Similarity of Microplastic Characteristics between Amphibian Larvae and Their Aquatic Environment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergmann, M.; Gutow, L.; Klages, M. Marine Anthropogenic Litter; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Prata, J.C. Microplastics and human health: Integrating pharmacokinetics. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1489–1511. [Google Scholar] [CrossRef]
- Chen, M.; Yue, Y.; Bao, X.; Yu, H.; Tan, Y.; Tong, B.; Kumkhong, S.; Yu, Y. Microplastics as Contaminants in Water Bodies and Their Threat to the Aquatic Animals: A Mini-Review. Animals 2022, 12, 2864. [Google Scholar] [CrossRef] [PubMed]
- Kolenda, K.; Kolenda, N.; Pstrowska, K. Microplastic ingestion by tadpoles of pond-breeding amphibians—First results from Central Europe (SW Poland). Environ. Sci. Pollut. Res. 2020, 27, 33380–33384. [Google Scholar] [CrossRef]
- Terzi, Y. Microplastic ingestion by invasive Prussian carp (Carassius gibelio) used in fishmeal production in Türkiye. Environ. Monit. Assess. 2023, 195, 1232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xu, L. Transport of micro- and nanoplastics in the environment: Trojan-Horse effect for organic contaminants. Crit. Rev. Environ. Sci. Technol. 2020, 52, 810–846. [Google Scholar] [CrossRef]
- Kalčíková, G. Beyond ingestion: Adhesion of microplastics to aquatic organisms. Aquat. Toxicol. 2023, 258, 106480. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.; Malafaia, G. Microplastic ingestion induces behavioral disorders in mice: A preliminary study on the trophic transfer effects via tadpoles and fish. J. Hazard. Mater. 2021, 401, 123263. [Google Scholar] [CrossRef] [PubMed]
- Franzellitti, S.; Canesi, L.; Auguste, M.; Wathsala, R.H.G.R.; Fabbri, E. Microplastic exposure and effects in aquatic organisms: A physiological perspective. Environ. Toxicol. Pharmacol. 2019, 68, 37–51. [Google Scholar] [CrossRef]
- Attademo, A.; Cuzziol Boccioni, A.; Peltzer, P.; Franco, V.; Simoniello, M.; Passeggi, M.C.G.; Lajmanovich, R. Effect of microplastics on the activity of carboxylesterase and phosphatase enzymes in Scinax squalirostris tadpoles. Environ. Monit. Assess. 2022, 194, 718. [Google Scholar] [CrossRef]
- Frank, Y.A.; Interesova, E.A.; Solovyev, M.M.; Xu, J.; Vorobiev, D.S. Effect of Microplastics on the Activity of Digestive and Oxidative-Stress-Related Enzymes in Peled Whitefish (Coregonus peled Gmelin) Larvae. Int. J. Mol. Sci. 2023, 24, 10998. [Google Scholar] [CrossRef]
- Critchell, K.; Hoogenboom, M.O. Effects of microplastic exposure on the body condition and behaviour of planktivorous reef fish (Acanthochromis polyacanthus). PLoS ONE 2018, 13, e0193308. [Google Scholar] [CrossRef] [PubMed]
- Ruthsatz, K.; Domscheit, M.; Engelkes, K.; Vences, M. Microplastics ingestion induces plasticity in digestive morphology in larvae of Xenopus laevis. Comp. Biochem. Physiol. A 2022, 269, 111210. [Google Scholar] [CrossRef] [PubMed]
- Bonfanti, P.; Colombo, A.; Saibene, M.; Motta, G.; Saliu, F.; Catelani, T.; Mehn, D.; La Spina, R.; Ponti, J.; Cella, C.; et al. Microplastics from miscellaneous plastic wastes: Physico-chemical characterization and impact on fish and amphibian development. Ecotoxicol. Environ. Saf. 2021, 225, 112775. [Google Scholar] [CrossRef] [PubMed]
- Attademo, A.; Curi, L.; Cuzziol Boccioni, A.; Barrios, C.; Peltzer, P.; Simoniello, M.; Lajmanovich, R.; Michlig, P.; Repetti, M.; Ríos, J. Microplastics and plastic additives as contaminants of emerging concern: A multi-biomarker approach using Rhinella arenarum tadpoles. Environ. Adv. 2023, 14, 100444. [Google Scholar] [CrossRef]
- Bjorndal, K.A.; Bolten, A.B.; Lagueux, C.J. Ingestion of marine debris by juvenile sea turtles in Coastal Florida habitats. Mar. Pollut. Bull. 1994, 28, 154–158. [Google Scholar] [CrossRef]
- Demir, E. Adverse biological effects of ingested polystyrene microplastics using Drosophila melanogaster as a model in vivo organism. J. Toxicol. Environ. Health. Part A 2021, 84, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M.E.; Le Goïc, N.; Quillien, V.; Mingant, C.; Epelboin, Y.; et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. USA 2016, 113, 2430–2435. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Zhou, A.; Ye, Q.; Feng, Y.; Wang, Z.; Wang, S.; Xu, G.; Zou, J. Species-specific effect of microplastics on fish embryos and observation of toxicity kinetics in larvae. J. Hazard. Mater. 2021, 403, 123948. [Google Scholar] [CrossRef]
- D’costa, A. Microplastics in decapod crustaceans: Accumulation, toxicity and impacts, a review. Sci. Total Environ. 2022, 832, 154963. [Google Scholar] [CrossRef]
- Serra, T.; Barcelona, A.; Pous, N.; Salvado, V.; Colomer, J. Synergistic effects of water temperature, microplastics and ammonium as second and third order stressors on Daphnia magna. Environ. Pollut. 2020, 267, 115439. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Chen, M.; He, S.; Fang, C.; Chen, M.; Li, D.; Wu, D.; Chernick, M.; Hinton, D.; Bo, J.; et al. Microplastics decrease the toxicity of triphenyl phosphate (TPhP) in the marine medaka (Oryzias melastigma) larvae. Sci. Total Environ. 2021, 763, 143040. [Google Scholar] [CrossRef] [PubMed]
- Lajmanovich, R.; Attademo, A.; Lener, G.; Cuzziol Boccioni, A.; Peltzer, P.; Martinuzzi, C.; Demonte, L.; Repetti, M. Glyphosate and glufosinate ammonium, herbicides commonly used on genetically modified crops, and their interaction with microplastics: Ecotoxicity in anuran tadpoles. Sci. Total Environ. 2021, 804, 150177. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, M.; Brehm, J.; Vollmer, M.; Jasinski, J.; Xu, C.; Zainuddin, S.; Fröhlich, T.; Schott, M.; Greiner, A.; Scheibel, T.; et al. Shape, size, and polymer dependent effects of microplastics on Daphnia magna. J. Hazard. Mater. 2022, 426, 128136. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Motti, C.; Hamann, M.; Kroon, F. Assessment of microplastic bioconcentration, bioaccumulation and biomagnification in a simple coral reef food web. Sci. Total Environ. 2023, 858, 159615. [Google Scholar] [CrossRef] [PubMed]
- Manríquez-Guzmán, D.; Chaparro-Herrera, D.; Ramírez-García, P. Microplastics are transferred in a trophic web between zooplankton and the amphibian Axolotl (Ambystoma mexicanum): Effects on their feeding behavior. Food Webs 2023, 37, e00316. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, B.; Chen, H.; Yuan, R.; Wang, F. Distribution, biological effects and biofilms of microplastics in freshwater systems—A review. Chemosphere 2022, 299, 134370. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Chernick, M.; Hinton, D.E.; Shi, H. Microplastics in Small Waterbodies and Tadpoles from Yangtze River Delta, China. Environ. Sci. Technol. 2018, 52, 8885–8893. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Chen, J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2017, 137, 362–374. [Google Scholar] [CrossRef]
- Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 2019, 29, R960–R967. [Google Scholar] [CrossRef]
- Li, C.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2020, 707, 135578. [Google Scholar] [CrossRef]
- Xu, S.; Ma, J.; Ji, R.; Pan, K.; Miao, A.-J. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ. 2020, 703, 134699. [Google Scholar] [CrossRef] [PubMed]
- da Costa, I.D.; Costa, L.L.; Zalmon, I.R. Are fishes selecting the trash they eat? Influence of feeding mode and habitat on microplastic uptake in an artificial reef complex (ARC). Sci. Total Environ. 2023, 904, 166788. [Google Scholar] [CrossRef] [PubMed]
- Setälä, O.; Norkko, J.; Lehtiniemi, M. Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar. Pollut. Bull. 2016, 102, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Su, L.; Xue, Y.; Mu, J.; Zhu, J.; Xu, J.; Shi, H. Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere 2016, 164, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Altig, R.; Whiles, M.; Taylor, C. What tadpoles really eat? Assessing the trophic status of an understudied and imperilled group of consumers in freshwater habitats. Freshw. Biol. 2007, 52, 386–395. [Google Scholar] [CrossRef]
- Watts, A.; Urbina, M.; Corr, S.; Lewis, C.; Galloway, T. Ingestion of Plastic Microfibers by the Crab Carcinus maenas and Its Effect on Food Consumption and Energy Balance. Environ. Sci. Technol. 2015, 49, 14597–14604. [Google Scholar] [CrossRef] [PubMed]
- Ruthsatz, K.; Schwarz, A.; Gomez-Mestre, I.; Meyer, R.; Domscheit, M.; Bartels, F.; Schaeffer, S.-M.; Engelkes, K. Life in plastic, it’s not fantastic: Sublethal effects of polyethylene microplastics ingestion throughout amphibian metamorphosis. Sci. Total Environ. 2023, 885, 163779. [Google Scholar] [CrossRef] [PubMed]
- Szkudlarek, M.; Najbar, B.; Jankowiak, Ł. Microplastics pollution in larvae of toads, frogs and newts in anthropopressure gradient. Ecol. Indic. 2023, 155, 110971. [Google Scholar] [CrossRef]
- Szkudlarek, M.; Najbar, B.; Jankowiak, Ł. Variation in Microplastic Characteristics Among Amphibian Larvae: A Comparative Study Across Different Species and the Influence of Human Activity. Sci. Rep. 2024. submitted. [Google Scholar]
- Hu, L.; Fu, J.; Zheng, P.; Dai, M.; Zeng, G.; Pan, X. Accumulation of microplastics in tadpoles from different functional zones in Hangzhou Great Bay Area, China: Relation to growth stage and feeding habits. J. Hazard. Mater. 2021, 424, 127665. [Google Scholar] [CrossRef]
- Hanke, G.; Galgani, F.; Werner, S.; Oosterbaan, L.; Nilsson, P.; Fleet, D.; Kinsey, S.; Thompson, R.; Van Franeker, J.A.; Vlachogianni, T.; et al. Guidance on Monitoring of Marine Litter in European Seas; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar] [CrossRef]
- Cowger, W.; Steinmetz, Z.; Gray, A.; Munno, K.; Lynch, J.; Hapich, H.; Primpke, S.; De Frond, H.; Rochman, C.; Herodotou, O. Microplastic Spectral Classification Needs an Open Source Community: Open Specy to the Rescue! Anal. Chem. 2021, 93, 7543–7548. [Google Scholar] [CrossRef] [PubMed]
- Barrows, A.; Neumann, C.; Berger, M.; Shaw, S. Grab vs. neuston tow net: A microplastic sampling performance comparison and possible advances in the field. Anal. Methods 2017, 9, 1446–1453. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Karaoğlu, K.; Gül, S. Characterization of microplastic pollution in tadpoles living in small water-bodies from Rize, the northeast of Turkey. Chemosphere 2020, 255, 126915. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Leifheit, E.F.; Gerdawischke, M.; Rillig, M.C. Microplastics have shape- and polymer-dependent effects on soil aggregation and organic matter loss—An experimental and meta-analytical approach. Microplast. Nanoplast. 2021, 1, 7. [Google Scholar] [CrossRef]
- Werbowski, L.; Gilbreath, A.; Munno, K.; Zhu, X.; Grbic, J.; Wu, T.; Sutton, R.; Sedlak, M.; Deshpande, A.; Rochman, C. Urban Stormwater Runoff: A Major Pathway for Anthropogenic Particles, Black Rubbery Fragments, and Other Types of Microplastics to Urban Receiving Waters. ACS ES T Water 2021, 1, 1420–1428. [Google Scholar] [CrossRef]
- Cera, A.; Cesarini, G.; Scalici, M. Microplastics in Freshwater: What Is the News from the World? Diversity 2020, 12, 276. [Google Scholar] [CrossRef]
- Bora, R.; Wang, R.; You, F. Waste Polypropylene Plastic Recycling toward Climate Change Mitigation and Circular Economy: Energy, Environmental, and Technoeconomic Perspectives. ACS Sustain. Chem. Eng. 2020, 8, 16350–16363. [Google Scholar] [CrossRef]
- Araújo, A.; de Melo, N.; de Oliveira, A.; Rodrigues, F.; Fernandes, T.; Vieira, J.; Lopes Rocha, T.; Malafaia, G. How much are microplastics harmful to the health of amphibians? A study with pristine polyethylene microplastics and Physalaemus cuvieri. J. Hazard. Mater. 2020, 382, 121066. [Google Scholar] [CrossRef]
- Browne, M.A.; Dissanayake, A.; Galloway, T.S.; Lowe, D.M.; Thompson, R.C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). Environ. Sci. Technol. 2008, 42, 5026–5031. [Google Scholar] [CrossRef]
- Xiong, X.; Tu, Y.; Chen, X.; Jiang, X.; Shi, H.; Wu, C.; Elser, J.J. Ingestion and egestion of polyethylene microplastics by goldfish (Carassius auratus): Influence of color and morphological features. Heliyon 2019, 5, e03063. [Google Scholar] [CrossRef]
- Saarni, S.; Soininen, T.; Uurasjärvi, E.; Hartikainen, S.; Meronen, S.; Saarinen, T.; Koistinen, A. Seasonal variation observed in microplastic deposition rates in boreal lake sediments. J. Soils Sediments 2023, 23, 1960–1970. [Google Scholar] [CrossRef]
- D’Avignon, G.; Hsu, S.; Gregory-Eaves, I.; Ricciardi, A. Feeding behavior and species interactions increase the bioavailability of microplastics to benthic food webs. Sci. Total Environ. 2023, 896, 165261. [Google Scholar] [CrossRef]
- Amaral-Zettler, L.A.; Zettler, E.R.; Mincer, T.J. Ecology of the plastisphere. Nat. Rev. Microbiol. 2020, 18, 139–151. [Google Scholar] [CrossRef]
Observed | Control | χ2 Value | p-Value | ||
---|---|---|---|---|---|
color | water–larvae | 803 | 658 | 14.391 | <0.001 * |
sediment–larvae | 807 | 707 | 6.605 | 0.010 * | |
shape | water–larvae | 1563 | 1381 | 11.379 | <0.001 * |
sediment–larvae | 1438 | 1321 | 4.9616 | 0.025 * | |
polymers | water–larvae | 62 | 72 | 0.74627 | 0.3877 |
sediment–larvae | 37 | 40 | 0.11688 | 0.7324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szkudlarek, M.; Najbar, B.; Jankowiak, Ł. Similarity of Microplastic Characteristics between Amphibian Larvae and Their Aquatic Environment. Animals 2024, 14, 717. https://doi.org/10.3390/ani14050717
Szkudlarek M, Najbar B, Jankowiak Ł. Similarity of Microplastic Characteristics between Amphibian Larvae and Their Aquatic Environment. Animals. 2024; 14(5):717. https://doi.org/10.3390/ani14050717
Chicago/Turabian StyleSzkudlarek, Michał, Bartłomiej Najbar, and Łukasz Jankowiak. 2024. "Similarity of Microplastic Characteristics between Amphibian Larvae and Their Aquatic Environment" Animals 14, no. 5: 717. https://doi.org/10.3390/ani14050717
APA StyleSzkudlarek, M., Najbar, B., & Jankowiak, Ł. (2024). Similarity of Microplastic Characteristics between Amphibian Larvae and Their Aquatic Environment. Animals, 14(5), 717. https://doi.org/10.3390/ani14050717