Semi-Feral Horse Grazing Benefits the Grassland Diversity of Flowering Plants Including a Pollinator-Promoting Indicator Species
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data Analysis
- S = total number of species (species richness);
- pi = proportion of individuals belonging to species i (calculated as proportion of species i = ni/N, where ni is the number of individuals of species i and N is the total number of individuals of all species);
- ln = natural logarithm.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malhi, Y.; Lander, T.; le Roux, E.; Stevens, N.; Macias-Fauria, M.; Wedding, L.; Girardin, C.; Kristensen, J.Å.; Sandom, C.J.; Evans, T.D.; et al. The role of large wild animals in climate change mitigation and adaptation. Curr. Biol. 2022, 32, R181–R196. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.A.; Elliott Smith, R.E.; Lyons, S.K.; Payne, J.L.; Villaseñor, A. The accelerating influence of humans on mammalian macroecological patterns over the late Quaternary. Quat. Sci. Rev. 2019, 211, 1–16. [Google Scholar] [CrossRef]
- Davoli, M.; Monsarrat, S.; Pedersen, R.Ø.; Scussolini, P.; Karger, D.N.; Normand, S.; Svenning, J.-C. Megafauna diversity and functional declines in Europe from the Last Interglacial to the present. Glob. Ecol. Biogeogr. 2024, 33, 34–47. [Google Scholar] [CrossRef]
- Svenning, J.-C.; Lemoine, R.T.; Bergman, J.; Buitenwerf, R.; Le Roux, E.; Lundgren, E.; Mungi, N.; Pedersen, R.Ø. The late-Quaternary megafauna extinctions: Patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Camb. Prism. Extinction 2024, 2, e5. [Google Scholar] [CrossRef]
- Pearce, E.A.; Mazier, F.; Normand, S.; Fyfe, R.; Andrieu, V.; Bakels, C.; Balwierz, Z.; Bińka, K.; Boreham, S.; Borisova, O.K.; et al. Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens. Sci. Adv. 2023, 9, eadi9135. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Lindsey, E.L.; Villavicencio, N.A.; Bostelmann, E.; Hadly, E.A.; Wanket, J.; Marshall, C.R. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl. Acad. Sci. USA 2016, 113, 856–861. [Google Scholar] [CrossRef]
- Gill, J.L. Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytol. 2014, 201, 1163–1169. [Google Scholar] [CrossRef]
- Cromsigt, J.P.G.M.; te Beest, M.; Kerley, G.I.H.; Landman, M.; le Roux, E.; Smith, F.A. Trophic rewilding as a climate change mitigation strategy? Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170440. [Google Scholar] [CrossRef]
- Hyvarinen, O.; te Beest, M.; le Roux, E.; Kerley, G.I.H.; Buitenwerf, R.; Druce, D.J.; Chen, J.; Rapp, L.; Fernandes, J.; Cromsigt, J.P.G.M. Megagrazer loss drives complex landscape-scale biophysical cascades. Environ. Res. Lett. 2025, 20, 024028. [Google Scholar] [CrossRef]
- Martin, P.S. Twilight of the Mammoths: Ice Age Extinctions and the Rewilding of America; University of California Press: Berkley, CA, USA, 2005; pp. 1–269. [Google Scholar]
- Bergman, J.; Pedersen, R.Ø.; Lundgren, E.J.; Lemoine, R.T.; Monsarrat, S.; Pearce, E.A.; Schierup, M.H.; Svenning, J.-C. Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change. Nat. Commun. 2023, 14, 7679. [Google Scholar] [CrossRef]
- Lemoine, R.T.; Buitenwerf, R.; Svenning, J.-C. Megafauna extinctions in the late-Quaternary are linked to human range expansion, not climate change. Anthropocene 2023, 44, 100403. [Google Scholar] [CrossRef]
- Kavar, T.; Dovč, P. Domestication of the horse: Genetic relationships between domestic and wild horses. Livest. Sci. 2008, 116, 1–14. [Google Scholar] [CrossRef]
- Librado, P.; Khan, N.; Fages, A.; Kusliy, M.A.; Suchan, T.; Tonasso-Calvière, L.; Schiavinato, S.; Alioglu, D.; Fromentier, A.; Perdereau, A.; et al. The origins and spread of domestic horses from the Western Eurasian steppes. Nature 2021, 598, 634–640. [Google Scholar] [CrossRef]
- Harris, P.A. Developments in equine nutrition: Comparing the beginning and end of this century. J. Nutr. 1998, 128, S2698–S2703. [Google Scholar] [CrossRef]
- Bignal, E.M.; McCracken, D.I. Low-intensity farming systems in the conservation of the countryside. J. Appl. Ecol. 1996, 33, 413–424. Available online: https://www.jstor.org/stable/2404973 (accessed on 12 March 2025). [CrossRef]
- Eriksson, O.; Cousins, S.A.O.; Bruun, H.H. Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. J. Veg. Sci. 2002, 13, 743–748. [Google Scholar] [CrossRef]
- Garrido, P.; Edenius, L.; Mikusiński, G.; Skarin, A.; Jansson, A.; Thulin, C.-G. Experimental rewilding may restore abandoned wood-pastures if policy allows. Ambio 2021, 50, 101–112. [Google Scholar] [CrossRef]
- Mutillod, C.; Buisson, E.; Tatin, L.; Mahy, G.; Dufrêne, M.; Mesléard, F.; Dutoit, T. Managed as wild, horses influence grassland vegetation differently than domestic herds. Biol. Conserv. 2024, 290, 110469. [Google Scholar] [CrossRef]
- Valdés-Correcher, E.; Sitters, J.; Wassen, M.; Brion, N.; Olde Venterink, H. Herbivore dung quality affects plant community diversity. Sci. Rep. 2019, 9, 5675. [Google Scholar] [CrossRef]
- Campbell, J.E.; Gibson, D.J. The effect of seeds of exotic species transported via horse dung on vegetation along trail corridors. Plant Ecol. 2001, 157, 23–35. [Google Scholar] [CrossRef]
- Öckinger, E.; Eriksson, A.K.; Smith, H.G. Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biol. Conserv. 2006, 133, 291–300. [Google Scholar] [CrossRef]
- Garrido, P.; Mårell, A.; Öckinger, E.; Skarin, A.; Jansson, A.; Thulin, C.-G. Experimental rewilding enhances grassland functional composition and pollinator habitat use. J. Appl. Ecol. 2019, 56, 946–955. [Google Scholar] [CrossRef]
- Garrido, P.; Thulin, C.-G.; Negro, J.J. EU nature restoration law fails to recognize missing large herbivore functions. Biol. Conserv. 2025, 303, 111026. [Google Scholar] [CrossRef]
- Svenning, J.-C.; Pedersen, P.B.M.; Donlan, C.J.; Ejrnæs, R.; Faurby, S.; Galetti, M.; Hansen, D.M.; Sandel, B.; Sandom, C.J.; Terborgh, J.W.; et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. USA 2016, 113, 898–906. [Google Scholar] [CrossRef]
- Ringmark, S.; Skarin, A.; Jansson, A. Impact of year-round grazing by horses on pasture nutrient dynamics and the correlation with pasture nutrient content and fecal nutrient composition. Animals 2019, 9, 500. [Google Scholar] [CrossRef]
- Chen, Y. Impact of Horses on Year Around Grazing Without Supplementary Feeding on Pastoral Herbaceous Plants. Master’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2024. [Google Scholar]
- Tydén, E.; Jansson, A.; Ringmark, S. Parasites in Horses Kept in A 2.5 Year-Round Grazing System in Nordic Conditions without Supplementary Feeding. Animals 2019, 9, 1156. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package (2.6-4). Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 12 February 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lawton, J.H.; Gaston, K.J. Indicator species. Encycl. Biodivers. 2021, 3, 437–450. [Google Scholar]
- Egan, L.M.; Hofmann, R.W.; Ghamkhar, K.; Hoyos-Villegas, V. Prospects for Trifolium improvement through germplasm characterisation and pre-breeding in New Zealand and beyond. Front. Plant Sci. 2021, 12, 653191. [Google Scholar] [CrossRef]
- Hyslop, M.G.; Kemp, P.D.; Hodgson, J. Vegetatively reproductive red clovers (Trifolium pratense L.): An overview. Proc. N. Z. Grassl. Assoc. 1999, 61, 121–126. [Google Scholar] [CrossRef]
- Sawicka, B.; Krochmal-Marczak, B.; Sawicki, J.; Skiba, D.; Pszczółkowski, P.; Barbaś, P.; Vambol, V.; Messaoudi, M.; Farhan, A.K. White clover (Trifolium repens L.) cultivation as a means of soil regeneration and pursuit of a sustainable food system model. Land 2023, 12, 838. [Google Scholar] [CrossRef]
- Beye, H.; Taube, F.; Lange, K.; Hasler, M.; Kluß, C.; Loges, R.; Diekötter, T. Species-enriched grass-clover mixtures can promote bumblebee abundance compared with intensively managed conventional pastures. Agronomy 2022, 12, 1080. [Google Scholar] [CrossRef]
- R Core Team R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 12 February 2025).
- Marion, B.; Bonis, A.; Bouzillé, J.-B. How much does grazing-induced heterogeneity impact plant diversity in wet grasslands? Écoscience 2010, 17, 229–239. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Wang, W.; Zhou, H.; Xue, Y.; Xu, J.; Xue, P.; Yan, H. Effects of different grazing disturbances on the plant diversity and ecological functions of alpine grassland ecosystem on the Qinghai-Tibetan Plateau. Front. Plant Sci. 2021, 12, 765070. [Google Scholar] [CrossRef]
- Stewart, G.B.; Pullin, A.S. The relative importance of grazing stock type and grazing intensity for conservation of mesotrophic ‘old meadow’ pasture. J. Nat. Conserv. 2008, 16, 175–185. [Google Scholar] [CrossRef]
- Škornik, S.; Vidrih, M.; Kaligarič, M. The effect of grazing pressure on species richness, composition and productivity in North Adriatic Karst pastures. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2010, 144, 355–364. [Google Scholar] [CrossRef]
- Bonavent, C.; Olsen, K.; Ejrnæs, R.; Fløjgaard, C.; Hansen, M.D.D.; Normand, S.; Svenning, J.-C.; Bruun, H.H. Grazing by semi-feral cattle and horses supports plant species richness and uniqueness in grasslands. Appl. Veg. Sci. 2023, 26, e12718. [Google Scholar] [CrossRef]
- Köhler, M.; Hiller, G.; Tischew, S. Year-round horse grazing supports typical vascular plant species, orchids and rare bird communities in a dry calcareous grassland. Agric. Ecosyst. Environ. 2016, 234, 48–57. [Google Scholar] [CrossRef]
- Beck, J.J.; Hernández, D.L.; Pasari, J.R.; Zavaleta, E.S. Grazing maintains native plant diversity and promotes community stability in an annual grassland. Ecol. Appl. 2015, 25, 1259–1270. [Google Scholar] [CrossRef]
- Huisman, J.; Olff, H. Competition and facilitation in multispecies plant-herbivore systems of productive environments. Ecol. Lett. 1998, 1, 25–29. [Google Scholar] [CrossRef]
- Jutila, H.M.; Grace, J.B. Effects of disturbance on germination and seedling establishment in a coastal prairie grassland: A test of the competitive release hypothesis. J. Ecol. 2002, 90, 291–302. [Google Scholar] [CrossRef]
- Lundgren, E.J.; Schowanek, S.D.; Rowan, J.; Middleton, O.; Pedersen, R.Ø.; Wallach, A.D.; Ramp, D.; Davis, M.; Sandom, C.J.; Svenning, J.-C. Functional traits of the world’s late Quaternary large-bodied avian and mammalian herbivores. Sci. Data 2021, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Garrido, P.; Naumov, V.; Söderquist, L.; Jansson, A.; Thulin, C.-G. Effects of experimental rewilding on butterflies, bumblebees and grasshoppers. J. Insect Conserv. 2022, 26, 763–771. [Google Scholar] [CrossRef]
- van Klink, R.; de Vries, M.F.W. Risks and opportunities of trophic rewilding for arthropod communities. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170441. [Google Scholar] [CrossRef]
- van Klink, R.; van der Plas, F.; Van Noordwijk, C.; WallisDeVries, M.F.; Olff, H. Effects of large herbivores on grassland arthropod diversity. Biol. Rev. 2015, 90, 347–366. [Google Scholar] [CrossRef]
- Huang, J.; Garrido, P.; Thulin, C.-G. Experimental rewilding effects on grasslands detected through aerial photographs. Oecologia. (submitted).
- Tälle, M.; Ranius, T.; Öckinger, E. The usefulness of surrogates in biodiversity conservation: A synthesis. Biol. Conserv. 2023, 288, 110384. [Google Scholar] [CrossRef]
- Liu, J.; Feng, C.; Wang, D.; Wang, L.; Wilsey, B.J.; Zhong, Z. Impacts of grazing by different large herbivores in grassland depend on plant species diversity. J. Appl. Ecol. 2015, 52, 1053–1062. [Google Scholar] [CrossRef]
- Kohyani, P.; Bossuyt, B.; Bonte, D.; Hoffmann, M. Grazing impact on plant spatial distribution and community composition. Plant Ecol. Evol. 2011, 144, 19–28. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; Gao, Q.; Fan, C.; Fayiah, M.; Ganjurjav, H.; Hu, G.; Wang, X.; Yan, Y.; Gao, X.; et al. Grazing changed plant community composition and reduced stochasticity of soil microbial community assembly of alpine grasslands on the Qinghai-Tibetan Plateau. Front. Plant Sci. 2022, 13, 864085. [Google Scholar] [CrossRef]
- Pywell, R.F.; Warman, E.A.; Carvell, C.; Sparks, T.H.; Dicks, L.V.; Bennett, D.; Wright, A.; Critchley, C.N.R.; Sherwood, A. Providing foraging resources for bumblebees in intensively farmed landscapes. Biol. Conserv. 2005, 121, 479–494. [Google Scholar] [CrossRef]
- CBD Sweden. Fifth National Report to the Convention on Biological Diversity-Sweden. 2014. Available online: https://www.cbd.int/doc/world/se/se-nr-05-en.pdf (accessed on 12 February 2025).
- Cousins, S.A.O.; Auffret, A.G.; Lindgren, J.; Tränk, L. Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio 2015, 44, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Sandström, J.; Carlberg, T.; Sundberg, S.; Bjelke, U. Tillstånd och Trender för Arter och Deras Livsmiljöer–Rödlistade Arter i Sverige 2015; ArtDatabanken SLU: Uppsala, Sweden, 2015. [Google Scholar]
- Lasanta, T.; Nadal-Romero, E.; Arnáez, J. Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe. Environ. Sci. Policy 2015, 52, 99–109. [Google Scholar] [CrossRef]
- The Swedish Board of Agriculture. Horses and Horse Establishments in 2016. Statistiska Meddelanden JO 24 SM 1701, 2016, pp. 1–23. Available online: https://www.scb.se/contentassets/3a26a20c92ee42c993081cc209972f56/jo0107_2016m06_sm_jo24sm1701.pdf (accessed on 12 March 2025).
- Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on Nature Restoration and Amending Regulation (EU) 2022/869. Available online: https://eur-lex.europa.eu/eli/reg/2024/1991/oj/eng (accessed on 13 February 2025).
- Schmitz, O.J.; Sylvén, M.; Atwood, T.B.; Bakker, E.S.; Berzaghi, F.; Brodie, J.F.; Cromsigt, J.P.G.M.; Davies, A.B.; Leroux, S.J.; Schepers, F.J.; et al. Trophic rewilding can expand natural climate solutions. Nat. Clim. Change 2023, 13, 324–333. [Google Scholar] [CrossRef]
GLMM Plant Species Richness | ||||
---|---|---|---|---|
Main Effects | β | SE | z Value | p-Value |
Intercept | 1.8 | 0.11 | 16.4 | <0.001 |
2015 | 0.24 | 0.07 | 3.4 | <0.001 |
2016 | 0.16 | 0.69 | 2.27 | <0.05 |
Un-grazed | −0.12 | 0.07 | −1.67 | 0.1 |
Interaction effects | ||||
2015: un-grazed | −0.05 | 0.09 | −0.52 | 0.6 |
2016: un-grazed | −0.23 | 0.1 | −2.24 | <0.05 |
GLMM Plant Abundance of Trifolium repens | ||||
---|---|---|---|---|
Main Effects | β | SE | z Value | p-Value |
Intercept | 2.2 | 0.12 | 18.6 | <0.001 |
2015 | 0.15 | 0.06 | 2.4 | <0.05 |
2016 | 0.44 | 0.06 | 7.32 | <0.001 |
Un-grazed | −0.4 | 0.08 | −5.12 | <0.001 |
Interaction effects | ||||
2015: un-grazed | −1.63 | 0.18 | −9.35 | <0.001 |
2016: un-grazed | −2.02 | 0.38 | −5.21 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thulin, C.-G.; Chen, Y.; Garrido, P. Semi-Feral Horse Grazing Benefits the Grassland Diversity of Flowering Plants Including a Pollinator-Promoting Indicator Species. Animals 2025, 15, 862. https://doi.org/10.3390/ani15060862
Thulin C-G, Chen Y, Garrido P. Semi-Feral Horse Grazing Benefits the Grassland Diversity of Flowering Plants Including a Pollinator-Promoting Indicator Species. Animals. 2025; 15(6):862. https://doi.org/10.3390/ani15060862
Chicago/Turabian StyleThulin, Carl-Gustaf, Yufei Chen, and Pablo Garrido. 2025. "Semi-Feral Horse Grazing Benefits the Grassland Diversity of Flowering Plants Including a Pollinator-Promoting Indicator Species" Animals 15, no. 6: 862. https://doi.org/10.3390/ani15060862
APA StyleThulin, C.-G., Chen, Y., & Garrido, P. (2025). Semi-Feral Horse Grazing Benefits the Grassland Diversity of Flowering Plants Including a Pollinator-Promoting Indicator Species. Animals, 15(6), 862. https://doi.org/10.3390/ani15060862