Species-Specific Seasonal Shifts in Reproductive Allocation in the Southern Grass Lizard, Takydromus sexlineatus (Lacertidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Animal Collection and Care
2.3. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charnov, E.L. Life History Invariants; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Roff, D.A. Life History Evolution; Sinauer Associates Inc.: Sunderland, MA, USA, 2002. [Google Scholar]
- Stearns, S.C. The Evolution of Life Histories; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Alice, B.W.; Sandercock, B.K.; Martin, K. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: A meta-analysis. Biol. Rev. 2015, 91, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C.; Hero, J.M. Geographic variation in life history characteristics of amphibians: A review. J. Anim. Ecol. 2003, 72, 270–279. [Google Scholar] [CrossRef]
- Trussell, G. Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail. Evolution 2000, 54, 151–166. [Google Scholar]
- Vila-Gispert, A.; Moreno-Amich, R. Life history patterns of 25 species from European freshwater fish communities. Environ. Biol. Fishes 2002, 65, 387–400. [Google Scholar] [CrossRef]
- Jin, Y.-T.; Li, J.-Q.; Liu, N.-F. Elevation-related variation in life history traits among Phrynocephalus lineages on the Tibetan Plateau: Do they follow typical squamate ecogeographic patterns? J. Zool. 2013, 290, 293–301. [Google Scholar] [CrossRef]
- Zeng, Z.-G.; Zhao, J.-M.; Sun, B.-J. Life history variation among geographically close populations of the toad-headed lizard (Phrynocephalus przewalskii): Exploring environmental and physiological associations. Acta Oecol. 2013, 51, 28–33. [Google Scholar] [CrossRef]
- Jaffe, A.L.; Campbell-Staton, S.C.; Losos, J.B. Geographical variation in morphology and its environmental correlates in a widespread North American lizard, Anolis carolinensis (Squamata: Dactyloidae). Biol. J. Linn. Soc. 2016, 117, 760–774. [Google Scholar] [CrossRef]
- Michaud, E.J.; Echternacht, A.C. Geographic variation in the life history of the lizard Anolis carolinensis and support for the pelvic constraint model. J. Herpetol. 1995, 29, 86–97. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Ping, J.; Hao, S.-L.; Zhou, H.-B. Temporal and spatial variation in life history traits of the Japanese gecko, Gekko japonicus. Herpetol. J. 2016, 26, 305–311. [Google Scholar]
- Díaz, J.A.; Iraeta, P.; Verdú-Ricoy, J.; Siliceo, I.; Salvador, A. Intraspecific variation of reproductive traits in a Mediterranean lizard: Clutch, population, and lineage effects. Evol. Biol. 2012, 39, 106–115. [Google Scholar] [CrossRef]
- Iraeta, P.; Salvador, A.; Díaz, J.A. Life-history traits of two Mediterranean lizard populations: A possible example of countergradient covariation. Oecologia 2013, 172, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, P.; Su, S.; Luo, L.-G.; Zhao, W.-G.; Ji, X. Life-history consequences of local adaptation in lizards: Takydromus wolteri (Lacertidae) as a model organism. Biol. J. Linn. Soc. 2019, 127, 88–99. [Google Scholar] [CrossRef]
- Monasterio, C.; Verdú-Ricoy, J.; Salvador, A.; Díaz, J.A. Living at the edge: Lower success of eggs and hatchlings at lower elevation may shape range limits in an alpine lizard. Biol. J. Linn. Soc. 2016, 118, 829–841. [Google Scholar] [CrossRef]
- Ortega, J.; López, P.; Martín, J. Altitudinally divergent adult phenotypes in Iberian wall lizards are not driven by egg differences or hatchling growth rates. Oecologia 2015, 177, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Ortega, J.; López, P.; Martín, J. Environmental drivers of growth rates in Guadarrama wall lizards: A reciprocal transplant experiment. Biol. J. Linn. Soc. 2017, 122, 340–350. [Google Scholar] [CrossRef]
- Roitberg, E.S.; Eplanova, G.V.; Kotenko, T.I.; Amat, F.; Carretero, M.A.; Kuranova, V.N.; Bulakhova, N.A.; Zinenko, O.I.; Yakovlev, V.A. Geographic variation of life-history traits in the sand lizard, Lacerta agilis: Testing Darwin’s fecundity-advantage hypothesis. J. Evol. Biol. 2015, 28, 613–629. [Google Scholar] [CrossRef] [PubMed]
- Roitberg, E.S.; Kuranova, V.N.; Bulakhova, N.A.; Orlova, V.F.; Eplanova, G.V.; Zinenko, O.I.; Shamgunova, R.R.; Hofmann, S.; Yakovlev, V.A. Variation of reproductive traits and female body size in the most widely-ranging terrestrial reptile: Testing the effects of reproductive mode, lineage, and climate. Evol. Biol. 2013, 40, 420–438. [Google Scholar] [CrossRef] [PubMed]
- Adolph, S.C.; Porter, W.P. Temperature, activity, and lizard life histories. Am. Nat. 1993, 142, 273–295. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, R.E. Intraspecific variation in demography and life history of the lizard, Sceloporus jarrovi, along an altitudinal gradient in southeastern Arizona. Ecology 1979, 60, 901–909. [Google Scholar] [CrossRef]
- Cruz-Elizalde, R.; Ramíez-Bautista, A. Reproductive cycles and reproductive strategies among populations of the Rose-bellied Lizard Sceloporus variabilis (Squamata: Phrynosomatidae) from central Mexico. Ecol. Evol. 2016, 6, 1753–1768. [Google Scholar] [CrossRef]
- Cruz-Elizalde, R.; Ramírez-Bautista, A.; Stephenson, B.P.; Luja, V.H.; Hernández-Salinas, U. Variation in female reproduction between populations of the arboreal lizard Urosaurus bicarinatus (Squamata: Phrynosomatidae) from two different environments in Mexico. Salamandra 2017, 53, 359–367. [Google Scholar]
- Du, W.-G.; Warner, D.A.; Langkilde, T.; Robbins, T.R.; Shine, R. The roles of pre- and post-hatching growth rates in generating a latitudinal cline of body size in the eastern fence lizard (Sceloporus undulatus). Biol. J. Linn. Soc. 2012, 106, 202–209. [Google Scholar] [CrossRef]
- Dunham, A.E. Demographic and life-history variation among populations of the iguanid lizard Urosaurus ornatus: Implications for the study of life-history phenomena in lizards. Herpetologica 1982, 38, 208–221. [Google Scholar]
- Ramírez-Bautista, A.; Jiménez-Cruz, E.; Marshall, J.C. Comparative life history for populations of the Sceloporus grammicus (Squamata: Phrynosomatidae). West. N. Am. Nat. 2004, 64, 175–183. [Google Scholar]
- Ramírez-Bautista, A.; Lozano, A.; Herńandez-Salinas, U.; Cruz-Elizalde, R. Female reproductive characteristics among populations of the oviparous lizard Sceloporus aeneus (Squamata: Phrynosomatidae) from Central Mexico. Herpetologica 2016, 72, 196–201. [Google Scholar] [CrossRef]
- Ramírez-Bautista, A.; Stephenson, B.P.; Muñoz, C.S.; Cruz-Elizalde, R.; Herńandez-Salinas, U. Reproduction and sexual dimorphism in two populations of the polymorphic spiny lizard Sceloporus minor from Hidalgo, México. Acta Zool. 2014, 95, 397–408. [Google Scholar] [CrossRef]
- Garda, A.A.; Tavares-Bastos, L.; Costa, G.C.; França, F.G.R.; Giugliano, L.G.; Leite, G.S.; Mesquita, D.O.; Nogueira, C.; Vasconcellos, M.M.; Vieira, G.H.C.; et al. Reproduction, body size, and diet of Polychrus acutirostris (Squamata, Polychrotidae) in two contrasting environments in Brazil. J. Herpetol. 2012, 46, 2–8. [Google Scholar] [CrossRef]
- Forsman, A.; Shine, R. Parallel geographic variation in body shape and reproductive life history within the Australian scincid lizard Lampropholis delicata. Funct. Ecol. 1995, 9, 818–828. [Google Scholar] [CrossRef]
- Hasegawa, M. Inter-population radiation in life history of the lizard Eumeces okadae in the Ize islands, Japan. Copeia 1994, 1994, 732–747. [Google Scholar] [CrossRef]
- Lu, H.-L.; Lin, Z.-H.; Li, H.; Ji, X. Geographic variation in hatchling size in an oviparous skink: Effects of maternal investment and incubation thermal environment. Biol. J. Linn. Soc. 2014, 113, 283–296. [Google Scholar] [CrossRef]
- Wapstra, E.; Swain, R.; O’Reilly, J.M. Geographic variation in age and size at maturity in a small Australian viviparous skink. Copeia 2001, 2001, 646–655. [Google Scholar] [CrossRef]
- Rojas-González, R.I.; Zúñiga-Vega, J.J.; Lemos-Espinal, J.A. Reproductive variation of the lizard Xenosaurus platyceps: Comparing two populations of contrasting environments. J. Herpetol. 2008, 42, 332–336. [Google Scholar] [CrossRef]
- Ji, X.; Braña, F. Among clutch variation in reproductive output and egg size in the wall lizard (Podarcis muralis) from a lowland population of northern Spain. J. Herpetol. 2000, 34, 54–60. [Google Scholar] [CrossRef]
- Luo, L.-G.; Ding, G.-H.; Ji, X. Income breeding and temperature-induced plasticity in reproductive traits in lizards. J. Exp. Biol. 2010, 213, 2073–2078. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xia, Y.; Ji, X. Clutch frequency affects the offspring size-number trade-off in lizards. PLoS ONE 2011, 6, e16585. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Guo, K.; Su, S.; Lin, L.-H.; Xia, Y.; Ji, X. Age-related reproduction of female Mongolian racerunners (Eremias argus; Lacertidae): Evidence of reproductive senescence. J. Exp. Zool. A 2019, 331, 290–298. [Google Scholar]
- Daudin, F.M. Histoire Naturelle, Générale et Particulière des Reptiles, Ouvrage Faisant Suite, a l’Histoiure Naturelle, Générale et Particulière Composée par Leclerc de Buffon, et Redigée par C. S. Sonnini; F. Dufart: Paris, France, 1802; Volume 13. [Google Scholar]
- Uetz, P.; Freed, P.; Hošek, J. The Reptile Database. Available online: http://www.reptile-database.org (accessed on 1 August 2023).
- Arnold, E.N. Interrelationships and evolution of the east Asian grass lizards, Takydromus (Squamata: Lacertidae). Zool. J. Linn. Soc. 1997, 119, 267–296. [Google Scholar] [CrossRef]
- Grismer, L.L.; Quah, E.S.H. An updated and annotated checklist of the lizards of Peninsular Malaysia, Singapore, and their adjacent archipelagos. Zootaxa 2019, 4545, 230–248. [Google Scholar] [CrossRef]
- Lin, S.-M.; Chen, C.A.; Lue, K.-Y. Molecular phylogeny and biogeography of the grass lizards genus Takydromus (Reptilia: Lacertidae) of East Asia. Mol. Phylogenet. Evol. 2002, 22, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Crespi, B.; Semeniuk, C. Parent-offspring conflict in the evolution of vertebrate reproductive mode. Am. Nat. 2004, 163, 635–653. [Google Scholar] [CrossRef]
- Smith, C.C.; Fretwell, S.D. The optimal balance between size and number of offspring. Am. Nat. 1974, 108, 499–506. [Google Scholar] [CrossRef]
- Congdon, J.D.; Dunham, A.E.; Tinkle, D.W. Biology of Reptilia; Academic Press: New York, NY, USA, 1982; Volume 13, pp. 233–271. [Google Scholar]
- Lucas, A. Bioenergetics of Aquatic Animals; Taylor and Francis Ltd.: London, UK, 1996. [Google Scholar]
- McNab, B.K. The Physiological Ecology of Vertebrates: A View from Energetics; Cornell University Press: New York, NY, USA, 2002. [Google Scholar]
- Sibly, R.M.; Grimm, V.; Martin, B.T.; Johnston, A.S.A.; Kułakowska, K.; Topping, C.J.; Calow, P.; Nabe-Nielsen, J.; Thorbek, P.; DeAngelis, D.L. Representing the acquisition and use of energy by individuals in agent-based models of animal populations. Methods Ecol. Evol. 2013, 4, 151–161. [Google Scholar] [CrossRef]
- Madsen, T.; Shine, R. The adjustment of reproductive threshold to prey abundance in a capital breeder. J. Anim. Ecol. 1999, 68, 571–580. [Google Scholar] [CrossRef]
- Shine, R. Life-history evolution in reptiles. Annu. Rev. Ecol. Syst. 2005, 36, 23–46. [Google Scholar] [CrossRef]
- Shine, R. Relative clutch mass and body shape in lizards and snakes: Is reproductive investment constrained or optimized? Evolution 1992, 46, 828–833. [Google Scholar] [CrossRef]
Clutches | N | Postpartum Female Size and Mass | Egg Mass and Within-Clutch Variability | Clutch Size | Clutch Mass (g) | Relative Clutch Mass | ||
---|---|---|---|---|---|---|---|---|
SVL (mm) | Body Mass (g) | Egg Mass (g) | CV of Egg Mass | |||||
Wuzhishan | ||||||||
First clutch | 19 | 57.7 ± 0.8 49.6–64.2 | 2.7 ± 0.1 1.9–3.5 | 0.18 ± 0.003 0.16–0.21 | 4.6 ± 0.6 0.79–11.6 | 2.9 ± 0.09 2–4 | 0.53 ± 0.02 0.35–0.71 | 0.21 ± 0.01 0.13–0.29 |
Second clutch | 19 | 56.6 ± 0.8 49.6–64.2 | 2.9 ± 0.1 2.0–3.9 | 0.20 ± 0.008 0.13–0.27 | 6.3 ± 2.2 0.70–39.4 | 2.8 ± 0.2 2–4 | 0.55 ± 0.04 0.34–0.88 | 0.19 ± 0.01 0.11–0.32 |
Third clutch | 18 | 57.2 ± 0.7 49.6–64.2 | 2.9 ± 0.1 2.0–3.9 | 0.18 ± 0.007 0.13–0.24 | 4.2 ± 0.5 1.4–8.7 | 2.9 ± 0.1 2–4 | 0.53 ± 0.03 0.36–0.82 | 0.18 ± 0.05 0.15–0.22 |
Fourth clutch | 4 | 58.7 ± 2.0 55.0–64.2 | 2.9 ± 0.07 2.7–3.0 | 0.18 ± 0.02 0.14–0.21 | 2.0 ± 0.4 0.90–2.8 | 2.5 ± 0.3 2–3 | 0.45 ± 0.05 0.37–0.59 | 0.15 ± 0.02 0.14–0.20 |
Fifth clutch | 1 | 64.2 | 2.3 | 0.22 | 5.8 | 2 | 0.44 | 0.19 |
Shaoguan | ||||||||
First clutch | 104 | 51.2 ± 0.2 44.5–57.9 | 2.1 ± 0.04 1.1–4.3 | 0.16 ± 0.002 0.095–0.23 | 5.2 ± 0.5 0.35–21.9 | 2.5 ± 0.06 1–4 | 0.41 ± 0.01 0.17–0.66 | 0.20 ± 0.006 0.078–0.48 |
Second clutch | 53 | 52.6 ± 0.4 44.6–57.8 | 2.3 ± 0.06 1.4–3.3 | 0.17 ± 0.004 0.10–0.24 | 3.5 ± 0.7 0.36–21.1 | 2.1 ± 0.08 1–3 | 0.34 ± 0.01 0.10–0.60 | 0.15 ± 0.007 0.04–0.31 |
Third clutch | 29 | 53.2 ± 0.4 48.7–56.7 | 2.4 ± 0.07 1.9–3.2 | 0.17 ± 0.005 0.11–0.21 | 4.8 ± 0.9 0.40–14.8 | 2.1 ± 0.1 1–3 | 0.35 ± 0.02 0.12–0.59 | 0.14 ± 0.009 0.059–0.28 |
Fourth clutch | 13 | 53.4 ± 0.4 51.6–55.6 | 2.4 ± 0.1 1.7–3.2 | 0.17 ± 0.009 0.11–0.23 | 4.3 ± 1.8 0.96–10.7 | 2.1 ± 0.1 1–3 | 0.35 ± 0.03 0.11–0.46 | 0.15 ± 0.01 0.059–0.21 |
Fifth clutch | 4 | 54.6 ± 0.4 53.8–55.3 | 2.8 ± 0.1 2.6–3.0 | 0.19 ± 0.01 0.17–0.23 | 0.38 | 2.0 ± 0.4 1–3 | 0.38 ± 0.07 0.19–0.52 | 0.14 ± 0.02 0.069–0.17 |
Zhaoqing | ||||||||
First clutch | 78 | 50.8 ± 0.3 46.3–59.3 | 2.3 ± 0.05 1.2–3.6 | 0.16 ± 0.003 0.11–0.22 | 5.2 ± 0.5 0.34–17.6 | 2.6 ± 0.08 2–4 | 0.40 ± 0.01 0.21–0.74 | 0.18 ± 0.006 0.074–0.38 |
Second clutch | 76 | 53.5 ± 0.3 48.4–61.4 | 2.6 ± 0.06 1.3–3.9 | 0.16 ± 0.003 0.09–0.24 | 4.6 ± 0.6 0.38–23.8 | 2.4 ± 0.07 1–4 | 0.37 ± 0.01 0.18–0.78 | 0.15 ± 0.005 0.067–0.27 |
Third clutch | 33 | 54.4 ± 0.6 48.2–60.3 | 2.5 ± 0.07 1.6–3.4 | 0.16 ± 0.006 0.10–0.25 | 4.8 ± 0.9 0.47–16.4 | 2.3 ± 0.1 1–4 | 0.37 ± 0.02 0.19–0.68 | 0.15 ± 0.008 0.082–0.27 |
Fourth clutch | 10 | 55.5 ± 0.8 51.5–59.2 | 2.5 ± 0.1 1.9–3.1 | 0.16 ± 0.008 0.12–0.20 | 6.6 ± 1.5 1.7–16.5 | 2.5 ± 0.2 2–4 | 0.40 ± 0.04 0.25–0.73 | 0.16 ± 0.02 0.11–0.33 |
Fifth clutch | 0 | — | — | — | — | — | — | — |
Population Origin | Clutch Order | Population × Clutch Interaction | |
---|---|---|---|
Snout vent length | F2, 420 = 49.07, p < 0.0001 WZS a, SG b, ZQ b | F2, 420 = 19.70, p < 0.0001 F b, S2 a, T3 a | F2, 420 = 1.92, p = 0.105 |
Postpartum body mass | F2, 419 = 5.87, p < 0.01 WZS a, SG b, ZQ b | F2, 419 = 2.81, p = 0.062 | F2, 419 = 0.94, p = 0.441 |
Egg size | F2, 420 = 23.81, p < 0.0001 WZS a, SG b, ZQ c | F2, 420 = 1.66, p = 0.191 | F2, 420 = 1.25, p = 0.290 |
CV of egg mass | F2, 343 = 0.33, p = 0.721 | F2, 343 = 0.149, p = 0.861 | F2, 343 = 1.04, p = 0.385 |
Clutch size | F2, 419 = 7.42, p < 0.001 WZS a, SG c, ZQ b | F2, 419 = 14.14, p < 0.0001 F a, S b, T b | F2, 372 = 0.91, p = 0.446 |
Clutch mass | F2, 419 = 17.45, p < 0.0001 WZS a, SG b, ZQ b | F2, 372 = 11.60, p < 0.0001 F a, S b, T b | F2, 372 = 1.47, p = 0.209 |
Relative clutch mass | F2, 419 = 28.80, p < 0.0001 WZS a, SG b, ZQ b | F2, 419 = 6.58, p < 0.01 F a, S b, T b | F2, 372 = 1.11, p = 0.349 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-F.; Du, Y.; Guo, K.; Ji, X. Species-Specific Seasonal Shifts in Reproductive Allocation in the Southern Grass Lizard, Takydromus sexlineatus (Lacertidae). Animals 2024, 14, 1167. https://doi.org/10.3390/ani14081167
Wang C-F, Du Y, Guo K, Ji X. Species-Specific Seasonal Shifts in Reproductive Allocation in the Southern Grass Lizard, Takydromus sexlineatus (Lacertidae). Animals. 2024; 14(8):1167. https://doi.org/10.3390/ani14081167
Chicago/Turabian StyleWang, Cai-Feng, Yu Du, Kun Guo, and Xiang Ji. 2024. "Species-Specific Seasonal Shifts in Reproductive Allocation in the Southern Grass Lizard, Takydromus sexlineatus (Lacertidae)" Animals 14, no. 8: 1167. https://doi.org/10.3390/ani14081167
APA StyleWang, C. -F., Du, Y., Guo, K., & Ji, X. (2024). Species-Specific Seasonal Shifts in Reproductive Allocation in the Southern Grass Lizard, Takydromus sexlineatus (Lacertidae). Animals, 14(8), 1167. https://doi.org/10.3390/ani14081167