Exploring the Potential Effects of Soybean By-Product (Hulls) and Enzyme (Beta-Mannanase) on Laying Hens During Peak Production
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diet, Birds, and Housing
2.2. Egg Quality Traits
2.3. Hematology and Serum Biochemistry
2.4. Consistency of Excreta and Digesta Viscosity
2.5. Nutrient Digestibility
2.6. Intestinal Histomorphology
2.7. Statistical Analysis
3. Results
3.1. Egg Quality Traits
3.2. Hematology and Serum Biochemistry
3.3. Nutrient Digestibility, Digesta Viscosity, and Excreta Consistency
3.4. Intestinal Histomorphology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pretty, J. Agricultural Sustainability: Concepts, Principles and Evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Niemann, H.; Kuhla, B.; Flachowsky, G. Perspectives for Feed-Efficient Animal Production1. J. Anim. Sci. 2011, 89, 4344–4363. [Google Scholar] [CrossRef] [PubMed]
- Tejeda, O.J.; Kim, W.K. Role of Dietary Fiber in Poultry Nutrition. Animals 2021, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Röhe, I.; Zentek, J. Lignocellulose as an Insoluble Fiber Source in Poultry Nutrition: A Review. J. Anim. Sci. Biotechnol. 2021, 12, 82. [Google Scholar] [CrossRef]
- Mateos, G.G.; Jiménez-Moreno, E.; Serrano, M.P.; Lázaro, R.P. Poultry Response to High Levels of Dietary Fiber Sources Varying in Physical and Chemical Characteristics. J. Appl. Poult. Res. 2012, 21, 156–174. [Google Scholar] [CrossRef]
- Mielenz, J.R.; Bardsley, J.S.; Wyman, C.E. Fermentation of soybean hulls to ethanol while preserving protein value. Bioresour. Technol. 2009, 100, 3532–3539. [Google Scholar] [CrossRef]
- Rojas, M.J.; Siqueira, P.F.; Miranda, L.C.; Tardioli, P.W.; Giordano, R.L. Sequential proteolysis and cellulolytic hydrolysis of soybean hulls for oligopeptides and ethanol production. Ind. Crops Prod. 2014, 61, 202–210. [Google Scholar] [CrossRef]
- Liu, H.-M.; Li, H.-Y. Application and Conversion of Soybean Hulls. In Soybean—The Basis of Yield, Biomass and Productivity; Kasai, M., Ed.; InTech: Nappanee, IN, USA, 2017; ISBN 978-953-51-3117-5. [Google Scholar]
- Sun, X.; Debeni Devi, N.; Urriola, P.E.; Tiffany, D.G.; Jang, J.-C.; Shurson, G.G.; Hu, B. Feeding Value Improvement of Corn-Ethanol Co-Product and Soybean Hull by Fungal Fermentation: Fiber Degradation and Digestibility Improvement. Food Bioprod. Process. 2021, 130, 143–153. [Google Scholar] [CrossRef]
- Whistler, R.L.; Saarnio, J. Galactomannan from Soy Bean Hulls. J. Am. Chem. Soc. 1957, 79, 6055–6057. [Google Scholar] [CrossRef]
- Porfiri, M.C.; Wagner, J.R. Extraction and Characterization of Soy Hull Polysaccharide-Protein Fractions. Analysis of Aggregation and Surface Rheology. Food Hydrocoll. 2018, 79, 40–47. [Google Scholar] [CrossRef]
- Choct, M.; Dersjant-Li, Y.; McLeish, J.; Peisker, M. Soy Oligosaccharides and Soluble Non-Starch Polysaccharides: A Review of Digestion, Nutritive and Anti-Nutritive Effects in Pigs and Poultry. Asian-Australas. J. Anim. Sci. 2010, 23, 1386–1398. [Google Scholar] [CrossRef]
- Odetallah, N.; Ferket, P.; Grimes, J.; McNaughton, J. Effect of Mannan-Endo-1,4-Beta-Mannosidase on the Growth Performance of Turkeys Fed Diets Containing 44 and 48% Crude Protein Soybean Meal. Poult. Sci. 2002, 81, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Dierick, N.A. Biotechnology Aids to Improve Feed and Feed Digestion: Enzymes and Fermentation. Arch. Tierernaehrung 1989, 39, 241–261. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.-Y.; Anderson, D.M.; Dale, N.M. Levels of β-Mannan in Soybean Meal. Poult. Sci. 2006, 85, 1430–1432. [Google Scholar] [CrossRef]
- Barros, V.R.S.M.; Lana, G.R.Q.; Lana, S.R.V.; Lana, Â.M.Q.; Cunha, F.S.A.; Neto, J.V.E. β-Mannanase and Mannan Oligosaccharides in Broiler Chicken Feed. Ciênc. Rural 2014, 45, 111–117. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Bedford, M.R.; Morgan, N.K. Importance of Considering Non-Starch Polysaccharide Content of Poultry Diets. Worlds Poult. Sci. J. 2021, 77, 619–637. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Ingale, S.L.; Park, J.H.; Rathi, P.C.; Shanmugam, S.; Kim, I.H. Inclusion of Dietary β-Mannanase Improves Performance and Ileal Digestibility and Reduces Ileal Digesta Viscosity of Broilers Fed Corn-Soybean Meal Based Diet. Poult. Sci. 2018, 97, 3097–3101. [Google Scholar] [CrossRef]
- Haugh, R. The Haugh Unit for Measuring Egg Quality. In U.S. Egg and Poultry Magazine; Watt Publishing Company: Rockford, IL, USA, 1937; Volume 43, pp. 552–555. [Google Scholar]
- Bernard, F.F.; Joseph, G.Z.; Jain, N.C. Schalm’s Veterinary Hematology, 5th ed.; Lippincott Williems and Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- Bedford, M.R.; Classen, H.L. An In Vitro Assay for Prediction of Broiler Intestinal Viscosity and Growth When Fed Rye-Based Diets in the Presence of Exogenous Enzymes. Poult. Sci. 1993, 72, 137–143. [Google Scholar] [CrossRef]
- Roland, D.A.; Caldwell, D. Relationship of Calcium to Wet Droppings in Laying Hens. Poult. Sci. 1985, 64, 1809–1812. [Google Scholar] [CrossRef]
- Huang, K.H.; Li, X.; Ravindran, V.; Bryden, W.L. Comparison of Apparent Ileal Amino Acid Digestibility of Feed Ingredients Measured with Broilers, Layers, and Roosters. Poult. Sci. 2006, 85, 625–634. [Google Scholar] [CrossRef]
- Solis De Los Santos, F.; Tellez, G.; Farnell, M.B.; Balog, J.M.; Anthony, N.B.; Pavlidis, H.O.; Donoghue, A.M. Hypobaric Hypoxia in Ascites Resistant and Susceptible Broiler Genetic Lines Influences Gut Morphology. Poult. Sci. 2005, 84, 1495–1498. [Google Scholar] [CrossRef] [PubMed]
- Joyner, C.J.; Peddie, M.J.; Taylor, T.G. The Effect of Age on Egg Production in the Domestic Hen. Gen. Comp. Endocrinol. 1987, 65, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Desbruslais, A.; Wealleans, A.; Gonzalez-Sanchez, D.; Di Benedetto, M. Dietary Fibre in Laying Hens: A Review of Effects on Performance, Gut Health and Feather Pecking. Worlds Poult. Sci. J. 2021, 77, 797–823. [Google Scholar] [CrossRef]
- Hou, L.; Sun, B.; Yang, Y. Effects of Added Dietary Fiber and Rearing System on the Gut Microbial Diversity and Gut Health of Chickens. Animals 2020, 10, 107. [Google Scholar] [CrossRef]
- Shang, H.; Zhao, J.; Dong, X.; Guo, Y.; Zhang, H.; Cheng, J.; Zhou, H. Inulin Improves the Egg Production Performance and Affects the Cecum Microbiota of Laying Hens. Int. J. Biol. Macromol. 2020, 155, 1599–1609. [Google Scholar] [CrossRef]
- Sozcu, A.; Ipek, A. The Effects of Lignocellulose Supplementation on Laying Performance, Egg Quality Parameters, Aerobic Bacterial Load of Eggshell, Serum Biochemical Parameters, and Jejunal Histomorphological Traits of Laying Hens. Poult. Sci. 2020, 99, 3179–3187. [Google Scholar] [CrossRef]
- Mens, A.J.W.; Van Krimpen, M.M.; Kwakkel, R.P. Nutritional Approaches to Reduce or Prevent Feather Pecking in Laying Hens: Any Potential to Intervene during Rearing? Worlds Poult. Sci. J. 2020, 76, 591–610. [Google Scholar] [CrossRef]
- Jha, R.; Mishra, P. Dietary Fiber in Poultry Nutrition and Their Effects on Nutrient Utilization, Performance, Gut Health, and on the Environment: A Review. J. Anim. Sci. Biotechnol. 2021, 12, 51. [Google Scholar] [CrossRef]
- Scapini, L.; Rorig, A.; Ferrarini, A.; Fülber, L.; Canavese, M.; Silva, A.; Fernandes, J. Nutritional Evaluation of Soybean Hulls with or without β-Mannanase Supplement on Performance, Intestinal Morphometric and Carcass Yield of Broilers Chickens. Braz. J. Poult. Sci. 2018, 20, 633–642. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Steelman, S.; Martinez, M.; Livingston, K. Significance of Single β-Mannanase Supplementation on Performance and Energy Utilization in Broiler Chickens, Laying Hens, Turkeys, Sows, and Nursery-Finish Pigs: A Meta-Analysis and Systematic Review. Transl. Anim. Sci. 2021, 5, txab160. [Google Scholar] [CrossRef]
- Kong, C.; Lee, J.H.; Adeola, O. Supplementation of β-Mannanase to Starter and Grower Diets for Broilers. Can. J. Anim. Sci. 2011, 91, 389–397. [Google Scholar] [CrossRef]
- Loy, D.D.; Lundy, E.L. Nutritional Properties and Feeding Value of Corn and Its Coproducts. In Corn; Elsevier: Amsterdam, The Netherlands, 2019; pp. 633–659. ISBN 978-0-12-811971-6. [Google Scholar]
- Dekker, R.F. Biodegradation of the Hemicelluloses. In Biosynthesis and Biodegradation of Wood Components; Academic Press: New York, NY, USA, 1985; pp. 505–533. [Google Scholar]
- Carvalho, C.L.; Andretta, I.; Galli, G.M.; Bastos Stefanello, T.; Camargo, N.D.O.T.; Mendes, R.E.; Pelisser, G.; Balamuralikrishnan, B.; Melchior, R.; Kipper, M. Dietary Supplementation with β-Mannanase and Probiotics as a Strategy to Improve Laying Hen Performance and Egg Quality. Front. Vet. Sci. 2023, 10, 1229485. [Google Scholar] [CrossRef] [PubMed]
- White, D.; Adhikari, R.; Wang, J.; Chen, C.; Lee, J.H.; Kim, W.K. Effects of Dietary Protein, Energy and β-Mannanase on Laying Performance, Egg Quality, and Ileal Amino Acid Digestibility in Laying Hens. Poult. Sci. 2021, 100, 101312. [Google Scholar] [CrossRef] [PubMed]
- Ryu, M.H.; Hosseindoust, A.; Kim, J.S.; Choi, Y.H.; Lee, S.H.; Kim, M.J.; Lee, J.H.; Chae, B.J. β-Mannanase Derived from Bacillus subtilis WL-7 Improves the Performance of Commercial Laying Hens Fed Low or High Mannan-Based Diets. J. Poult. Sci. 2017, 54, 212–217. [Google Scholar] [CrossRef]
- Jackson, M.; Fodge, D.; Hsiao, H. Effects of Beta-Mannanase in Corn-Soybean Meal Diets on Laying Hen Performance. Poult. Sci. 1999, 78, 1737–1741. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, S.Y.; Lee, J.H.; Lee, J.H.; Ohh, S.J. Effect of Dietary β-Mannanase Supplementation and Palm Kernel Meal Inclusion on Laying Performance and Egg Quality in 73 Weeks Old Hens. J. Anim. Sci. Technol. 2013, 55, 115–122. [Google Scholar] [CrossRef]
- Mangi, M.H.; Hussain, T.; Shahid, M.S.; Sabir, N.; Kalhoro, M.S.; Zhou, X.; Yuan, J. Effects of Flaxseed and Multi-Carbohydrase Enzymes on the Cecal Microbiota and Liver Inflammation of Laying Hens. Animals 2021, 11, 600. [Google Scholar] [CrossRef]
- Weiss, F.G.; Scott, M.L. Effects of Dietary Fiber, Fat and Total Energy Upon Plasma Cholesterol and Other Parameters in Chickens. J. Nutr. 1979, 109, 693–701. [Google Scholar] [CrossRef]
- Viveros, A.; Ortiz, L.T.; Rodríguez, M.L.; Rebolé, A.; Alzueta, C.; Arija, I.; Centeno, C.; Brenes, A. Interaction of Dietary High-Oleic-Acid Sunflower Hulls and Different Fat Sources in Broiler Chickens. Poult. Sci. 2009, 88, 141–151. [Google Scholar] [CrossRef]
- McNaughton, J.L. Effect of Dietary Fiber on Egg Yolk, Liver, and Plasma Cholesterol Concentrations of the Laying Hen. J. Nutr. 1978, 108, 1842–1848. [Google Scholar] [CrossRef]
- Gunness, P.; Gidley, M.J. Mechanisms Underlying the Cholesterol-Lowering Properties of Soluble Dietary Fibre Polysaccharides. Food Funct. 2010, 1, 149. [Google Scholar] [CrossRef] [PubMed]
- Chawla, R.; Patil, G.R. Soluble Dietary Fiber. Compr. Rev. Food Sci. Food Saf. 2010, 9, 178–196. [Google Scholar] [CrossRef]
- Evans, G. Removal of Blood from Laboratory Mammals and Birds. Lab. Anim. 1994, 28, 178–179. [Google Scholar] [CrossRef] [PubMed]
- Adewole, D. Effect of Dietary Supplementation with Coarse or Extruded Oat Hulls on Growth Performance, Blood Biochemical Parameters, Ceca Microbiota and Short Chain Fatty Acids in Broiler Chickens. Animals 2020, 10, 1429. [Google Scholar] [CrossRef]
- Martínez, Y.; Carrión, Y.; Rodríguez, R.; Valdivié, M.; Olmo, C.; Betancur, C.; Liu, G.; Al-Dhabi, N.; Duraipandiyan, V. Growth Performance, Organ Weights and Some Blood Parameters of Replacement Laying Pullets Fed with Increasing Levels of Wheat Bran. Rev. Bras. Ciênc. Avícola 2015, 17, 347–354. [Google Scholar] [CrossRef]
- Mohammadigheisar, M.; Shouldice, V.L.; Balasubramanian, B.; Kim, I.H. Effect of Dietary Supplementation of β-Mannanase on Growth Performance, Carcass Characteristics, Excreta Microflora, Blood Constituents, and Nutrient Ileal Digestibility in Broiler Chickens. Anim. Biosci. 2021, 34, 1342–1349. [Google Scholar] [CrossRef]
- Yaqoob, M.U.; Yousaf, M.; Khan, M.I.; Wang, M. Effect of β-Mannanase Supplementation on Growth Performance, Ileal Digestibility, Carcass Traits, Intestinal Morphology, and Meat Quality in Broilers Fed Low-ME Diets. Animals 2022, 12, 1126. [Google Scholar] [CrossRef]
- Kim, J.S.; Ingale, S.L.; Hosseindoust, A.R.; Lee, S.H.; Lee, J.H.; Chae, B.J. Effects of Mannan Level and β-Mannanase Supplementation on Growth Performance, Apparent Total Tract Digestibility and Blood Metabolites of Growing Pigs. Animal 2017, 11, 202–208. [Google Scholar] [CrossRef]
- Montagne, L.; Pluske, J.R.; Hampson, D.J. A Review of Interactions between Dietary Fibre and the Intestinal Mucosa, and Their Consequences on Digestive Health in Young Non-Ruminant Animals. Anim. Feed Sci. Technol. 2003, 108, 95–117. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, W.K. Effects of Dietary Fiber on Nutrients Utilization and Gut Health of Poultry: A Review of Challenges and Opportunities. Animals 2021, 11, 181. [Google Scholar] [CrossRef]
- Habte-Tsion, H.-M.; Kumar, V. Non-starch Polysaccharide Enzymes—General Aspects. In Enzymes in Human and Animal Nutrition; Elsevier: Amsterdam, The Netherlands, 2018; pp. 183–209. ISBN 978-0-12-805419-2. [Google Scholar]
Nutrient (%) | Diets | ||||
---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | |
Soybean Hulls (%) | 0 | 3 | 3 | 9 | 9 |
β-Mannanase (g/kg) | 0 | 0.02 | 0.03 | 0.02 | 0.03 |
Corn | 53.1 | 52.1 | 52.1 | 50.5 | 50.5 |
Canola Meal (CP 34%) | 4.15 | 3.85 | 3.67 | 2.16 | 2.14 |
Soybean Meal (CP 44%) | 24.3 | 23.6 | 23.6 | 22.2 | 22.2 |
GM | 0 | 1 | 1 | 1 | 1 |
PBM High Fat | 2 | 1.02 | 1 | 1 | 0.85 |
PO | 2.79 | 2.79 | 2.72 | 2.67 | 2.67 |
NaCl | 0.32 | 0.32 | 0.41 | 0.26 | 0.41 |
NaHCO3 | 0.10 | 0.1 | 0.1 | 0.1 | 0.1 |
CaCO3 | 11.1 | 10.1 | 10.3 | 8.98 | 9.15 |
Celite | 1 | 1 | 1 | 1 | 1 |
DCP | 0.78 | 0.76 | 0.74 | 0.76 | 0.61 |
DL-M | 0.09 | 0.09 | 0.09 | 0.08 | 0.09 |
ChCl (70%) | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
Vitamin-P * | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
Mineral-P * | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Phytase | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Enro + Etho | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Total | 100 | 100 | 100 | 100 | 100 |
Analyzed Value | |||||
DM | 89.4 | 90.5 | 90.6 | 91.0 | 91.1 |
CP | 17.7 | 17.5 | 17.5 | 17.0 | 17.0 |
CF | 2.85 | 2.87 | 2.87 | 2.90 | 2.90 |
Fat | 4.82 | 4.76 | 4.77 | 4.72 | 4.72 |
Ash | 13.5 | 13.7 | 13.7 | 13.3 | 13.4 |
Moisture | 10.5 | 9.48 | 9.38 | 9.00 | 8.84 |
NFE | 51.6 | 49.0 | 49.0 | 45.8 | 45.8 |
Parameter | Week | Diets 1 | ||||||
---|---|---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | SEM | p-Value | ||
Egg weight (g) | 33 | 55.50 | 56.00 | 56.70 | 55.70 | 56.20 | 0.55 | 0.591 |
34 | 56.00 | 56.50 | 56.70 | 56.00 | 56.50 | 0.62 | 0.914 | |
35 | 55.70 | 56.00 | 56.20 | 56.00 | 56.20 | 0.65 | 0.983 | |
36 | 56.20 | 56.50 | 56.70 | 56.50 | 56.00 | 0.81 | 0.974 | |
Overall | 55.80 | 56.20 | 56.60 | 56.00 | 56.20 | 0.32 | 0.630 | |
Eggshell weight (g) | 33 | 4.99 | 5.04 | 5.10 | 5.01 | 5.06 | 0.04 | 0.591 |
34 | 5.32 | 5.36 | 5.39 | 5.32 | 5.36 | 0.05 | 0.914 | |
35 | 5.12 | 5.18 | 5.34 | 5.16 | 5.27 | 0.07 | 0.414 | |
36 | 5.45 | 5.48 | 5.50 | 5.48 | 5.43 | 0.07 | 0.974 | |
Overall | 5.22 | 5.26 | 5.33 | 5.24 | 5.28 | 0.03 | 0.284 | |
Eggshell thickness (mm) | 33 | 0.31 | 0.30 | 0.28 | 0.31 | 0.31 | 0.03 | 0.475 |
34 | 0.30 | 0.31 | 0.31 | 0.32 | 0.31 | 0.02 | 0.939 | |
35 | 0.35 | 0.33 | 0.28 | 0.32 | 0.31 | 0.04 | 0.150 | |
36 | 0.33 | 0.33 | 0.33 | 0.33 | 0.36 | 0.13 | 0.446 | |
Overall | 0.32 | 0.32 | 0.30 | 0.32 | 0.32 | 0.04 | 0.235 |
Parameter | Week | Diet 1 | ||||||
---|---|---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | SEM | p-Value | ||
Yolk weight (g) | 33 | 16.80 | 16.50 | 16.70 | 17.00 | 17.20 | 0.23 | 0.660 |
34 | 16.80 | 15.80 | 15.90 | 16.10 | 16.40 | 0.23 | 0.155 | |
35 | 16.60 | 16.40 | 16.30 | 16.80 | 16.70 | 0.23 | 0.721 | |
36 | 16.50 | 16.30 | 16.30 | 16.70 | 16.10 | 0.20 | 0.428 | |
Overall | 16.70 | 16.20 | 16.30 | 16.60 | 16.60 | 0.12 | 0.179 | |
Albumen weight (g) | 33 | 32.80 | 33.60 | 34.00 | 32.90 | 33.10 | 0.36 | 0.216 |
34 | 33.00 | 34.40 | 34.60 | 33.70 | 33.80 | 0.35 | 0.065 | |
35 | 33.10 | 33.60 | 33.70 | 33.10 | 33.40 | 0.41 | 0.849 | |
36 | 33.40 | 33.90 | 34.00 | 33.40 | 33.60 | 0.53 | 0.925 | |
Overall | 33.10 | 33.80 | 34.10 | 33.30 | 33.50 | 0.20 | 0.074 | |
Albumen height (mm) | 33 | 6.72 | 6.85 | 6.97 | 6.60 | 6.75 | 0.18 | 0.730 |
34 | 6.75 | 6.90 | 6.97 | 6.87 | 7.00 | 0.22 | 0.953 | |
35 | 6.57 | 6.72 | 6.77 | 6.60 | 6.65 | 0.19 | 0.956 | |
36 | 6.67 | 6.77 | 6.82 | 6.70 | 6.77 | 0.20 | 0.987 | |
Overall | 6.68 | 6.81 | 6.88 | 6.69 | 6.79 | 0.07 | 0.345 | |
Haugh Unit | 33 | 73.50 | 75.50 | 76.80 | 74.30 | 74.60 | 1.57 | 0.677 |
34 | 71.11 | 73.20 | 74.50 | 71.90 | 72.20 | 1.65 | 0.678 | |
35 | 74.13 | 76.10 | 76.70 | 75.20 | 75.70 | 1.86 | 0.887 | |
36 | 74.90 | 76.90 | 77.50 | 76.00 | 76.50 | 1.83 | 0.879 | |
Overall | 73.40 | 75.40 | 76.40 | 74.40 | 74.80 | 1.47 | 0.699 |
Diet 1 | |||||||
---|---|---|---|---|---|---|---|
Hematological Indices 2 | P0 | P1 | P2 | P3 | P4 | SEM | p-Value |
Red blood cells (106/μL) | 3.05 | 3.16 | 3.17 | 3.09 | 3.11 | 0.04 | 0.556 |
White blood cells (103/μL) | 3.05 | 2.98 | 2.96 | 3.03 | 3.02 | 0.01 | 0.060 |
Heterophil (%) | 23.00 | 23.20 | 24.70 | 22.70 | 23.70 | 1.39 | 0.885 |
Lymphocyte (%) | 59.00 | 61.20 | 62.00 | 60.50 | 61.00 | 1.30 | 0.598 |
Heterophil: Lymphocyte | 0.39 | 0.37 | 0.39 | 0.38 | 0.38 | 0.02 | 0.978 |
Packed cell volume (%) | 30.00 | 31.20 | 31.40 | 30.30 | 31.00 | 0.65 | 0.413 |
Hb (g/dL) | 9.52 | 9.78 | 9.82 | 9.64 | 9.71 | 0.05 | 0.064 |
MCHC (g/dL) | 32.00 | 31.30 | 31.20 | 32.00 | 31.30 | 0.67 | 0.561 |
MCV (fL) | 98.30 | 98.70 | 99.00 | 98.00 | 100.00 | 2.69 | 0.947 |
Serum Biochemical Indices 3 | |||||||
TC (mg/dL) | 130.00 a | 127.00 b | 126.00 b | 124.00 bc | 122.00 c | 1.39 | 0.022 |
HDL (mg/dL) | 65.00 | 65.40 | 67.90 | 64.10 | 66.00 | 1.31 | 0.446 |
LDL (mg/dL) | 42.00 a | 39.40 ab | 37.30 bc | 36.00 c | 35.00 c | 0.99 | 0.002 |
VLDL (mg/dL) | 23.00 | 21.20 | 20.80 | 23.60 | 21.20 | 1.58 | 0.676 |
Total protein (mg/dL) | 4.94 | 5.02 | 5.08 | 4.98 | 5.05 | 0.05 | 0.508 |
Nutrient (%) | Diet 1 | ||||||
---|---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | SEM | p-Value | |
Dry matter, % | 78.10 b | 81.00 a | 82.00 a | 79.00 b | 80.00 ab | 0.73 | 0.022 |
Ash, % | 57.00 | 59.20 | 59.40 | 58.00 | 58.20 | 0.83 | 0.108 |
Crude protein, % | 67.00 c | 69.00 b | 72.00 a | 67.30 c | 68.00 bc | 1.11 | 0.032 |
Crude fiber, % | 68.10 b | 70.40 a | 71.30 a | 68.20 b | 70.00 a | 0.95 | 0.046 |
Crude fat, % | 75.00 d | 78.00 ab | 80.00 a | 76.00 cd | 77.00 bc | 0.98 | 0.019 |
Viscosity, (cP) 2 | 4.77 | 4.72 | 4.67 | 4.98 | 4.82 | 0.102 | 0.494 |
Excreta consistency 3 | 1 | 1 | 1 | 1 | 1 | N/A | N/A |
Parameters | Diet 1 | |||||||
---|---|---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | SEM | p-Value | ||
Duodenum 2 | VW (µm) | 77.00 c | 87.00 b | 94.00 a | 82.00 bc | 87.00 b | 2.65 | 0.005 |
Vh (µm) | 589.00 d | 610.00 b | 617.00 a | 602.00 c | 611.00 b | 6.71 | 0.011 | |
Cd (µm) | 109.00 c | 116.00 b | 122.00 a | 110.00 c | 114.00 b | 4.15 | 0.024 | |
Vh: Cd | 5.41 | 5.28 | 5.06 | 5.47 | 5.38 | 0.25 | 0.803 | |
VSA (mm2) | 0.14 d | 0.16 b | 0.18 a | 0.15 c | 0.16 b | 0.04 | 0.002 | |
Jejunum | Vw (µm) | 65.00 c | 70.00 b | 75.00 a | 69.00 b | 73.00 a | 2.26 | 0.048 |
Vh (µm) | 441.00 d | 457.00 b | 465.00 a | 451.00 c | 458.00 b | 6.84 | 0.019 | |
Cd (µm) | 60.00 d | 68.00 b | 76.00 a | 64.00 c | 71.00 b | 2.45 | 0.003 | |
Vh: Cd | 7.45 a | 6.69 ab | 6.16 b | 7.09 ab | 6.46 ab | 0.23 | 0.020 | |
VSA (mm2) | 0.09 d | 0.10 b | 0.11 a | 0.09 c | 0.10 b | 0.05 | 0.014 | |
Ileum | Vw (µm) | 59.00 c | 63.00 b | 66.00 a | 60.00 c | 64.00 b | 2.22 | 0.017 |
Vh (µm) | 389.00 c | 397.00 b | 403.00 a | 386.00 c | 394.00 b | 5.89 | 0.037 | |
Cd (µm) | 55.00 c | 57.00 bc | 61.00 a | 56.00 c | 58.00 b | 1.91 | 0.032 | |
Vh: Cd | 7.10 | 6.98 | 6.67 | 6.92 | 6.81 | 0.21 | 0.714 | |
VSA (mm2) | 0.07 c | 0.08 b | 0.08 a | 0.07 c | 0.08 b | 0.04 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuaib, M.; Hafeez, A.; Paneru, D.; Kim, W.K.; Tahir, M.; Pokoo-Aikins, A.; Ullah, O.; Sufyan, A. Exploring the Potential Effects of Soybean By-Product (Hulls) and Enzyme (Beta-Mannanase) on Laying Hens During Peak Production. Animals 2025, 15, 98. https://doi.org/10.3390/ani15010098
Shuaib M, Hafeez A, Paneru D, Kim WK, Tahir M, Pokoo-Aikins A, Ullah O, Sufyan A. Exploring the Potential Effects of Soybean By-Product (Hulls) and Enzyme (Beta-Mannanase) on Laying Hens During Peak Production. Animals. 2025; 15(1):98. https://doi.org/10.3390/ani15010098
Chicago/Turabian StyleShuaib, Muhammad, Abdul Hafeez, Deependra Paneru, Woo Kyun Kim, Muhammad Tahir, Anthony Pokoo-Aikins, Obaid Ullah, and Abubakar Sufyan. 2025. "Exploring the Potential Effects of Soybean By-Product (Hulls) and Enzyme (Beta-Mannanase) on Laying Hens During Peak Production" Animals 15, no. 1: 98. https://doi.org/10.3390/ani15010098
APA StyleShuaib, M., Hafeez, A., Paneru, D., Kim, W. K., Tahir, M., Pokoo-Aikins, A., Ullah, O., & Sufyan, A. (2025). Exploring the Potential Effects of Soybean By-Product (Hulls) and Enzyme (Beta-Mannanase) on Laying Hens During Peak Production. Animals, 15(1), 98. https://doi.org/10.3390/ani15010098