Effects of Dietary Schizochytrium Algae as ω-3 PUFA Source on the Egg-Laying Quail Performance, Serum Indexes, and Egg Yolk Fatty Acids Contents
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Trial Design, Diets, and Quail Management
2.2. Sample Collection
2.3. Productive Performance
2.4. Egg Quality
2.5. Serum Biochemistry
2.6. Egg Yolk Fatty Acid Composition
2.7. Data Analysis
3. Results
3.1. Productive Performance
3.2. Egg Quality
3.3. Serum Indexes
3.4. Egg Yolk Fatty Acid Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahmawaty, S.; Meyer, B.J. Stunting is a recognized problem: Evidence for the potential benefits of ω-3 long-chain polyunsaturated fatty acids. Nutrition 2020, 73, 110564. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, J.P.; Huss, M.; Stauss-Grabo, M.; Hahn, A. Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. Eur. J. Pediatr. 2010, 169, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Barinaga, M. New lead to brain neuron regeneration. Science 1998, 282, 1018–1019. [Google Scholar] [CrossRef] [PubMed]
- Janssen, C.I.; Kiliaan, A.J. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of LCPUFA on neural development, aging, and neurodegeneration. Prog. Lipid Res. 2014, 53, 1–17. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: Nutritional implications for chronic diseases. Biomed. Pharmacother. 2006, 60, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G. Alpha-linolenic acid metabolism in men and women: Nutritional and biological implications. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 137–144. [Google Scholar] [CrossRef]
- Molendi-Coste, O.; Legry, V.; Leclercq, I.A. Why and How Meet n-3 PUFA Dietary Recommendations? Gastroenterol. Res. Pract. 2011, 2011, 364040. [Google Scholar] [CrossRef] [PubMed]
- Van Dael, P. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: Review of recent studies and recommendations. Nutr. Res. Pract. 2021, 15, 137–159. [Google Scholar] [CrossRef]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; Engell, R.E.; Powles, J.; Ezzati, M.; Mozaffarian, D. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014, 348, g2272. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, E.M. Studies in fat metabolism in the fowl: The composition of the egg fat and depot fat of the fowl as affected by the ingestion of large amounts of different fats. Biochem. J. 1934, 28, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, W.; Luo, G.; Li, Z.; Zhao, C.; Zhang, H.; Zhu, M.; Xu, Q.; Wang, X.; Zhao, C.; et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379. [Google Scholar] [CrossRef]
- Herber, S.M.; Van Elswyk, M.E. Dietary marine algae promotes efficient deposition of n-3 fatty acids for the production of enriched shell eggs. Poult. Sci. 1996, 75, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Scheideler, S.E.; Froning, G.W. The combined influence of dietary flaxseed variety, level, form, and storage conditions on egg production and composition among vitamin E-supplemented hens. Poult. Sci. 1996, 75, 1221–1226. [Google Scholar] [CrossRef]
- Kim, J.; Barcus, M.; Magnuson, A.; Tao, L.; Lei, X.G. Supplemental defatted microalgae affects egg and tissue fatty acid composition differently in laying hens fed diets containing corn and flaxseed oil. J. Appl. Poult. Res. 2016, 25, 528–538. [Google Scholar] [CrossRef]
- NY/T 4069-2021; Omega-3 Polyinsaturated Fatty Acuds Fortified Egg. China Agriculture Press: Beijing, China, 2022.
- NY/T 4070-2021; Technical Specification for Producation of Omega-3 Polyinsaturated Fatty Acuds Fortified Egg. China Agriculture Press: Beijing, China, 2022.
- Shin, S. Application of Quail Model for Studying the Poultry Functional Genomics. Korean J. Poult. Sci. 2017, 44, 103–111. [Google Scholar] [CrossRef]
- Minvielle, F. The future of Japanese quail for research and production. World’s Poult. Sci. 2004, 60, 500–507. [Google Scholar] [CrossRef]
- Abo Egila, N.S.H.; Dosoky, W.M.; Khisheerah, N.S.M.; Ahmed, M.H.; Zahran, S.M.; Almohmadi, N.H.; Abusudah, W.F.; Kamal, M.; Moustafa, M.; Tellez-Isaias, G.; et al. Does dietary linseed or canola oil affect lipid metabolism, immunity, and n-3 polyunsaturated fatty acids content in quail eggs? Poult. Sci. 2023, 102, 103116. [Google Scholar] [CrossRef] [PubMed]
- Arantes da Silva, W.; Naiverti Elias, A.H.; Aricetti, J.A.; Sakamoto, M.I.; Murakami, A.E.; Marques Gomes, S.T.; Visentainer, J.V.; Evelázio de Souza, N.; Matsushita, M. Quail egg yolk (Coturnix coturnix japonica) enriched with omega-3 fatty acids. LWT-Food Sci. Technol. 2009, 42, 660–663. [Google Scholar] [CrossRef]
- Meireles, B.R.L.D.A.; Fonseca, S.B.D.; Grisi, C.V.B.; Madruga, M.S.; Jordão Filho, J.; Pascoal, L.A.F.; Soledade, L.E.B.; da Silva, J.H.V. Shark liver and flaxseed oils as alternatives to soybean oil in the lipid quality of Japanese quail eggs. Br. Food J. 2022, 125, 2558–2571. [Google Scholar] [CrossRef]
- Long, S.; Wu, S.; Qi, G.; Zhang, H.; Wang, J.; Ma, Y.; Yang, L.; Yu, Z. Effects of Microalgae Oil and Fish oil on Egg Quality and Yolk Fatty Acid Deposition of Hens. Chin. J. Anim. Nutr. 2018, 30, 1713–1725. [Google Scholar] [CrossRef]
- Irawan, A.; Ningsih, N.; Hafizuddin; Rusli, R.K.; Suprayogi, W.P.S.; Akhirini, N.; Hadi, R.F.; Setyono, W.; Jayanegara, A. Supplementary n-3 fatty acids sources on performance and formation of omega-3 in egg of laying hens: A meta-analysis. Poult. Sci. 2022, 101, 101566. [Google Scholar] [CrossRef]
- Ruan, D.; Fouad, A.M.; Fan, Q.L.; Chen, W.; Xia, W.G.; Wang, S.; Cui, Y.Y.; Wang, Y.; Yang, L.; Zheng, C.T. Effects of corn dried distillers’ grains with solubles on performance, egg quality, yolk fatty acid composition and oxidative status in laying ducks. Poult. Sci. 2018, 97, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.B.; Li, L.; Wen, Z.G.; Yan, H.J.; Yang, P.L.; Tang, J.; Xie, M.; Hou, S.S. Dual functions of eicosapentaenoic acid-rich microalgae: Enrichment of yolk with n-3 polyunsaturated fatty acids and partial replacement for soybean meal in diet of laying hens. Poult. Sci. 2019, 98, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Bruneel, C.; Lemahieu, C.; Fraeye, I.; Ryckebosch, E.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs. J. Funct. Foods 2013, 5, 897–904. [Google Scholar] [CrossRef]
- Shibani, M.; Keller, J.; König, B.; Kluge, H.; Hirche, F.; Stangl, G.I.; Ringseis, R.; Eder, K. Effects of fish oil and conjugated linoleic acids on carnitine homeostasis in laying hens. Br. Poult. Sci. 2012, 53, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Elkin, R.G.; El-Zenary, A.S.A.; Bomberger, R.; Haile, A.B.; Weaver, E.A.; Ramachandran, R.; Harvatine, K.J. Feeding laying hens docosa hexaenoic acid-rich microalgae oil at 40 g/kg diet causes hypotriglyceridemia, depresses egg production, and attenuates expression of key genes affecting hepatic triglyceride synthesis and secretion, but is rescued by dietary co-supplementation of high-oleic sunflower oil. Poult. Sci. 2023, 102, 102318. [Google Scholar] [CrossRef]
- Santana, L.; Mendonca, M.; Silva, V.; Castro, M.; Costa, P.; Moura, G.; Bertechini, A. Performance and egg quality of Japanese quail fed diets containing microalgae Schizochytrium sp. Rev. Bras. Zootec. 2021, 50, e20200161. [Google Scholar] [CrossRef]
- Lemahieu, C.; Bruneel, C.; Termote-Verhalle, R.; Muylaert, K.; Foubert, I.; Buyse, J. Dynamics of omega-3 long chain polyunsaturated fatty acid incorporation in egg yolk by autotrophic microalgal supplementation. Eur. J. Lipid Sci. Technol. 2015, 117, 1391–1397. [Google Scholar] [CrossRef]
- Park, J.H.; Upadhaya, S.D.; Kim, I.H. Effect of dietary marine microalgae (Schizochytrium) powder on egg production, blood lipid profiles, egg quality, and Fatty Acid composition of egg yolk in layers. Asian-Australas. J. Anim. Sci. 2015, 28, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Pangestuti, R.; Kim, S.-K. Biological activities and health benefit effects of natural pigments derived from marine algae. J. Funct. Foods 2011, 3, 255–266. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Majrashi, K.A.; Fakiha, K.G.; Roshdy, M.; Kamal, M.; Saleh, R.M.; Khafaga, A.F.; Othman, S.I.; Rudayni, H.A.; Allam, A.A.; et al. Effects of varying dietary microalgae levels on performance, egg quality, fertility, and blood biochemical parameters of laying Japanese quails (Coturnix coturnix Japonica). Poult. Sci. 2024, 103, 103454. [Google Scholar] [CrossRef] [PubMed]
- Neijat, M.; Ojekudo, O.; House, J.D. Effect of flaxseed oil and microalgae DHA on the production performance, fatty acids and total lipids of egg yolk and plasma in laying hens. Prostaglandins Leukot. Essent. Fat. Acids 2016, 115, 77–88. [Google Scholar] [CrossRef] [PubMed]
- al-Batshan, H.A.; Scheideler, S.E.; Black, B.L.; Garlich, J.D.; Anderson, K.E. Duodenal calcium uptake, femur ash, and eggshell quality decline with age and increase following molt. Poult. Sci. 1994, 73, 1590–1596. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, A.; Kalin, O.; Nys, Y.; Garcia-Ruiz, J.M. Influence of the microstructure on the shell strength of eggs laid by hens of different ages. Br. Poult. Sci. 2002, 43, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, Q.; Lin, P.; Li, C.; Lu, Y.; Daijun, S. The Effect of Supplementing Tea Polyphenols in Diet of Laying Hens on Yolk Cholesterol Content and Production Performance. Braz. J. Poult. Sci. 2021, 23, 1–8. [Google Scholar] [CrossRef]
- Alagawany, M.; Lestingi, A.; Abdelzaher, H.A.; Elnesr, S.S.; Madkour, M.; El-Baz, F.K.; Alfassam, H.E.; Rudayni, H.A.; Allam, A.A.; Abd El Hack, M.E. Dietary supplementation with Dunaliella salina microalga promotes quail growth by altering lipid profile and immunity. Poult. Sci. 2024, 103, 103591. [Google Scholar] [CrossRef]
- Backes, J.; Anzalone, D.; Hilleman, D.; Catini, J. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia. Lipids Health Dis. 2016, 15, 118. [Google Scholar] [CrossRef]
- Wolska, A.; Yang, Z.H.; Remaley, A.T. Hypertriglyceridemia: New approaches in management and treatment. Curr. Opin. Lipidol. 2020, 31, 331–339. [Google Scholar] [CrossRef]
- Avellone, G.; Guarnotta, V.; Di Garbo, V.; Abruzzese, G.; Campisi, D.; Pinto, A.; Pizzo, G.; Licata, G. Impact of atorvastatin plus n-3 PUFA on metabolic, inflammatory and coagulative parameters in metabolic syndrome without and with type 2 diabetes mellitus. Arch. Int. J. Med. 2009, 2, 181–192. [Google Scholar]
- Levy, J.R.; Clore, J.N.; Stevens, W. Dietary n-3 polyunsaturated fatty acids decrease hepatic triglycerides in Fischer 344 rats. Hepatology 2004, 39, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Bujo, H.; Hermann, M.; Lindstedt, K.A.; Nimpf, J.; Schneider, W.J. Low Density Lipoprotein Receptor Gene Family Members Mediate Yolk Deposition12. J. Nutr. 1997, 127, 801S–804S. [Google Scholar] [CrossRef]
- Warr, G.W.; Magor, K.E.; Higgins, D.A. IgY: Clues to the origins of modern antibodies. Immunol. Today 1995, 16, 392–398. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Li, N.; Wang, Y.; Zhu, Q.; Chu, H.; Wu, W.; Tan, Y.; Yu, F.; Su, X.D.; et al. Structural insights into immunoglobulin M. Science 2020, 367, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Boes, M. Role of natural and immune IgM antibodies in immune responses. Mol. Immunol. 2000, 37, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, M.A.; Reda, F.M.; Mahmoud, H.K.; Bahshwan, S.M.A.; Salem, H.M.; Alhazmi, W.A.; Soror, A.S.; Mostafa, N.G.; Attia, S.; Mohamed, M.D.A.; et al. The potential of Spirulina platensis to substitute antibiotics in Japanese quail diets: Impacts on growth, carcass traits, antioxidant status, blood biochemical parameters, and cecal microorganisms. Poult. Sci. 2024, 103, 103350. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, A.A.; Elnesr, S.S.; Ahmad, E.A.M.; Abdel-Kader, I.A. Effect of dietary supplementation of Spirulina platensis powder on performance, some serum biochemistry, digestive enzymes, microbial content, antioxidant parameters and immune responses of growing Japanese quail. Anim. Biotechnol. 2023, 34, 4869–4877. [Google Scholar] [CrossRef]
- Ji, C.; Shen, H.; Su, C.; Li, Y.; Chen, S.; Sharp, T.H.; Xiao, J. Plasmodium falciparum has evolved multiple mechanisms to hijack human immunoglobulin M. Nat. Commun. 2023, 14, 2650. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Long, S.; Zhang, H.-j.; Wu, S.-g.; Qi, G.-h.; Wang, J. Comparative effects of dietary microalgae oil and fish oil on fatty acid composition and sensory quality of table eggs. Poult. Sci. 2020, 99, 1734–1743. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Esquerra, R.; Leeson, S. Effect of feeding hens regular or deodorized menhaden oil on production parameters, yolk fatty acid profile, and sensory quality of eggs. Poult. Sci. 2000, 79, 1597–1602. [Google Scholar] [CrossRef]
- Haraldsson, G.G.; Thorarensen, A. Preparation of phospholipids highly enriched with n-3 polyunsaturated fatty acids by lipase. J. Am. Oil Chem. Soc. 1999, 76, 1143–1149. [Google Scholar] [CrossRef]
- Maina, A.N.; Lewis, E.; Kiarie, E.G. Egg production, egg quality, and fatty acids profiles in eggs and tissues in Lohmann LSL lite hens fed algal oils rich in docosahexaenoic acid (DHA). Poult. Sci. 2023, 102, 102921. [Google Scholar] [CrossRef] [PubMed]
Ingredients | CON | 1.6% SAP | 3.2% SAP | 0.8% SAP + 0.3% SAO |
---|---|---|---|---|
Corn | 50.93 | 50.53 | 50.13 | 51.95 |
Soybean meal | 29.00 | 28.75 | 28.50 | 29.60 |
Lard | 4.10 | 3.65 | 3.20 | 3.40 |
Corn gluten meal (60%) | 4.00 | 4.00 | 4.00 | 4.00 |
Alcohol grains | 3.00 | 2.50 | 2.00 | 1.00 |
Schizochytrium algae oil | 0.00 | 0.00 | 0.00 | 0.3 |
Schizochytrium powder | 0.00 | 1.60 | 3.20 | 0.80 |
Limestone | 2.00 | 2.00 | 2.00 | 2.00 |
Calcium carbonate | 4.80 | 4.80 | 4.80 | 4.80 |
Dicalcium phosphate | 1.00 | 1.00 | 1.00 | 1.00 |
NaCl | 0.30 | 0.30 | 0.30 | 0.30 |
Mineral premix 1 | 0.05 | 0.05 | 0.05 | 0.05 |
Vitamins premix 2 | 0.02 | 0.02 | 0.02 | 0.02 |
L-Lysine HCl | 0.33 | 0.33 | 0.33 | 0.31 |
DL-Methionine | 0.26 | 0.26 | 0.26 | 0.26 |
L-threonine | 0.03 | 0.03 | 0.03 | 0.03 |
Choline chloride (50%) | 0.15 | 0.15 | 0.15 | 0.15 |
Phytase | 0.03 | 0.03 | 0.03 | 0.03 |
Total | 100 | 100 | 100 | 100 |
Calculated levels | ||||
ME (kcal/kg) | 2.907 | 2.905 | 2.903 | 2.906 |
Crude protein% | 20.08 | 20.08 | 20.08 | 20.08 |
Calcium% | 2.90 | 2.90 | 2.90 | 2.90 |
Total phosphorus% | 0.53 | 0.55 | 0.57 | 0.53 |
Available Phosphorus% | 0.30 | 0.30 | 0.30 | 0.30 |
DHA% | 0.00 | 0.36 | 0.72 | 0.34 |
Lysine% | 1.09 | 1.09 | 1.09 | 1.09 |
Methionine% | 0.55 | 0.55 | 0.55 | 0.55 |
Threonine% | 0.68 | 0.68 | 0.68 | 0.68 |
Tryptophan% | 0.19 | 0.19 | 0.19 | 0.19 |
Items | CON | 1.6% SAP | 3.2% SAP | 0.8% SAP + 0.3% SAO | SEM | p-Value |
---|---|---|---|---|---|---|
Laying rate (%) | ||||||
1–4 w | 62.51 a | 56.60 a | 59.99 a | 43.22 b | 3.623 | 0.004 |
5–8 w | 70.85 | 69.17 | 68.56 | 61.22 | 4.667 | 0.488 |
1–8 w | 66.68 | 62.89 | 64.28 | 52.22 | 3.780 | 0.058 |
ADFI (g) | ||||||
1–4 w | 18.68 | 18.02 | 18.57 | 17.63 | 0.551 | 0.509 |
5–8 w | 20.13 | 19.23 | 20.76 | 20.40 | 0.853 | 0.628 |
1–8 w | 19.40 | 18.63 | 19.66 | 19.02 | 0.676 | 0.719 |
FCR | ||||||
1–4 w | 3.05 b | 3.23 b | 3.00 b | 4.56 a | 0.297 | 0.003 |
5–8 w | 2.66 | 2.67 | 2.83 | 3.19 | 0.158 | 0.083 |
1–8 w | 2.85 b | 2.94 b | 2.92 b | 3.87 a | 0.209 | 0.006 |
Egg weight (g) | ||||||
1–4 w | 10.06 | 10.25 | 10.47 | 10.12 | 0.142 | 0.218 |
5–8 w | 10.82 | 10.80 | 11.17 | 10.88 | 0.138 | 0.234 |
1–8 w | 10.44 | 10.53 | 10.82 | 10.50 | 0.120 | 0.148 |
Egg mass (g/quail/d) | ||||||
1–4 w | 6.30 a | 5.80 a | 6.28 a | 4.38 b | 0.404 | 0.008 |
5–8 w | 7.68 | 7.48 | 7.63 | 6.64 | 0.514 | 0.456 |
1–8 w | 6.99 | 6.64 | 6.96 | 5.51 | 0.427 | 0.071 |
Mortality (%) | ||||||
1–4 w | 0.77 | 0.83 | 0.67 | 0.65 | 0.247 | 0.949 |
5–8 w | 1.21 | 0.73 | 0.84 | 2.11 | 0.367 | 0.056 |
1–8 w | 0.99 | 0.78 | 0.76 | 1.38 | 0.211 | 0.309 |
Items | CON | 1.6% SAP | 3.2% SAP | 0.8% SAP + 0.3% SAO | SEM | p-Value |
---|---|---|---|---|---|---|
Egg shape index | 0.77 | 0.79 | 0.78 | 0.78 | 0.0004 | 0.140 |
Egg weight (g) | 11.44 | 11.27 | 11.49 | 11.48 | 0.316 | 0.958 |
Eggshell strength, kg/cm3 | 1.13 | 1.04 | 1.12 | 1.08 | 0.042 | 0.389 |
Haugh unit | 75.65 | 78.32 | 78.14 | 78.19 | 0.999 | 0.203 |
Yolk color | 4.52 b | 4.84 ab | 5.27 a | 4.43 b | 0.206 | 0.037 |
Egg yolk ratio% | 31.52 | 31.92 | 32.40 | 31.50 | 0.552 | 0.630 |
Eggshell ratio% | 9.59 | 9.55 | 9.71 | 9.46 | 0.147 | 0.667 |
Eggshell-thickness/μm | 234.13 b | 212.84 c | 235.96 ab | 251.36 a | 5.563 | 0.001 |
Items | CON | 1.6% SAP | 3.2% SAP | 0.8% SAP + 0.3% SAO | SEM | p-Value |
---|---|---|---|---|---|---|
HDL-C (μmol/g) | 1.56 a | 1.34 ab | 0.90 b | 1.51 a | 0.154 | 0.022 |
LDL-C (μmol/g) | 1.73 | 1.17 | 0.77 | 1.14 | 0.238 | 0.065 |
TC (μmol/g) | 4.24 a | 3.5 ab | 2.51 b | 3.63 ab | 0.391 | 0.035 |
TG (μmol/g) | 10.42 a | 6.31 ab | 5.88 b | 7.26 ab | 1.131 | 0.038 |
IgM (g/L) | 13.94 b | 15.65 ab | 17.37 a | 17.74 a | 0.916 | 0.033 |
IgG (g/L) | 69.41 | 70.02 | 64.50 | 65.73 | 2.262 | 0.612 |
Items | CON | 1.6% SAP | 3.2% SAP | 0.8% SAP + 0.3% SAO | SEM | p-Value |
---|---|---|---|---|---|---|
SFA | 36.67 | 37.51 | 36.78 | 37.88 | 0.441 | 0.178 |
UFA | 63.33 | 62.49 | 63.21 | 62.11 | 0.441 | 0.178 |
MUFA | 50.33 a | 48.08 b | 47.77 b | 47.73 b | 0.444 | 0.0026 |
PUFA | 12.33 b | 14.34 a | 15.20 a | 14.31 a | 0.335 | <0.0001 |
ω-6 PUFA | 11.57 a | 10.76 b | 9.85 c | 10.48 bc | 0.254 | 0.0018 |
ω-3 PUFA | 1.11 c | 3.58 b | 4.95 a | 3.82 b | 0.121 | <0.0001 |
ω-6/ω-3 | 11.79 a | 3.01 b | 1.98 b | 2.74 b | 0.552 | <0.0001 |
DHA (mg/100 g egg yolk) | 181.14 c | 1137.71 b | 1359.59 a | 1165.21 ab | 83.961 | <0.0001 |
ω-3 PUFA (mg/100 g egg yolk) | 280.19 c | 1243.79 b | 1491.13 a | 1274.67 ab | 89.470 | <0.0001 |
ω-3 PUFA (mg/100 g egg) | 59.31 c | 265.74 b | 389.98 a | 263.56 b | 283.13 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Xuan, Y.; Zhang, R.; Ding, X.; Zeng, Q.; Wang, J.; Bai, S.; Li, S.; Liu, Y.; Chen, Y.; et al. Effects of Dietary Schizochytrium Algae as ω-3 PUFA Source on the Egg-Laying Quail Performance, Serum Indexes, and Egg Yolk Fatty Acids Contents. Animals 2025, 15, 21. https://doi.org/10.3390/ani15010021
Chang Y, Xuan Y, Zhang R, Ding X, Zeng Q, Wang J, Bai S, Li S, Liu Y, Chen Y, et al. Effects of Dietary Schizochytrium Algae as ω-3 PUFA Source on the Egg-Laying Quail Performance, Serum Indexes, and Egg Yolk Fatty Acids Contents. Animals. 2025; 15(1):21. https://doi.org/10.3390/ani15010021
Chicago/Turabian StyleChang, Yifan, Yue Xuan, Ruinan Zhang, Xuemei Ding, Qiufeng Zeng, Jianping Wang, Shiping Bai, Shanshan Li, Yan Liu, Yuchuan Chen, and et al. 2025. "Effects of Dietary Schizochytrium Algae as ω-3 PUFA Source on the Egg-Laying Quail Performance, Serum Indexes, and Egg Yolk Fatty Acids Contents" Animals 15, no. 1: 21. https://doi.org/10.3390/ani15010021
APA StyleChang, Y., Xuan, Y., Zhang, R., Ding, X., Zeng, Q., Wang, J., Bai, S., Li, S., Liu, Y., Chen, Y., & Zhang, K. (2025). Effects of Dietary Schizochytrium Algae as ω-3 PUFA Source on the Egg-Laying Quail Performance, Serum Indexes, and Egg Yolk Fatty Acids Contents. Animals, 15(1), 21. https://doi.org/10.3390/ani15010021