F.; Lin, Y.-H.; Chuang, C.-Y.; Nan, F.-H. Natural feed supplements improve growth, non-specific immune responses and resistance against Vibrio alginolyticus in Lates calcarifer. J. Mar. Sci. Eng. 2022, 10, 692. [Google Scholar] [CrossRef]
- Jose, M.S.; Arun, D.; Neethu, S.; Radhakrishnan, E.; Jyothis, M. Probiotic Paenibacillus polymyxa HGA4C and Bacillus licheniformis HGA8B combination improved growth performance, enzymatic profile, gene expression and disease resistance in Oreochromis niloticus. Microb. Pathog. 2023, 174, 105951. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, C.; Rojas, R.; Romero, J. Partial evaluation of autochthonous probiotic potential of the gut microbiota of Seriola lalandi. Probiot. Antimicrob. Proteins 2020, 12, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Jinendiran, S.; Archana, R.; Sathishkumar, R.; Kannan, R.; Selvakumar, G.; Sivakumar, N. Dietary administration of probiotic Aeromonas veronii V03 on the modulation of innate immunity, expression of immune-related genes and disease resistance against Aeromonas hydrophila infection in common carp (Cyprinus carpio). Probiot. Antimicrob. Proteins 2021, 13, 1709–1722. [Google Scholar] [CrossRef]
- Pacheco, I.; Díaz-Sánchez, S.; Contreras, M.; Villar, M.; Cabezas-Cruz, A.; Gortázar, C.; de la Fuente, J. Probiotic bacteria with high alpha-Gal content protect zebrafish against mycobacteriosis. Pharmaceuticals 2021, 14, 635. [Google Scholar] [CrossRef]
- Gutiérrez-Falcón, A.; Padilla, D.; Ramos Sosa, M.J.; Martín Barrasa, J.L.; Acosta-Hernández, B.; Sánchez Henao, A.; García Álvarez, N.; Rosario Medina, I.; Déniz, S.; Real, F. Characterization in vitro of new bacterial strains showing potentially probiotic crossed effect against vibriosis in relevant fish species for marine aquaculture. J. Appl. Anim. Res. 2020, 48, 553–558. [Google Scholar] [CrossRef]
- Ray, R.R.; Pattnaik, S. Alcaligenes faecalis: A bacterium for sustainable management of environment. Environ. Qual. Manag. 2024, 34, e22189. [Google Scholar] [CrossRef]
- Wang, M.; Yi, M.; Lu, M.; Gao, F.; Liu, Z.; Huang, Q.; Li, Q.; Zhu, D. Effects of probiotics Bacillus cereus NY5 and Alcaligenes faecalis Y311 used as water additives on the microbiota and immune enzyme activities in three mucosal tissues in Nile tilapia Oreochromis niloticus reared in outdoor tanks. Aquac. Rep. 2020, 17, 100309. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Iehata, S.; Akter, S.; Kader, M.A.; Ghosh, S.K.; Khan, M.N.A.; Abol-Munafi, A.B. Effects of host gut-derived probiotic bacteria on gut morphology, microbiota composition and volatile short chain fatty acids production of Malaysian Mahseer Tor tambroides. Aquac. Rep. 2018, 9, 53–61. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Sofia, E.; Shakil, A.; Haque, N.F.; Khan, M.N.A.; Ikeda, D.; Kinoshita, S.; Abol-Munafi, A.B. Host gut-derived probiotic bacteria promote hypertrophic muscle progression and upregulate growth-related gene expression of slow-growing Malaysian Mahseer Tor tambroides. Aquac. Rep. 2018, 9, 37–45. [Google Scholar] [CrossRef]
- LaPatra, S.E.; Fehringer, T.R.; Cain, K.D. A probiotic Enterobacter sp. provides significant protection against Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) after injection by two different routes. Aquaculture 2014, 433, 361–366. [Google Scholar] [CrossRef]
- Zakaria, Z.H.; Yaminudin, N.J.M.; Yasin, I.-S.M.; Ikhsan, N.F.M.; Karim, M.M.A. Evaluation of Enterobacter sp. Strain G87 as Potential Probiont against Vibrio harveyi Infection in Artemia Nauplii and Asian Seabass (Lates calcarifer) Larvae. Pertanika J. Trop. Agric. Sci. 2019, 42, 1251–1262. [Google Scholar]
- Li, J.; Zhang, Z.; Wu, Z.-B.; Qu, S.-Y.; Wang, G.-X.; Wei, D.-D.; Li, P.-F.; Ling, F. Enterobacter asburiae E7, a novel potential probiotic, enhances resistance to Aeromonas veronii infection via stimulating the immune response in Common carp (Cyprinus carpio). Microbiol. Spectr. 2023, 11, e04222–e04273. [Google Scholar] [CrossRef] [PubMed]
- Suryaningsih, W.; Maulana, R.; Istiqomah, I.; Isnansetyo, A. In vitro adhesion of Bacillus sp. and Enterobacter sp. probiotics on intestinal epithelial cells of red tilapia (Oreochromis sp.) and the application effects on the fish growth and survival rate. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Science: Bristol, UK, 2021; p. 012056. [Google Scholar]
- Makridis, P.; Kokou, F.; Bournakas, C.; Papandroulakis, N.; Sarropoulou, E. Isolation of Phaeobacter sp. from larvae of Atlantic bonito (Sarda sarda) in a mesocosmos unit, and its use for the rearing of European seabass larvae (Dicentrarchus labrax L.). Microorganisms 2021, 9, 128. [Google Scholar] [CrossRef]
- Paralika, V.; Kokou, F.; Karapanagiotis, S.; Makridis, P. Characterization of Host-Associated Microbiota and Isolation of Antagonistic Bacteria from Greater Amberjack (Seriola dumerili, Risso, 1810) Larvae. Microorganisms 2023, 11, 1889. [Google Scholar] [CrossRef]
- Panteli, N.; Feidantsis, K.; Demertzioglou, M.; Paralika, V.; Karapanagiotis, S.; Mylonas, C.C.; Kormas, K.A.; Mente, E.; Makridis, P.; Antonopoulou, E. The Probiotic Phaeobacter inhibens Provokes Hypertrophic Growth via Activation of the IGF-1/Akt Pathway during the Process of Metamorphosis of Greater Amberjack (Seriola dumerili, Risso 1810). Animals 2023, 13, 2154. [Google Scholar] [CrossRef]
- Roager, L.; Athena-Vasileiadi, D.; Gram, L.; Sonnenschein, E.C. Antagonistic activity of Phaeobacter piscinae against the emerging fish pathogen Vibrio crassostreae in aquaculture feed algae. Appl. Environ. Microbiol. 2024, 90, e01423–e01439. [Google Scholar] [CrossRef]
- Wang, F.; Ghonimy, A.; Wang, X.; Zhang, Y.; Zhu, N. Heat-killed Pseudoalteromonas piscicida 2515 decreased bacterial dose and improved immune resistance against Vibrio anguillarum in juvenile olive flounder (Paralichthys olivaceus). Aquac. Res. 2022, 53, 4724–4739. [Google Scholar] [CrossRef]
- Wasana, W.P.; Senevirathne, A.; Nikapitiya, C.; Lee, J.-S.; Kang, D.-H.; Kwon, K.K.; Oh, C.; De Zoysa, M. Probiotic effects of Pseudoalteromonas ruthenica: Antibacterial, immune stimulation and modulation of gut microbiota composition. Fish Shellfish Immunol. 2022, 131, 229–243. [Google Scholar] [CrossRef]
- Rahmani, A.; Parizadeh, L.; Baud, M.; François, Y.; Bazire, A.; Rodrigues, S.; Fleury, Y.; Cuny, H.; Debosse, E.; Cabon, J. Potential of marine strains of pseudoalteromonas to improve resistance of juvenile sea bass to pathogens and limit biofilm development. Probiot. Antimicrob. Proteins 2023. [Google Scholar] [CrossRef]
- Lazado, C.C.; Caipang, C.M.A.; Gallage, S.; Brinchmann, M.F.; Kiron, V. Responses of Atlantic cod Gadus morhua head kidney leukocytes to phytase produced by gastrointestinal-derived bacteria. Fish Physiol. Biochem. 2010, 36, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jaafar, R.; He, Y.; Wu, B.; Kania, P.; Buchmann, K. Effects of a Pseudomonas H6 surfactant on rainbow trout and Ichthyophthirius multifiliis: In vivo exposure. Aquaculture 2022, 547, 737479. [Google Scholar] [CrossRef]
- Lee, S.-J.; Noh, D.-I.; Lee, Y.-S.; Hasan, M.T.; Hur, S.W.; Lee, S.; Jeong, S.-M.; Lee, J.M.; Lee, E.-W.; Kim, K.-W. Effects of host-associated low-temperature probiotics in olive flounder (Paralichthys olivaceus) aquaculture. Sci. Rep. 2024, 14, 2134. [Google Scholar] [CrossRef]
- Vinoj, G.; Jayakumar, R.; Chen, J.-C.; Withyachumnarnkul, B.; Shanthi, S.; Vaseeharan, B. N-hexanoyl-L-homoserine lactone-degrading Pseudomonas aeruginosa PsDAHP1 protects zebrafish against Vibrio parahaemolyticus infection. Fish Shellfish Immunol. 2015, 42, 204–212. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Choudhury, T.G.; Kamilya, D. In vitro assessment of probiotic properties of Pseudomonas entomophila COFCAU_PEP4 isolated from Labeo rohita intestine. J. World Aquac. Soc. 2023, 54, 635–644. [Google Scholar] [CrossRef]
- Eissa, N.; Abou El-Gheit, N.; Shaheen, A.A. Protective effect of Pseudomonas fluorescens as a probiotic in controlling fish pathogens. Am. J. BioScience 2014, 2, 175–181. [Google Scholar] [CrossRef]
- González-Palacios, C.; Fregeneda-Grandes, J.-M.; Aller-Gancedo, J.-M. Possible mechanisms of action of two Pseudomonas fluorescens isolates as probiotics on saprolegniosis control in rainbow trout (Oncorhynchus mykiss Walbaum). Animals 2020, 10, 1507. [Google Scholar] [CrossRef]
- Alak, G.; Kotan, R.; Uçar, A.; Parlak, V.; Atamanalp, M. Pre-probiotic effects of different bacterial species in aquaculture: Behavioral, hematological and oxidative stress responses. Oceanol. Hydrobiol. Stud. 2022, 51, 133–142. [Google Scholar] [CrossRef]
- Qi, X.; Xue, M.; Shi, K.; Wang, G.; Ling, F. Evaluating Pseudomonas monteilii JK-1 as an in-feed probiotic: Enhancing growth, immune-antioxidant, disease resistance and modulating gut microflora composition in grass carp (Ctenopharyngodon idella). Aquaculture 2024, 585, 740715. [Google Scholar] [CrossRef]
- Devi, A.; Khan, M.; Choudhury, T.; Kamilya, D. In vitro assessment of probiotic potential of an autochthonous bacterial isolate, Pseudomonas mosselii COFCAU_PMP5. Microbiology 2022, 91, 207–214. [Google Scholar] [CrossRef]
- Aly, S.M.; ElBanna, N.I.; Elatta, M.A.; Abdel Razek, N.; El-Ramlawy, A.O.; Mabrok, M.; Fathi, M. Potential of Pseudomonas putida probiotic feed mixture for improving growth, immune response, and disease resistance in Nile Tilapia compared to Saccharomyces cerevisiae probiotic. North Am. J. Aquac. 2024, 86, 26–38. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, Y.; Chen, Z.; Shi, H.; Zhou, Y.; Yang, Y.; Tu, R.; Chen, G.; Wang, S. Screening and Characterization of Potential Antioxidant Probiotics Isolated from the Gut of Hybrid Grouper (Epinephelus fuscoguttatus♀× Epinephelus lanceolatus♂). Front. Mar. Sci. 2022, 9, 933304. [Google Scholar] [CrossRef]
- Domínguez-Maqueda, M.; Pérez-Gómez, O.; Grande-Pérez, A.; Esteve, C.; Seoane, P.; Tapia-Paniagua, S.T.; Balebona, M.C.; Moriñigo, M.A. Pathogenic strains of Shewanella putrefaciens contain plasmids that are absent in the probiotic strain Pdp11. PeerJ 2022, 10, e14248. [Google Scholar] [CrossRef]
- Domínguez-Maqueda, M.; García-Márquez, J.; Tapia-Paniagua, S.T.; González-Fernández, C.; Cuesta, A.; Espinosa-Ruíz, C.; Esteban, M.Á.; Alarcón, F.J.; Balebona, M.C.; Moriñigo, M.Á. Evaluation of the differential postbiotic potential of Shewanella putrefaciens Pdp11 cultured in several growing conditions. Mar. Biotechnol. 2024, 26, 1–18. [Google Scholar] [CrossRef]
- Cámara-Ruiz, M.; Balebona, M.C.; Moriñigo, M.Á.; Esteban, M.Á. Probiotic Shewanella putrefaciens (SpPdp11) as a fish health modulator: A review. Microorganisms 2020, 8, 1990. [Google Scholar] [CrossRef]
- Medina, A.; García-Márquez, J.; Moriñigo, M.Á.; Arijo, S. Effect of the Potential Probiotic Vibrio proteolyticus DCF12. 2 on the Immune System of Solea senegalensis and Protection against Photobacterium damselae subsp. piscicida and Vibrio harveyi. Fishes 2023, 8, 344. [Google Scholar] [CrossRef]
- Jha, D.K.; Bhujel, R.C.; Anal, A.K. Dietary supplementation of probiotics improves survival and growth of Rohu (Labeo rohita Ham.) hatchlings and fry in outdoor tanks. Aquaculture 2015, 435, 475–479. [Google Scholar] [CrossRef]
- Ayoola, S.; Kuton, M.; Shokefun, O. Evaluation of Nutritional Quality and Haematological Parameters of Moringa (Moringa oleifera) Lam Leaves in the Diet of African Catfish (Clarias gariepinus). Agrosearch 2013, 13, 1–16. [Google Scholar] [CrossRef]
- Li, M.; Liang, H.; Xie, J.; Chao, W.; Zou, F.; Ge, X.; Ren, M. Diet supplemented with a novel Clostridium autoethanogenum protein have a positive effect on the growth performance, antioxidant status and immunity in juvenile Jian carp (Cyprinus carpio var. Jian). Aquac. Rep. 2021, 19, 100572. [Google Scholar] [CrossRef]
- Chen, X.; Yi, H.; Liu, S.; Zhang, Y.; Su, Y.; Liu, X.; Bi, S.; Lai, H.; Zeng, Z.; Li, G. Probiotics improve eating disorders in mandarin fish (Siniperca chuatsi) induced by a pellet feed diet via stimulating immunity and regulating gut microbiota. Microorganisms 2021, 9, 1288. [Google Scholar] [CrossRef]
- Gao, Q.; Xiao, C.; Min, M.; Zhang, C.; Peng, S.; Shi, Z. Effects of probiotics dietary supplementation on growth performance, innate immunity and digestive enzymes of silver pomfret, Pampus argenteus. Indian J. Anim. Res. 2016, 50, 936–941. [Google Scholar] [CrossRef]
- Yang, P.; Li, X.; Yao, W.; Li, M.; Wang, Y.; Leng, X. Dietary effect of Clostridium autoethanogenum protein on growth, intestinal histology and flesh lipid metabolism of largemouth bass (Micropterus salmoides) based on metabolomics. Metabolites 2022, 12, 1088. [Google Scholar] [CrossRef]
- Gibson, L.; Woodworth, J.; George, A. Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture 1998, 169, 111–120. [Google Scholar] [CrossRef]
- Ghosh, S.; Ringø, E.; Deborah, G.; Rahiman, K.M.; Hatha, A. Enterobacter hormaechei bac 1010 from the gut of flathead grey mullet as probable aquaculture probiont. J. Nat. Sci. Sustain. Technol. 2011, 5, 189. [Google Scholar]
- Pintado, J.; Del Olmo, G.; Guinebert, T.; Ruiz, P.; Nappi, J.; Thomas, T.; Egan, S.; Masaló, I.; Cremades, J. Manipulating the Ulva holobiont: Co-culturing Ulva ohnoi with Phaeobacter bacteria as a strategy for disease control in fish-macroalgae IMTA-RAS aquaculture. J. Appl. Phycol. 2023, 35, 2017–2029. [Google Scholar] [CrossRef]
- Wesseling, W.; Wittka, S.; Kroll, S.; Soltmann, C.; Kegler, P.; Kunzmann, A.; Riss, H.W.; Lohmeyer, M. Functionalised ceramic spawning tiles with probiotic Pseudoalteromonas biofilms designed for clownfish aquaculture. Aquaculture 2015, 446, 57–66. [Google Scholar] [CrossRef]
- Wesseling, W.; Lohmeyer, M.; Wittka, S.; Bartels, J.; Kroll, S.; Soltmann, C.; Kegler, P.; Kunzmann, A.; Neumann, S.; Ramsch, B. Adverse effects of immobilised Pseudoalteromonas on the fish pathogenic Vibrio anguillarum: An in vitro study. J. Mar. Sci. 2016, 2016, 3683809. [Google Scholar]
- Sayes, C.; Leyton, Y.; Riquelme, C.E. Bacterium Pseudoalteromonas sp. potential probiotic for larval fish culture. Lat. Am. J. Aquat. Res. 2016, 44, 76–84. [Google Scholar] [CrossRef]
- Mejias, C.; Riquelme, C.; Sayes, C.; Plaza, J.; Silva-Aciares, F. Production of the rotifer Brachionus plicatilis (Müller 1786) in closed outdoor systems fed with the microalgae Nannochloropsis gaditana and supplemented with probiotic bacteria Pseudoalteromonas sp.(SLP1). Aquac. Int. 2018, 26, 869–884. [Google Scholar] [CrossRef]
- Wasana, W.P.; Nikapitiya, C.; Oh, C.; Eom, T.-Y.; Kang, D.-H.; De Zoysa, M. Identification, characterization and evaluation of the potential of a marine bacterium Pseudoalteromonas xiamenensis as probiotics in aquaculture using larval zebrafish model. Korean Soc. Fish. Aquat. Sci. 2021, 221. [Google Scholar]
- Yaylacı, E.U. Antibacterial Activity and In Vitro Probiotic Properties of Lactococcus lactis Isolated from Sea Bass (Dicentrarchus labrax). J. Anatol. Environ. Anim. Sci. 2022, 7, 251–256. [Google Scholar]
- Wanka, K.M.; Damerau, T.; Costas, B.; Krueger, A.; Schulz, C.; Wuertz, S. Isolation and characterization of native probiotics for fish farming. BMC Microbiol. 2018, 18, 119. [Google Scholar] [CrossRef]
- Schaeck, M.; Reyes-López, F.E.; Vallejos-Vidal, E.; Van Cleemput, J.; Duchateau, L.; Van den Broeck, W.; Tort, L.; Decostere, A. Cellular and transcriptomic response to treatment with the probiotic candidate Vibrio lentus in gnotobiotic sea bass (Dicentrarchus labrax) larvae. Fish Shellfish Immunol. 2017, 63, 147–156. [Google Scholar] [CrossRef]
- Schaeck, M.; Duchateau, L.; Van den Broeck, W.; Van Trappen, S.; De Vos, P.; Coulombet, C.; Boon, N.; Haesebrouck, F.; Decostere, A. Vibrio lentus protects gnotobiotic sea bass (Dicentrarchus labrax L.) larvae against challenge with Vibrio harveyi. Vet. Microbiol. 2016, 185, 41–48. [Google Scholar] [CrossRef]
- Holt, C.C.; Bass, D.; Stentiford, G.D.; van der Giezen, M. Understanding the role of the shrimp gut microbiome in health and disease. J. Invertebr. Pathol. 2021, 186, 107387. [Google Scholar] [CrossRef]
- Liang, H.; Tran, N.T.; Deng, T.; Li, J.; Lei, Y.; Bakky, M.A.H.; Zhang, M.; Li, R.; Chen, W.; Zhang, Y. Identification and Characterization of a Potential Probiotic, Clostridium butyricum G13, Isolated from the Intestine of the Mud Crab (Scylla paramamosain). Microbiol. Spectr. 2023, 11, e01317–e01323. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, M.; Liu, Y.; Su, Y.; Xu, T.; Yu, M.; Zhang, X.-H. Comparison of cultivable bacterial communities associated with Pacific white shrimp (Litopenaeus vannamei) larvae at different health statuses and growth stages. Aquaculture 2016, 451, 163–169. [Google Scholar] [CrossRef]
- Amoah, K.; Huang, Q.-c.; Dong, X.-h.; Tan, B.-p.; Zhang, S.; Chi, S.-y.; Yang, Q.-h.; Liu, H.-y.; Yang, Y.-z. Paenibacillus polymyxa improves the growth, immune and antioxidant activity, intestinal health, and disease resistance in Litopenaeus vannamei challenged with Vibrio parahaemolyticus. Aquaculture 2020, 518, 734563. [Google Scholar] [CrossRef]
- Amoah, K.; Dong, X.-h.; Tan, B.-p.; Zhang, S.; Chi, S.-y.; Yang, Q.-h.; Liu, H.-y.; Yang, Y.-z.; Zhang, H. Effects of three probiotic strains (Bacillus coagulans, B. licheniformis and Paenibacillus polymyxa) on growth, immune response, gut morphology and microbiota, and resistance against Vibrio harveyi of northern whitings, Sillago sihama Forsskál (1775). Anim. Feed. Sci. Technol. 2021, 277, 114958. [Google Scholar] [CrossRef]
- Amin, M.; Bolch, C.J.; Adams, M.B.; Burke, C.M. Growth enhancement of tropical abalone, Haliotis asinina L, through probiotic supplementation. Aquac. Int. 2020, 28, 463–475. [Google Scholar] [CrossRef]
- Porsby, C.H.; Gram, L. Phaeobacter inhibens as biocontrol agent against Vibrio vulnificus in oyster models. Food Microbiol. 2016, 57, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Takyi, E.; LaPorte, J.; Sohn, S.; Stevick, R.J.; Witkop, E.M.; Gregg, L.S.; Chesler-Poole, A.; Small, J.; White, M.M.; Giray, C. Development and evaluation of a formulation of probiont Phaeobacter inhibens S4 for the management of vibriosis in bivalve hatcheries. Aquac. Fish Fish. 2023, 3, 256–267. [Google Scholar] [CrossRef]
- Takyi, E.; Stevick, R.J.; Witkop, E.M.; Gregg, L.; Chesler-Poole, A.; Small, J.M.; White, M.M.; Hudson, R.; Giray, C.; Rowley, D.C. Probiotic treatment modulates the bacterial microbiome of larval eastern oysters, Crassostrea virginica, in hatcheries. Aquaculture 2024, 583, 740624. [Google Scholar] [CrossRef]
- SAHANDI, J.; Sorgeloos, P.; Hui, X.; Wang, X.; Qi, Z.; Zheng, Y.; Tang, X. Effect of possible probiotic strains on suppression of Vibrio and enhancement of growth in rotifer, Brachionus plicatilis. Iran. J. Fish. Sci. 2020, 19, 3018–3033. [Google Scholar]
- Sahandi, J.; Sorgeloos, P.; Zhang, W. Culture of Artemia franciscana nauplii with selected microbes suppressed Vibrio loading and enhanced survival, population stability, enzyme activity, and chemical composition. Aquac. Int. 2022, 30, 2279–2293. [Google Scholar] [CrossRef]
- Eliseikina, M.G.; Beleneva, I.A.; Kukhlevsky, A.D.; Shamshurina, E.V. Identification and analysis of the biological activity of the new strain of Pseudoalteromonas piscicida isolated from the hemal fluid of the bivalve Modiolus kurilensis (FR Bernard, 1983). Arch. Microbiol. 2021, 203, 4461–4473. [Google Scholar] [CrossRef]
- Nababan, Y.I.; Yuhana, M.; Penataseputro, T.; Nasrullah, H.; Alimuddin, A.; Widanarni, W. Dietary supplementation of Pseudoalteromonas piscicida 1UB and fructooligosaccharide enhance growth performance and protect the whiteleg shrimp (Litopenaeus vannamei) against WSSV and Vibrio harveyi coinfection. Fish Shellfish Immunol. 2022, 131, 746–756. [Google Scholar] [CrossRef]
- Ma, Y.X.; Liu, J.C.; Li, M.; Tao, W.; Yu, Z.C.; Liu, Y.B. The use of Pseudoalteromonas sp. F15 in larviculture of the Yesso scallop, Patinopecten yessoensis. Aquac. Res. 2019, 50, 1844–1850. [Google Scholar] [CrossRef]
- Fitriadi, R.; Setyawan, A.C.; Palupi, M.; Nurhafid, M.; Rahma, A. Isolation and molecular identification of amylolitic bacteria from vannamei shrimp (Lithopenaeus vannamei) ponds as probiotic agents. Int. J. Conserv. Sci. 2023, 14, 1659–1670. [Google Scholar] [CrossRef]
- Amin, M.; Pramujisunu, Y.; Lamid, M.; Cahyoko, Y.; Odeyemi, O.A.; Ali, M.; Nurhayati, A.P. The fate of probiotic species applied in intensive grow-out ponds in rearing water and intestinal tracts of white shrimp, Litopenaeus vannamei. Open Agric. 2023, 8, 20220152. [Google Scholar] [CrossRef]
- Sumon, M.S.; Ahmmed, F.; Khushi, S.S.; Ahmmed, M.K.; Rouf, M.A.; Chisty, M.A.H.; Sarower, M.G. Growth performance, digestive enzyme activity and immune response of Macrobrachium rosenbergii fed with probiotic Clostridium butyricum incorporated diets. J. King Saud Univ.-Sci. 2018, 30, 21–28. [Google Scholar] [CrossRef]
- Tadese, D.A.; Sun, C.; Liu, B.; Muritu, R.W.; Kevin, N.T.; Zhou, Q.; Zhu, L.; Zhang, H.; Bo, L.; Liu, M. Combined effects of emodin and Clostridium butyricum on growth and non-specific immunity of giant freshwater prawns, Macrobrachium rosenbergii. Aquaculture 2020, 525, 735281. [Google Scholar] [CrossRef]
- Wangari, M.R.; Gao, Q.; Sun, C.; Liu, B.; Song, C.; Tadese, D.A.; Zhou, Q.; Zhang, H.; Liu, B. Effect of dietary Clostridium butyricum and different feeding patterns on growth performance, antioxidant and immune capacity in freshwater prawn (Macrobrachium rosenbergii). Aquac. Res. 2021, 52, 12–22. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, Y.; Dong, H.; Wang, Y.; Zheng, X.; Zhang, J. Effect of dietary Clostridium butyricum on growth, intestine health status and resistance to ammonia stress in Pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2017, 65, 25–33. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Y.; Dong, H.; Ding, X.; Liu, Q.; Li, H.; Zhang, J.; Xiong, D. Changes in the intestine microbial, digestive, and immune-related genes of Litopenaeus vannamei in response to dietary probiotic Clostridium butyricum supplementation. Front. Microbiol. 2018, 9, 2191. [Google Scholar] [CrossRef]
- Li, H.-d.; Tian, X.-l.; Dong, S.-l. Growth performance, non-specific immunity, intestinal histology and disease resistance of Litopenaeus vannamei fed on a diet supplemented with live cells of Clostridium butyricum. Aquaculture 2019, 498, 470–481. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, J.; Huang, J.; Jiang, S. Effects of dietary Clostridium butyricum on the growth, digestive enzyme activity, antioxidant capacity, and resistance to nitrite stress of Penaeus monodon. Probiot. Antimicrob. Proteins 2019, 11, 938–945. [Google Scholar] [CrossRef]
- Luo, K.; Tian, X.; Wang, B.; Wei, C.; Wang, L.; Zhang, S.; Liu, Y.; Li, T.; Dong, S. Evaluation of paraprobiotic applicability of Clostridium butyricum CBG01 in improving the growth performance, immune responses and disease resistance in Pacific white shrimp, Penaeus vannamei. Aquaculture 2021, 544, 737041. [Google Scholar] [CrossRef]
- Duan, Y.; Dong, H.; Wang, Y.; Zhang, Y.; Zhang, J. Effects of the dietary probiotic Clostridium butyricum on intestine digestive and metabolic capacities, SCFA content and body composition in Marsupenaeus japonicus. J. Ocean. Univ. China 2018, 17, 690–696. [Google Scholar] [CrossRef]
- Zhao, W.; Yuan, T.; Piva, C.; Spinard, E.J.; Schuttert, C.W.; Rowley, D.C.; Nelson, D.R. The probiotic bacterium Phaeobacter inhibens downregulates virulence factor transcription in the shellfish pathogen Vibrio coralliilyticus by N-acyl homoserine lactone production. Appl. Environ. Microbiol. 2019, 85, e01518–e01545. [Google Scholar] [CrossRef]
- Zhao, J.; Ling, Y.; Zhang, R.; Ke, C.; Hong, G. Effects of dietary supplementation of probiotics on growth, immune responses, and gut microbiome of the abalone Haliotis diversicolor. Aquaculture 2018, 493, 289–295. [Google Scholar] [CrossRef]
- Eze, O.C.; Berebon, D.P.; Emencheta, S.C.; Evurani, S.A.; Okorie, C.N.; Balcão, V.M.; Vila, M.M. Therapeutic Potential of Marine Probiotics: A Survey on the Anticancer and Antibacterial Effects of Pseudoalteromonas spp. Pharmaceuticals 2023, 16, 1091. [Google Scholar] [CrossRef]
- Kesarcodi-Watson, A.; Miner, P.; Nicolas, J.-L.; Robert, R. Protective effect of four potential probiotics against pathogen-challenge of the larvae of three bivalves: Pacific oyster (Crassostrea gigas), flat oyster (Ostrea edulis) and scallop (Pecten maximus). Aquaculture 2012, 344, 29–34. [Google Scholar] [CrossRef]
- Offret, C.; Rochard, V.; Laguerre, H.; Mounier, J.; Huchette, S.; Brillet, B.; Le Chevalier, P.; Fleury, Y. Protective efficacy of a Pseudoalteromonas strain in European abalone, Haliotis tuberculata, infected with Vibrio harveyi ORM4. Probiot. Antimicrob. Proteins 2019, 11, 239–247. [Google Scholar] [CrossRef]
- Yuhana, M.; Zairin Jr, M. The nutritional value of Artemia sp. enriched with the probiotic Pseudoalteromonas piscicida and the prebiotic mannan-oligosaccharide. Aquac. Aquar. Conserv. Legis. 2017, 10, 8–17. [Google Scholar]
- Sorieul, L.; Wabete, N.; Ansquer, D.; Mailliez, J.-R.; Pallud, M.; Zhang, C.; Lindivat, M.; Boulo, V.; Pham, D. Survival improvement conferred by the Pseudoalteromonas sp. NC201 probiotic in Litopenaeus stylirostris exposed to Vibrio nigripulchritudo infection and salinity stress. Aquaculture 2018, 495, 888–898. [Google Scholar] [CrossRef]
- Pardede, M.A.; Widanarni, W.; Sukenda, S.; Yuhana, M. Evaluation of dietary microencapsulated synbiotics Pseudoalteromonas piscicida 1UB, Bacillus NP5, and mannan-oligosaccharides to prevent Vibrio parahaemolyticus infection in Pacific white shrimp i. Aquac. Int. 2024, 32, 2077–2091. [Google Scholar] [CrossRef]
- Li, J.; Weinberger, F.; Saha, M.; Majzoub, M.E.; Egan, S. Cross-host protection of marine bacteria against macroalgal disease. Microb. Ecol. 2022, 84, 1288–1293. [Google Scholar] [CrossRef]
- Hai, N.V.; Buller, N.; Fotedar, R. Effects of probiotics (Pseudomonas synxantha and Pseudomonas aeruginosa) on the growth, survival and immune parameters of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquac. Res. 2009, 40, 590–602. [Google Scholar] [CrossRef]
Bacterial Species | Doses | Duration (Days) | Finfish Species | Parameters Investigated | References |
---|---|---|---|---|---|
Gram-positives | |||||
B. animalis subsp. Lactis | 1010 cells g−1 | 15 or 30 | Japanese seabass (Lateolabrax japonicus) | ↑ Growth, serum antioxidant capacity and innate immunity; modulated hindgut microbiota; ↓ levels of oxidants | [23] |
B. bifidum and Lactobacillus acidophilus | 0, 1, 2, and 3 g kg−1 | 56 | Hybrid catfish (Heteroclarias) | ↑ Growth performance and survival | [24] |
B. bifidum | 107 cells/100 g diet | 98 | Nile tilapia (Oreochromis niloticus) | ↑ Growth performance and resistance against Aeromonas hydrophila | [25] |
B. animalis and B. lactis | 107, 2 × 107, and 3 × 107 | 56 days | Rainbow trout (Oncorhynchus mykiss) | By feeding the lowest supplementation, highest growth performance and gut lactobacilli were observed | [26] |
B. bifidum, B. breve, B. lactis and different species of lactic acid bacteria | 3.2 × 109 CFU g−1 | N/A | Common carp (Cyprinus carpio) | ↑ Growth performance and haematological profile | [27] |
B. bifidum, Enterococcus faecium, different species of lactobacilli and Pediococcus acidilactici | 109 CFU g−1 | 90 | Nile tilapia | ↑ Growth affects muscle growth and gene expression, and increases the number of intestinal villi | [28] |
B. bifidum, Lactobacillus sp. and B. subtilis | 106, 2 × 106, and 3 × 106 kg−1 | 56 | Siberian sturgeon (Acipenser baerii) | ↑ Growth performance, lysozymes, and IgM | [29] |
B. bifidum and Lactobacillus acidophilus | 0.5 and 1.0 g kg−1 | 56 | Rainbow trout | ↑ Growth and feed conversion, serum complement, lysozyme, and bactericidal activities, and resistance against Yersinia ruckeri | [30] |
B. lactis and Lactobacillus | 5 × 106 CFU g−1 | 56 | Asian seabass (Lates calcarifer) | ↑ Growth performance, microvilli length, total amino acids in muscle, and resistance against Streptococcus iniae; modulated the gut microbiota by decreasing pathogens | [31] |
B. longum, B. thermophilum, Bacillus subtilis, and Lactobacillus acidophilus | 0, 1, 2, 3, and 4 g bacteria mixture kg−1 | 90 | Nile tilapia | ↑ Growth performance and fish health | [32] |
Bifidobacterium, Lactobacillus, Saccharomyces cerevisiae, Spirulina, and phytase | 0.5, 1, and 2 g kg−1 | Hatchlings (day 8–38), fry (day 38–68), and advanced fry (day 68–98) | Rohu (Labeo rohita) | ↑ Survival and specific growth rate | [33] |
Bifidobacterium sp., L. acidophilus, and E. faecium | 3.5 × 109 CFU g−1 Bifidobacterium sp., 3.5 × 109 CFU g−1, L. acidophilus, and 3.5 × 109 CFU g−1 E. faecium | 63 | Nile tilapia | ↑ Resistance against A. hydrophila without growth reduction | [34] |
Brevibacillus brevis | Artemia as vector | N/A | European seabass (Dicentrarchus labrax) larvae | ↑ Growth | [35] |
B. brevis | 107 CFU mL−1 | N/A | Rainbow trout | Probiotic administration affected haematological and biochemical parameters | [36] |
Brevibacillus laterosporus | 5 × 103, 5 × 104, and 5 × 105 CFU mL−1 | 56 | Crucian carp (Carassius auratus) | ↑ Water quality, growth performance, antioxidant capacity, and digestive enzyme activities | [37] |
Clostridium autoethanogenum protein (CAP) | Dose N/A | 56 | Largemouth bass (Micropterus salmoides) | ↑ Growth and intestinal health and modulated the gut microbiota | [38] |
Combination of T. molitor-, Chlorella meal, CAP, and cottonseed protein concentrate at a ratio of 1:1:6:4 (Blend B) | Dose N/A | 56 | Gibel carp (Carassius gibelio) | ↑ Growth and intestinal health | [39] |
Clostridium butyricum | 106 CFU g−1 | 10 | Crucian carp | Administration modulated the gut microbiota and improved the microbial metabolism | [40] |
C. butyricum | 108 CFU g−1 | 56 | Chinese perch (Siniperca chuasti) | ↓ Growth performance, length of intestinal villi affecting nutrient absorption efficiency, and gut microbial diversity | [41] |
C. butyricum | 106, 107 (CB2), and 108 CFU g−1 | 56 | Turbot (Scophthalmus maximus) | Administration of CB2 ↑ growth, thickness, width, and height of intestinal epithelium and up-regulation of tight junction proteins; modulated the gut microbiota | [42] |
C. butyricum | Doses are presented in the review | Durations are presented in the review | Different fish species | The review described health effects and disease resistance | [43] |
C. butyricum | 0.1 × 107, 2 × 107, 3 × 107, and 4 × 107 CFU g−1 | 56 | Hybrid grouper (Epinephelus lanceolatus♂ × E. fuscoguttatus♀) | ↑ Growth performance, intestinal enzyme activities, and intestinal morphology; affected expression levels in the intestine of antioxidant-related genes, immune-related genes, tight junction protein genes, and intestinal microbiota | [44] |
Microbacterium, Ruegeria, Pseudomonas, and Vibrio | 5 × 106 CFU ml−1 | 10 | Atlantic cod (Gadus morhua) larvae | Only Microbacterium seems to colonise the larval intestine even though all candidates originated from cod larvae intestine | [45] |
Microbacterium sp. and Rummeliibacillus sp. | 108 CFU g−1 (50:50 ratio) | 56 | Flounder (Paralichthys olivaceus) | ↑ Growth, feed utilisation, the immune parameter myeloperoxidase, and the abundance of beneficial gut bacteria → serum biochemical parameters | [46] |
Micrococcus aloeverae | 108 cells g−1 | 42 | Japanese seabass | → Weight gain and specific growth rate | [47] |
Micrococcus yunnanensis | 108 cells g−1 | 42 | Japanese seabass | ↑ Weight gain and specific growth rate | [47] |
Micrococcus luteus | In vitro test | _ | Isolated from tiger grouper (Epinephelus fuscoguttatus) | Revealed antagonistic activity against four pathogens | [48] |
Paenibacillus ehimensis NPUST1 | 106 and 107 CFU g−1 | 60 | Nile tilapia | ↑ Growth performance and innate immunity; ↑ disease resistance against A. hydrophila and S. iniae | [49] |
Paenibacillus ehimensis | 106 and 107 CFU g−1 | 56 | Zebrafish (Danio rerio) | ↑ Hepatic mRNA expression of carbohydrate metabolism-related genes and innate immune-related genes, and resistance against A. hydrophila and S. iniae | [50] |
Paenibacillus polymyxa | 103 (PP1), 104 (PP2), and 105 CFU mL−1 (PP3) | 60 | Common carp | ↑ Growth performance, innate immunity, and disease resistance against A. hydrophila | [51] |
P. polymyxa HGA4C | 106 and 108 CFU g−1 | 60 | Nile tilapia | ↑ Growth performance and immune response; upregulated the expression of growth and immune-related genes; intestinal MUC 2 up-regulation showed mucosal remodelling in the fish | [52] |
P. polymyxa | 106 cells mL−1 | 30 | Grass carp (Ctenopharyngodon idellus) | In vitro test showed that the bacterium displayed antagonistic activity against 11 pathogens; colonised the abdomen; ↑ growth and enzyme activities; upregulated the expression of antioxidant-related genes and immune-related genes; resistance against A. hydrophila | [53] |
Paenibacillus sp., B. subtilis, Bacillus amyloliquefaciens, and Lactobacillus rhamnosus | 107 CFU g−1 of each probiotic | 56 | Asian seabass | ↑ Growth performance and resistance against Vibrio alginolyticus | [54] |
P. polymyxa HGA4C and Bacillus licheniformis HGA8B | 106 (PB1) and 108 CFU g−1 (PB2) | Nile tilapia | ↑ Growth performance, immune response, and upregulated expression of growth- and immune-related genes; ↑ intestinal MUC 2 up-regulation showed mucosal remodelling in the fish and disease resistance against A. hydrophila | [55] | |
Gram-negatives | |||||
Acinetobacter sp. P27 and P33 | In vitro test of a new potential probiotic bacteria | _ | Isolated from intestinal content of wild great amberjack (Seriola lalandi) | ↑ Antimicrobial activity against Vibrio 25LT1 | [56] |
Aeromonas veronii V03 | 3.2 × 107 and 3.5 × 109 CFU g−1 | 28 | Common carp | ↑ Growth, innate immunity, and resistance against A. hydrophila | [57] |
A. veronii (with high α-Gal content) | 106, 107, and 108 CFU fish−1 (injected intra-peritoneally | 7 | Zebrafish | Modified the gut microbiota and innate immune responses; beneficial effect on nutrient metabolism and reduced oxidative stress; Effective to control Mycobacterium marinum | [58] |
Alcaligenes faecalis subsp. faecalis | In vitro characterization of a new potential probiotic bacteria | _ | Isolated from intestinal contents of meagre (Argyrosomus regius) | Potentially probiotic due to production of antibacterial substances, resistance to pH gradients, adhesion, growth in mucus, resistance to bile, hydrophobicity, and competition for nutrients | [59] |
Alcaligenes faecalis | Doses are presented in the review | Durations are presented in the review | Different fish species | The authors stated “due to its antimicrobial properties it can act as probiotics and can often be used as biocontrol agent” | [60] |
Alcaligenes faecalis Y311 | 104 cells mL− 1 added every 7 days | 90 | Nile tilapia | ↑ Intestinal alkaline phosphatase activities; → abundance of the main gut bacteria; ↓ abundance of potential pathogens | [61] |
Alcaligenes sp. AFG22 | 108 CFU g−1 | 90 | Malaysian Mahseer (Tor tanbroides) | ↑ Villus length, villus with, villus area, and number of lipolytic, proteolytic, and cellulolytic bacteria | [62] |
Alcaligenes sp. AFG22 | 108 CFU g−1 | 90 | Malaysian Mahseer | ↑ Growth performance and upregulated growth-related gene expression and hypertrophic muscle progression | [63] |
Enterobacter sp. | 107 CFU mL−1 | 56 | Rainbow trout | ↑ Disease resistance and innate and adaptive immunity | [64] |
Enterobacter sp. G87 | 104, 105, and 106 CFU mL−1 | Asian seabass | ↑ Growth performance and disease resistance | [65] | |
Enterobacter asburiae E7 | 107 CFU g−1 | 28 | Common carp | Revealed antibacterial activities against 12 pathogens; upregulation of immune-related genes; ↑ resistance against Aeromonas veronii; → growth | [66] |
Enterobacter sp. (JC10) and Bacillus sp. (PCP1) | 5 × 105 CFU g−1 | 30 | Nile tilapia | → Growth performance | [67] |
Phaeobacter | Rotifers and Artemia used as vectors, 5 × 107 CFU mL−1 | 60 | European seabass larvae | ↑ Specific growth rate and bacterial diversity, but did not appear after probiotic administration stopped after 18 days | [68] |
Phaeobacter | Doses are presented in the review | Durations are presented in the review | Different fish species | The review described health effects and disease resistance | [18] |
Phaeobacter sp. and Phaeobacter gallaeciensis | Characterisation of host-associated microbiota | _ | Phaeobacter was isolated from greater amberjack (Seriola dumerili) and Artemia | Inhibited in vivo growth of A. veronii, Vibrio harveyi, Vibrio anguillarum, and V. alginolyticus | [69] |
Phaeobacter inhibens | N/A, water additive | N/A | Greater amberjack | Entered the metamorphic phase with greater body length; protein synthesis was triggered to facilitate hypertrophic growth | [70] |
Phaeobacter piscinae strain S26 | Testing antagonistic activity | _ | Isolated from Greek seabass larval unit | S26 produces the antibacterial compound tropodithietic acid; as S26 was more effective than P. inhibens in inhibition of pathogens, the author suggested S26 as a promising new probiotic candidate | [71] |
Pseudoalteromonas piscicida 2515 | 106, 107, 108, and 109 CFU g−1 | 35 | Olive flounder (Paralichthys olivaceus) | ↑ Immune system and disease resistance against V. anguillarum; modulated intestinal microbiota | [72] |
Pseudoalteromonas ruthenica | 3.4 × 108 CFU mL−1 | N/A | Zebrafish larvae | ↑ Resistance against Edwardsiella piscicida; low pro-inflammatory and high responsive protein expression levels; improved goblet cell density and average villi height; modulated the gut microbiota | [73] |
Pseudoalteromonas, mixed strains (hCg-42+hOe-125) | 106 CFU mL−1 | 56-86 | Seabass | ↑ Resistance against V. harveyi | [74] |
Pseudomonas sp. GP21 | 108 cells mL−1 | 3 and 24 h | Head kidney leukocytes of Atlantic cod | ↑ Defence genes BPI/LBP and g-type lysozyme, cytotoxic cell receptor protein-1 (NCCRP-1), and GSH-Px | [75] |
Pseudomonas sp. P18 | In vitro evaluation of potential probiotics | _ | Isolated from great amberjack | ↑ Antimicrobial activity against Vibrio 25LT1, Vibrio 25LS1, and Vibrio 25LH1 | [56] |
Pseudomonas H6 surfactant | 10 mg/L | 10 | Rainbow trout | ↑ Disease resistance against A. hydrophila | [76] |
Pseudomonas species | 108 CFU/g | 60 | Olive flounder | ↑ Growth performance, digestive enzyme activity, and gut microbiota composition → Growth, immunity, and apoptosis-related gene expression | [77] |
P. aeruginosa PsDAHP1 | Intestine of healthy Indian shrimp (Fenneropenaeus indicus) | 10 | Zebrafish | ↓ Colonization of Vibrio parahaemolyticus on gills and intestine; ↑ superoxide dismutase and lysozyme activity and survival against V. parahaemolyticus | [78] |
P. entomophilia (with high α-Gal content) | 106, 107, and 108 CFU fish−1 (injected intra-peritoneally) | 7 | Zebrafish | Modified the gut microbiota and innate immune responses; beneficial effect on nutrient metabolism and reduced oxidative stress; effective to control Mycobacterium marinum | [58] |
P. entomophilia | Characterization of potential probiotics | _ | Isolated from rohu intestine | The strain revealed antagonistic effect towards 12 pathogenic bacteria; tolerated high pH and bile concentrations; in vitro mucosal adherence, auto-aggregation capacity, and production of extracellular enzymes | [79] |
P. fluorescents | 108 CFU g−1 | 14 | Nile tilapia (Oreochromis niloticus) | ↑ Haematological parameters, total protein, and globulin ↓ mortality against two fish pathogens P. angulliseptica and Streptococcus faecium | [80] |
P. fluorescens strains LE89 and LE141 | 106 CFU mL−1 | 14 | Rainbow trout | ↑ Innate immune response, the production of siderophores, phagocytic activity; ↓ Saprolegnia parasitica infection | [81] |
P. fluorescens | 107 CFU mL−1 | N/A | Rainbow trout | Probiotic administration affected haematological and biochemical parameters | [82] |
P. monteilii | 108 CFU g−1 | 56 | Grass carp | ↑ Growth performance, expression of immune-related genes, antioxidant enzymes and disease resistance; ↓ Aeromonas load in liver and gut; modulated the gut microbiota | [83] |
P. mosselii | Characterization of potential probiotics | _ | Isolated from rohu intestine | Revealed antagonistic effect towards 14 pathogenic bacteria; tolerated high pH and bile concentrations; in vitro mucosal adherence, auto-aggregation capacity, and production of extracellular enzymes; sensitive to several antibiotics | [84] |
P. putida | 107 CFU g−1 | 60 | Nile tilapia | ↑ Growth performance, immune response and disease resistance against A. hydrophila | [85] |
Shewanella coralllii | Screening and characterization of potential probiotics | _ | Isolated from hybrid grouper intestine | Based on simulated gastro-intestinal fluid tolerance, adhesion, digestive enzyme production, antibacterial activity and no signs of disease symptoms or death in grouper, the authors suggested probiotic potential | [86] |
c putrefaciens | S. putrefaciens Pdp11 is a well-known strain used as a probiotic in aquaculture | _ | Isolated from diseased eels | The paper describes that two of five pathogenic strains of S. putrefaciens contain plasmids, but no plasmids were revealed in the probiotic Pdp11 strain | [87] |
S. putrefaciens Pdp11 | Postbiotic use of bacterial metabolites including extracellular products (ECPs), improving host physiology | _ | N/A but was selected due to in vitro and in vivo ability | The investigation evaluates how ECPs are affected by culture media, cultivation temperature, growth phase, and salinity | [88] |
Shewanella | Doses are presented in the reviews | Durations are presented in the reviews | Different fish species | The reviews describe health effects and disease resistance | [89] |
Vibrio proteolyticus | Injected intra-peritoneally using 0.1 mL of 109 CFU mL−1, bath, or diet | 30 | Senegalese sole (Solea senegalensis) | Activated gene expression; ↑ disease resistance against intraperitoneally V. harveyi; → Photobacterium damselae subsp. piscicida | [90] |
Vibrio rhodolitus | Screening and characterization of potential probiotics | _ | Isolated from hybrid grouper intestine | Based on simulated gastro-intestinal fluid tolerance, adhesion, digestive enzyme production, antibacterial activity and no disease symptoms or death being shown in grouper, the authors suggested probiotic potential | [86] |
Bacterial Species | Doses | Duration (Days) | Shellfish Species | Parameters Investigated | References |
---|---|---|---|---|---|
Gram-positives | |||||
Clostridium butyricum | 107 CFU g−1 | 7 | Mud crab (Scylla paramamosain) | ↑ Resistance against Vibrio parahaemolyticus; affected the abundance and diversity of microbiota sampled from gut contents of the posterior intestine | [110] |
Microbacterium aquimaris | In vivo test | _ | Isolated from Pacific white shrimp (Litopenaeus vannamei) intestine | Revealed N-acyl-homoserine lactone degrading activity; the authors suggested M. aquimaris as probiotic candidate for shrimp hatcheries | [111] |
Paenibacillus polymyxa | 106 (PP1), 107 (PP2) and 108 (PP3) CFU g−1 | 60 | Pacific white shrimp | ↑ Growth, serum, hepatopancreas immune and antioxidant activities, digestive enzyme activities, and intestinal morphology; shaped the gut microbiota composition and disease resistance against V. parahaemolyticus | [112] |
P. polymyxa, Bacillus coagulans, and B. licheniformis | 1012 CFU kg−1 | 56 | Northern whitings (Sillago sihama) | ↑ Growth performance and resistance against V. harveyi | [113] |
Gram-negatives | |||||
Aeromonas media | 104 CFU mL−1 | 5 | Pacific oyster (Crassostrea gigas) | In vitro studies showed that the strain displayed antagonistic activity towards several shellfish and fish pathogens | [97] |
Enterobacter ludwigii MA208, Bacillus amyloliquefaciens MA228, and Pediococcus acidilactici MA160 | 107 CFU mL−1 | 62 | Abalone | ↑ Growth performance | [114] |
Phaeobacter | Doses are presented in the review | Durations are presented in the review | Different shellfish species | The review described health effects and disease resistances | [9] |
Phaeobacter inhibens DSM 17395 | 107 CFU mL−1 | 7 | European flat oysters (Ostrea edulis) | ↑ Growth and disease resistance against V. vulnificus | [115] |
P. inhibens S4 | 104 CFU mL−1 | 7–14 | Eastern oyster (Crassostrea virginica) | ↑ Disease resistance against Vibrio coralliilyticus; → growth and survival | [116] |
P. inhibens S4 | 104 CFU mL−1 | 7–12 | Eastern oyster | Significant effect on bacterial beta-diversity; → effect on alpha-diversity | [117] |
Pseudoalteromonas flavipulchra | 108 CFU mL−1 | 8 | Rotifer (Brachionus plicatilis) | → Growth and Vibrio counts | [118] |
P. flavipulchra | 108 CFU mL−1 | 8 | Artemia franciscana nauplii | → Growth and Vibrio counts | [119] |
Pseudoalteromonas piscicida | Characterisation of a potential new probiotic bacteria | _ | P. piscicida was isolated from the bivalve (Modiolus kurilensis) | The strain showed antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, and Candida albicans, but not against E. coli or P. aeruginosa | [120] |
P. piscicida 1UB | 108 CFU mL−1 | 40 | Pacific white shrimp | ↑ Growth performance, immune response, and disease resistance against V. harveyi | [121] |
Pseudoalteromonas sp. F15 | 106 and 106 CFU mL−1 | 49 | Yesso scallop (Patinopecten yessoensis) | ↑ Specific growth rate; survival; pepsin, amylase and catalase activities; lysozyme, superoxide dismutase and catalase activities; and resistance against Vibrio splendidus | [122] |
Pseudoalteromonas | Characterisation of amylolytic bacteria | _ | Pseudoalteromonas was isolated from Pacific white shrimp | Revealed high amylolytic content and antimicrobial activity | [123] |
A commercial product containing P. putida, L. plantarum, L. fermentum, and B. subtilis | N/A | 60 | Pacific white shrimp | Modulated the bacterial community in water and shrimp intestine | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoseinifar, S.H.; Faheem, M.; Liaqat, I.; Van Doan, H.; Ghosh, K.; Ringø, E. Promising Probiotic Candidates for Sustainable Aquaculture: An Updated Review. Animals 2024, 14, 3644. https://doi.org/10.3390/ani14243644
Hoseinifar SH, Faheem M, Liaqat I, Van Doan H, Ghosh K, Ringø E. Promising Probiotic Candidates for Sustainable Aquaculture: An Updated Review. Animals. 2024; 14(24):3644. https://doi.org/10.3390/ani14243644
Chicago/Turabian StyleHoseinifar, Seyed Hossein, Mehwish Faheem, Iram Liaqat, Hien Van Doan, Koushik Ghosh, and Einar Ringø. 2024. "Promising Probiotic Candidates for Sustainable Aquaculture: An Updated Review" Animals 14, no. 24: 3644. https://doi.org/10.3390/ani14243644
APA StyleHoseinifar, S. H., Faheem, M., Liaqat, I., Van Doan, H., Ghosh, K., & Ringø, E. (2024). Promising Probiotic Candidates for Sustainable Aquaculture: An Updated Review. Animals, 14(24), 3644. https://doi.org/10.3390/ani14243644