A New Tool to Assess the Economic Impact of Q Fever on Dairy Cattle Farms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Production Losses for a Herd with Q Fever
2.3. Yearly Prevalence of Q Fever in the Herd
2.4. Disease Impact before Vaccination
2.5. Disease Impact of Vaccination and the Cost of Vaccination
3. Calibration
4. Results and Discussion
4.1. Model Highlighting the Cost of Q Fever for the Farmer and the Benefits of Vaccination
4.2. Partial Budgeting Approach: Adaptations Performed to Scope with Its Limitations
4.3. Issue of the Reproduction Complex in the Economic Assessment of Dairy Production Outcomes
4.4. Focus on Avoiding Overestimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Epidemiologic Calibration Details
Appendix A.1. Relative Risk (RR) Associated with Q Fever
Impact on Cases of Q Fever | Benefits of Q Fever Vaccination | ||
---|---|---|---|
Abortion | Literature 1 | RR2 = 2 to 2.5 [9,10] | RR 2 = 0.69 [0.453–1.06] (p = 0.09) [9] |
Model 1 | RR= 2.25; cows and heifers | RR = 0.69; cows and heifers | |
RFMs | Literature | RR = 1.52 [95%CI = 1.06–2.19] [9,31] | No [9] |
Model | RR = 1.52; cows only | No 3 | |
Metritis | RR = 2.5 [7] | No [9] | |
RR = 2.5; cows only | No 3 | ||
Service per conception | Literature | −0.4 service per conception [10] | |
Model | +0.4 service per conception; cows and heifers 5 | No 3 | |
Calving-conception interval (IIC) | Literature | +14 days [10] | |
Model | +14 days; cows only 5 | No 3 | |
Late AI after given AI 4 | Literature | No publication | RR = 0.538 [0.30–0.96] for heifers; p > 0.05 for cows [9] |
Model | +2 days extra CCI; cows and heifers 4 | No 3 | |
First Service Conception Rate | Literature | RR ≈ 0.5 [10] | |
Model | +3 days extra CCI; cows and heifer 5,6 | No 2 |
Appendix A.2. Other Reproductive Consequences of Q Fever
References
- Garcia-Ispierto, I.; Tutusaus, J.; López-Gatius, F. Does Coxiella burnetii affect reproduction in cattle? A clinical update. Reprod. Domest. Anim. 2014, 49, 529–535. [Google Scholar] [CrossRef]
- Agerholm, J.S. Coxiella burnetii associated reproductive disorders in domestic animals—A critical review. Acta Vet. Scand. 2013, 55, 13. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, U.; Álvarez, J.; Pisón, C.; Acción, A.; Becerra, J.J.; Jiménez, A.; Gisbert, P.; Herradón, P.G.; Peña, A.I.; Prieto, A.; et al. Prevalence, risk factors, and relationship between reproductive performance and the presence of antibodies against coxiellosis in dairy farm milk tanks in the Northwest of Spain. Animals 2024, 14, 367. [Google Scholar] [CrossRef] [PubMed]
- Guatteo, R.; Seegers, H.; Taurel, A.-F.; Joly, A.; Beaudeau, F. Prevalence of Coxiella burnetii infection in domestic ruminants: A critical review. Vet. Microbiol. 2011, 149, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gache, K.; Rousset, E.; Perrin, J.B.; De Cremoux, R.; Hosteing, S.; Jourdain, E.; Guatteo, R.; Nicollet, P.; Touratier, A.; Calavas, D.; et al. Estimation of the frequency of Q fever in sheep, goat and cattle herds in France: Results of a 3-year study of the seroprevalence of Q fever and excretion level of Coxiella burnetii in abortive episodes. Epidemiol. Infect. 2017, 145, 3131–3142. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ispierto, I.; López-Helguera, I.; Tutusaus, J.; Serrano, B.; Monleón, E.; Badiola, J.J.; López-Gatius, F. Coxiella burnetii shedding during the peripartum period and subsequent fertility in dairy cattle. Reprod. Domest. Anim. 2013, 48, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Valla, G.; Bizzarri, D.; Ferrari, G.; Bussacchini, M. Prevalence of Coxiella burnetii in bulk milk in herds of dairy cows and possible correlation with Italian reproductive problems. Large Anim. Rev. 2014, 20, 51–56. [Google Scholar]
- De Biase, D.; Costagliola, A.; Del Piero, F.; Di Palo, R.; Coronati, D.; Galiero, G.; Uberti, B.D.; Lucibelli, M.G.; Fabbiano, A.; Davoust, B.; et al. Coxiella burnetii in infertile dairy cattle with chronic endometritis. Vet. Pathol. 2018, 55, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Ordronneau, S. Impact de la Vaccination et de L’antibiothérapie sur L’incidence des Troubles de la Reproduction et sur la Fertilité Dans des Troupeaux Bovins Laitiers Infectés par Coxiella Burnetii; Ecole Nationale Veterinaire, Agroalimentaire et de L’Alimentation Nantes Atlantique, ONIRIS: Nantes, France, 2012. [Google Scholar]
- López-Gatius, F.; Almeria, S.; Garcia-Ispierto, I. Serological screening for Coxiella burnetii infection and related reproductive performance in high producing dairy cows. Res. Vet. Sci. 2012, 93, 67–73. [Google Scholar] [CrossRef]
- Dobos, A.; Gyuranecz, M.; Albert, M. Incidence rate of Coxiella burnetii in the retention of foetal membranes in dairy herds. Magy. Allatorvosok Lapja 2020, 142, 593–597. [Google Scholar]
- Saegerman, C.; Speybroeck, N.; Dal Pozzo, F.; Czaplicki, G. Clinical indicators of exposure to Coxiella burnetii in dairy herds. Transbound. Emerg. Dis. 2015, 62, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Dobos, A.; Gábor, G.; Wehmann, E.; Dénes, B.; Póth-Szebenyi, B.; Kovács, Á.B.; Gyuranecz, M. Serological screening for Coxiella burnetii in the context of early pregnancy loss in dairy cows. Acta Vet. Hung. 2020, 68, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Jegou, V.; Kuntz, G.; Maynard, B.; Caudriller, J.; Gisbert, P. Relationship between reproductive performance and q-fever in dairy herds in brittany (France). In Proceedings of the 31st World Buiatrics Congress, Madrid, Spain, 4–8 September 2022; p. 363. [Google Scholar]
- Guatteo, R.; Seegers, H.; Joly, A.; Beaudeau, F. Prevention of Coxiella burnetii shedding in infected dairy herds using a phase I C. burnetii inactivated vaccine. Vaccine 2008, 26, 4320–4328. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.M.; Thomas, S.; Reeves, P.; Massey, P.D.; Searles, A. Q fever vaccination: Time to kick the cost bucket? Aust. J. Rural. Health 2019, 27, 577–578. [Google Scholar] [CrossRef] [PubMed]
- Torgerson, P.R.; Rüegg, S.; Devleesschauwer, B.; Abela-Ridder, B.; Havelaar, A.H.; Shaw, A.P.M.; Rushton, J.; Speybroeck, N. zDALY: An adjusted indicator to estimate the burden of zoonotic diseases. One Health 2017, 5, 40–45. [Google Scholar] [CrossRef] [PubMed]
- van Lier, A.; McDonald, S.A.; Bouwknegt, M.; EPI Group; Kretzschmar, M.E.; Havelaar, A.H.; Mangen, M.J.; Wallinga, J.; de Melker, H.E. Disease Burden of 32 Infectious Diseases in the Netherlands, 2007–2011. PLoS ONE 2016, 11, e0153106. [Google Scholar] [CrossRef] [PubMed]
- van Asseldonk, M.A.; Prins, J.; Bergevoet, R.H. Economic assessment of Q fever in the Netherlands. Prev. Vet. Med. 2013, 112, 27–34. [Google Scholar] [CrossRef] [PubMed]
- de Boer, P.T.; de Lange, M.M.A.; Wielders, C.C.H.; Dijkstra, F.; van Roeden, S.E.; Bleeker-Rovers, C.P.; Oosterheert, J.J.; Schneeberger, P.M.; van der Hoek, W. Cost-effectiveness of Screening Program for Chronic Q Fever, the Netherlands. Emerg. Infect. Dis. 2020, 26, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Kermode, M.; Yong, K.; Hurley, S.; Marmion, B. An economic evaluation of increased uptake in Q fever vaccination among meat and agricultural industry workers following implementation of the National Q Fever Management Program. Aust. N. Z. J. Public Health 2003, 27, 390–398. [Google Scholar] [CrossRef]
- Raboisson, D.; Mounié, M.; Khenifar, E.; Maigné, E. The economic impact of subclinical ketosis at the farm level: Tackling the challenge of over-estimation due to multiple interactions. Prev. Vet. Med. 2015, 122, 417–425. [Google Scholar] [CrossRef]
- Taurel, A.-F.; Guatteo, R.; Joly, A.; Beaudeau, F. Effectiveness of vaccination and antibiotics to control Coxiella burnetii shedding around calving in dairy cows. Vet. Microbiol. 2012, 159, 432–437. [Google Scholar] [CrossRef] [PubMed]
- De Vries, A. Economic value of pregnancy in dairy cattle. J. Dairy Sci. 2006, 89, 3876–3885. [Google Scholar] [CrossRef] [PubMed]
- Ferchiou, A.; Lhermie, G.; Raboisson, D. New standards in stochastic simulations of dairy cow disease modelling: Bioeconomic dynamic optimization for rational health management decision-making. Agric. Syst. 2021, 194, 103249. [Google Scholar] [CrossRef]
- Inchaisri, C.; Jorritsma, R.; Vos, P.L.A.M.; Van der Weijden, G.C.; Hogeveen, H. Analysis of the economically optimal voluntary waiting period for first insemination. J. Dairy Sci. 2011, 94, 3811–3823. [Google Scholar] [CrossRef] [PubMed]
- Meadows, C.; Rajala-Schultz, P.J.; Frazer, G.S. A spreadsheet-based model demonstrating the nonuniform economic effects of varying reproductive performance in Ohio dairy herds. J. Dairy Sci. 2005, 88, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.E.P.; Cerri, R.L.A.; Ballou, M.A.; Higginbotham, G.E.; Kirk, J.H. Effect of timing of first clinical mastitis occurrence on lactational and reproductive performance of Holstein dairy cows. Anim. Reprod. Sci. 2004, 80, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Taurel, A.-F.; Guatteo, R.; Joly, A.; Seegers, H.; Beaudeau, F. Seroprevalence of Q fever in naturally infected dairy cattle herds. Prev. Vet. Med. 2011, 101, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Taurel, A.F.; Guatteo, R.; Joly, A.; Beaudeau, F. Relationship between the level of antibodies in bulk tank milk and the within-herd seroprevalence of Coxiella burnetii in cows. Epidemiol. Infect. 2012, 140, 1710–1713. [Google Scholar] [CrossRef] [PubMed]
- Schulze, L.S.-C.; Borchardt, S.; Ouellet, V.; Heuwieser, W. Effect of a Phase I Coxiella burnetii Inactivated Vaccine on Body Temperature and Milk Yield in Dairy Cows. J. Dairy Sci. 2016, 99, 541–550. [Google Scholar] [CrossRef]
- Taurel, A.-F.; Guatteo, R.; Lehebel, A.; Joly, A.; Beaudeau, F. Vaccination using phase I vaccine is effective to control Coxiella burnetii shedding in infected dairy cattle herds. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 1–9. [Google Scholar] [CrossRef]
Value (Average and [Range]) | Usage in the Model | Reference | |
---|---|---|---|
QfPrevStartY1 (%) | 30 [20–40] | Fixed in the publication. Value to be adjusted to the farm situation by the calculator user | Authors (for the publication) |
HerdSize | 100 | ||
CullRate (%) | 30 | ||
UnitCostAbort (EUR) | 450 [300–700] | Fixed in the publication. Value to be adjusted to the country or farming system by the calculator users. Possibility of adjusting it to the farm situation | De Vries [24] |
UnitCostMet (EUR) | 60 [50–140] | Ferchiou et al. [25] | |
UnitCostRFM (EUR) | 60 [50–100] | Ferchiou et al. [25] | |
UnitCostAI (EUR) | 55 [40–65] | Inchaisri et al. [26] | |
UnitCostCCI (EUR) | 3.5 [2–5] | Meadows et al. [27] and Inchaisri et al. [26] | |
Vaccine (EUR per shot) | 8 | Expert opinion | |
MitigationHeifers (%) | 50 | Fixed | Expert opinion |
AbortRateNoQf (%) | 5 | Fixed | Santos et al. [28] and De Vries [24] |
MetRateNoQf (%) | 9 | Fixed | |
RFMRateNoQf (%) | 4 | Fixed | |
RRRFMIfQf (RR) | 1.52 | Fixed | Ordronneau 1 [9] |
RRMetIfQf (RR) | 2.5 | Fixed | Valla et al. 1 [7] |
RRAbortIfQf (RR) | 2.25 | Fixed | Lopez-Gatius et al. [10] and Ordronneau [9] 1 |
RRAbortIfVacIfQf (RR) | 0.69 | Fixed | Ordronneau 1 [9] |
ExtraSPCIfQf (number) | 0.4 | Fixed | Lopez-Gatius et al. 1 [10] |
ExtraCCIIfQf_LateAI (number) | 2 | Fixed | Ordronneau 1 [9] |
ExtraCCIIfQf_FSCR (number) | 3 | Fixed | Lopez-Gatius et al. 1 [10] |
ExtraCCIIfQf_DirectQf (number) | 14 | Fixed | Lopez-Gatius et al. 1 [10] |
Value (EUR Per Average Herd of 100 In-Milk Cows) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Years | Total | Abortion | CCI | Extra AI | RFMs | Metritis | Vaccination Cost | Benefit Per Year/ Cumulative | ||
Case 1 (Mean prevalence and mean costs) | Total cost of Q fever in a herd | |||||||||
Y1 | 3820 | 970 | 2018 | 552 | 37 | 243 | ||||
Unit cost | Value | Y2 | 3820 | 970 | 2018 | 552 | 37 | 243 | ||
QfPrevStartY1 (%) | 30 | Y3 | 3820 | 970 | 2018 | 552 | 37 | 243 | ||
Vaccine (EUR) | 8 | Y1–3 | 11,461 | 2911 (25%) | 6053 (53%) | 1656 (14%) | 112 (1%) | 729 (6%) | ||
UnitCostAbort (EUR) | 450 | Benefits of vaccination | ||||||||
UnitCostCCI (EUR) | 3.5 | Y1 | 1826 | 692 | 843 | 193 | 13 | 85 | 2560 | −734 |
UnitCostAI (EUR) | 40 | Y2 | 3222 | 887 | 1665 | 444 | 30 | 196 | 1520 | 1702/967 |
UnitCostRFM (EUR) | 60 | Y3 | 3641 | 945 | 1912 | 520 | 35 | 229 | 1520 | 2121/3088 |
UnitCostMet (EUR) | 60 | Y1–3 | 8688 | 2523 (29%) | 4419 (51%) | 1157 (13%) | 78 (1%) | 509 (6%) | 5600 | 3088 |
Case 2 (Breakeven costs if mean prevalence) | Total cost of Q fever in a herd | |||||||||
Y1 | 2526 | 647 | 1163 | 483 | 31 | 203 | ||||
Unit cost | Value | Y2 | 2526 | 647 | 1163 | 483 | 31 | 203 | ||
QfPrevStartY1 (%) | 30 | Y3 | 2526 | 647 | 1163 | 483 | 31 | 203 | ||
Vaccine (EUR) | 8 | Y1–3 | 7578 | 1941 (26%) | 3488 (46%) | 1449 (19%) | 94 (1%) | 608 (8%) | ||
UnitCostAbort (EUR) | 300 | Benefits of vaccination | ||||||||
UnitCostCCI (EUR) | 2 | Y1 | 1197 | 461 | 485 | 169 | 11 | 71 | 2560 | −1363 |
UnitCostAI (EUR) | 35 | Y2 | 2127 | 591 | 959 | 389 | 25 | 163 | 1520 | 607/−756 |
UnitCostRFM (EUR) | 50 | Y3 | 2406 | 630 | 1102 | 455 | 29 | 191 | 1520 | 886/130 |
UnitCostMet (EUR) | 50 | Y1–3 | 5730 | 1682 (29%) | 2546 (44%) | 1013 (18%) | 65 (1%) | 425 (7%) | 5600 | 130 |
Case 3 (High prevalence and mean costs) | Total cost of Q fever in a herd | |||||||||
Y1 | 5094 | 1294 | 2690 | 736 | 50 | 324 | ||||
Unit cost | Value | Y2 | 5094 | 1294 | 2690 | 736 | 50 | 324 | ||
QfPrevStartY1 (%) | 40 | Y3 | 5094 | 1294 | 2690 | 736 | 50 | 324 | ||
Vaccine (EUR) | 8 | Y1–3 | 15,281 | 3881 (25%) | 8070 (53%) | 2208 (14%) | 149 (1%) | 972 (6%) | ||
UnitCostAbort (EUR) | 450 | Benefits of vaccination | ||||||||
UnitCostCCI (EUR) | 3.5 | Y1 | 2434 | 922 | 1124 | 258 | 17 | 113 | 2560 | −126 |
UnitCostAI (EUR) | 40 | Y2 | 4296 | 1182 | 2220 | 592 | 40 | 261 | 1520 | 2776/2650 |
UnitCostRFM (EUR) | 60 | Y3 | 4854 | 1260 | 2549 | 693 | 47 | 305 | 1520 | 3334/5984 |
UnitCostMet (EUR) | 60 | Y1–3 | 11,584 | 3364 (29%) | 5892 (51%) | 1543 (13%) | 104 (1%) | 679 (6%) | 5600 | 5984 |
Case 4 (High prevalence and high costs) | Total cost of Q fever in a herd | |||||||||
Y1 | 7694 | 2013 | 3830 | 1012 | 83 | 756 | ||||
Unit cost | Value | Y2 | 7694 | 2013 | 3830 | 1012 | 83 | 756 | ||
QfPrevStartY1 (%) | 40 | Y3 | 7694 | 2013 | 3830 | 1012 | 83 | 756 | ||
Vaccine (EUR) | 8 | Y1–3 | 23,081 | 6038 (26%) | 11,490 (50%) | 3036 (13%) | 250 (1%) | 2268 (10%) | ||
UnitCostAbort (EUR) | 700 | Benefits of vaccination | ||||||||
UnitCostCCI (EUR) | 5 | Y1 | 3683 | 1434 | 1601 | 354 | 29 | 265 | 2560 | 1123 |
UnitCostAI (EUR) | 55 | Y2 | 6490 | 1839 | 3161 | 815 | 67 | 609 | 1520 | 4970/6093 |
UnitCostRFM (EUR) | 100 | Y3 | 7333 | 1960 | 3629 | 953 | 78 | 712 | 1520 | 5813/11,906 |
UnitCostMet (EUR) | 140 | Y1–3 | 17,506 | 5234 (30%) | 8391 (48%) | 2122 (12%) | 174 (1%) | 1585 (9%) | 5600 | 11,906 |
Case 5 (Breakeven costs if low prevalence) | Total cost of Q fever in a herd | |||||||||
Y1 | 2475 | 647 | 1345 | 368 | 25 | 162 | ||||
Unit cost | Value | Y2 | 2475 | 647 | 1345 | 368 | 25 | 162 | ||
QfPrevStartY1 (%) | 20 | Y3 | 2475 | 647 | 1345 | 368 | 25 | 162 | ||
Vaccine (EUR) | 8 | Y1–3 | 7641 | 1941 (25%) | 4035 (54%) | 1104 (15%) | 75 (1%) | 486 (7%) | ||
UnitCostAbort (EUR) | 450 | Benefits of vaccination | ||||||||
UnitCostCCI (EUR) | 3.5 | Y1 | 1166 | 461 | 562 | 129 | 9 | 57 | 2560 | −1343 |
UnitCostAI (EUR) | 40 | Y2 | 2082 | 591 | 1110 | 296 | 20 | 130 | 1520 | 628/−715 |
UnitCostRFM (EUR) | 60 | Y3 | 2357 | 630 | 1275 | 346 | 23 | 153 | 1520 | 907/192 |
UnitCostMet (EUR) | 60 | Y1–3 | 5792 | 1682 (29%) | 2946 (51%) | 772 (14%) | 52 (1%) | 340 (6%) | 5600 | 192 |
Value (%) | |||
---|---|---|---|
QfPrevStartY1 | 20 | 30 | 40 |
QfPrevY1 | 13.0 | 19.5 | 26.0 |
QfPrevY2 | 3.9 | 5.9 | 7.8 |
QfPrevY3 | 1.2 | 1.8 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raboisson, D.; Lhermie, G.; Guatteo, R. A New Tool to Assess the Economic Impact of Q Fever on Dairy Cattle Farms. Animals 2024, 14, 1166. https://doi.org/10.3390/ani14081166
Raboisson D, Lhermie G, Guatteo R. A New Tool to Assess the Economic Impact of Q Fever on Dairy Cattle Farms. Animals. 2024; 14(8):1166. https://doi.org/10.3390/ani14081166
Chicago/Turabian StyleRaboisson, Didier, Guillaume Lhermie, and Raphael Guatteo. 2024. "A New Tool to Assess the Economic Impact of Q Fever on Dairy Cattle Farms" Animals 14, no. 8: 1166. https://doi.org/10.3390/ani14081166
APA StyleRaboisson, D., Lhermie, G., & Guatteo, R. (2024). A New Tool to Assess the Economic Impact of Q Fever on Dairy Cattle Farms. Animals, 14(8), 1166. https://doi.org/10.3390/ani14081166