Assessment of Bisphenol A (BPA) Exposure in Dairy Cows Using Hair Samples Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Collection
2.3. BPA Extraction
2.4. Instrumentation
2.5. Method Validation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santonicola, S.; Ferrante, M.C.; Leo, G.D.; Murru, N.; Anastasio, A.; Mercogliano, R. Study on endocrine disruptors levels in raw milk from cow’s farms: Risk assessment. Ital. J. Food Saf. 2018, 7, 7668. [Google Scholar] [CrossRef] [PubMed]
- Death, C.; Bell, C.; Champness, D.; Milne, C.; Reichman, S.; Hagen, T. Per- and polyfluoroalkyl substances (PFAS) in livestock and game species: A review. Sci. Total Environ. 2021, 774, 144795. [Google Scholar] [CrossRef]
- Michałowicz, J. Bisphenol A—Sources, toxicity and biotransformation. Environ. Toxicol. Pharmacol. 2014, 37, 738–758. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Chakraborty, P. A review on sources and health impacts of bisphenol A. Rev. Environ. Health 2020, 35, 201–210. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Pinney, S.E.; Mesaros, C.A.; Snyder, N.W.; Busch, C.M.; Xiao, R.; Aijaz, S.; Ijaz, N.; Blair, I.A.; Manson, J.M. Second trimester amniotic fluid bisphenol A concentration is associated with decreased birth weight in term infants. Reprod. Toxicol. 2017, 67, 1–9. [Google Scholar] [CrossRef]
- Iribarne-Durán, L.M.; Serrano, L.; Peinado, F.M.; Peña-Caballero, M.; Hurtado, J.A.; Vela-Soria, F.; Fernández, M.F.; Freire, C.; Artacho-Cordón, F.; Olea, N. Biomonitoring bisphenols, parabens, and benzophenones in breast milk from a human milk bank in Southern Spain. Sci. Total Environ. 2022, 830, 154737. [Google Scholar] [CrossRef]
- Rebolledo-Solleiro, D.; Castillo Flores, L.Y.; Solleiro-Villavicencio, H. Impact of BPA on behavior, neurodevelopment and neurodegeneration. Front Biosci. (Landmark Ed.) 2021, 26, 363–400. [Google Scholar] [CrossRef] [PubMed]
- Directorate-General for Health and Food Safety. Commission Adopts ban of Bisphenol A in Food Contact Materials. Available online: https://food.ec.europa.eu/food-safety-news-0/commission-adopts-ban-bisphenol-food-contact-materials-2024-12-19_en (accessed on 5 January 2025).
- Fukata, H.; Miyagawa, H.; Yamazaki, N.; Mori, C. Comparison of Elisa- and LC-MS-Based Methodologies for the Exposure Assessment of Bisphenol A. Toxicol. Mech. Methods 2006, 16, 427–430. [Google Scholar] [CrossRef]
- Kim, A.; Li, C.R.; Jin, C.F.; Lee, K.W.; Lee, S.H.; Shon, K.J.; Park, N.G.; Kim, D.K.; Kang, S.W.; Shim, Y.B.; et al. A sensitive and reliable quantification method for Bisphenol A based on modified competitive ELISA method. Chemosphere 2007, 68, 1204–1209. [Google Scholar] [CrossRef]
- Ye, X.; Kuklenyik, Z.; Needham, L.L.; Calafat, A.M. Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 831, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Aris, A. Estimation of bisphenol A (BPA) concentrations in pregnant women, fetuses and nonpregnant women in Eastern Townships of Canada. Reprod. Toxicol. 2014, 45, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Geens, T.; Bruckers, L.; Covaci, A.; Schoeters, G.; Fierens, T.; Sioen, I.; Vanermen, G.; Baeyens, W.; Morrens, B.; Loots, I.; et al. Determinants of bisphenol A and phthalate metabolites in urine of Flemish adolescents. Environ. Res. 2014, 134, 110–117. [Google Scholar] [CrossRef]
- Provencher, G.; Bérubé, R.; Dumas, P.; Bienvenu, J.F.; Gaudreau, E.; Bélanger, P.; Ayotte, P. Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2014, 1348, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Exposure assessment to parabens, bisphenol A and perfluoroalkyl compounds in children, women and men by hair analysis. Sci. Total Environ. 2019, 695, 133864. [Google Scholar] [CrossRef]
- Yi, B.; Kim, C.; Yang, M. Biological monitoring of bisphenol A with HLPC/FLD and LC/MS/MS assays. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 2606–2610. [Google Scholar] [CrossRef]
- Tzatzarakis, M.N.; Vakonaki, E.; Kavvalakis, M.P.; Barmpas, M.; Kokkinakis, E.N.; Xenos, K.; Tsatsakis, A.M. Biomonitoring of bisphenol A in hair of Greek population. Chemosphere 2015, 118, 336–341. [Google Scholar] [CrossRef]
- Lee, C.; Kim, C.H.; Kim, S.; Cho, S.H. Simultaneous determination of bisphenol A and estrogens in hair samples by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1058, 8–13. [Google Scholar] [CrossRef]
- Rodriguez, R.; Castillo, E.; Sinuco, D. Validation of an HPLC Method for Determination of Bisphenol-A Migration from Baby Feeding Bottles. J. Anal. Methods Chem. 2019, 2019, 1989042. [Google Scholar] [CrossRef]
- Wang, H.; Song, S.; Shao, M.; Gao, Y.; Yang, C.; Li, Y.; Wang, W.; He, Y.; Li, P. Determination of bisphenol analogues in food-contact plastics using diode array detector, charged aerosol detector and evaporative light-scattering detector. Ecotoxicol. Environ. Saf. 2019, 186, 109778. [Google Scholar] [CrossRef]
- Claessens, J.; Pirard, C.; Charlier, C. Determination of contamination levels for multiple endocrine disruptors in hair from a non-occupationally exposed population living in Liege (Belgium). Sci. Total Environ. 2022, 815, 152734. [Google Scholar] [CrossRef] [PubMed]
- Hanioka, N.; Isobe, T.; Tanaka-Kagawa, T.; Jinno, H.; Ohkawara, S. In vitro glucuronidation of bisphenol A in liver and intestinal microsomes: Interspecies differences in humans and laboratory animals. Drug Chem. Toxicol. 2022, 45, 1565–1569. [Google Scholar] [CrossRef] [PubMed]
- Völkel, W.; Bittner, N.; Dekant, W. Quantitation of bisphenol A and bisphenol A glucuronide in biological samples by high performance liquid chromatography-tandem mass spectrometry. Drug Metab. Dispos. 2005, 33, 1748–1757. [Google Scholar] [CrossRef]
- Trabert, B.; Falk, R.T.; Figueroa, J.D.; Graubard, B.I.; Garcia-Closas, M.; Lissowska, J.; Peplonska, B.; Fox, S.D.; Brinton, L.A. Urinary bisphenol A-glucuronide and postmenopausal breast cancer in Poland. Cancer Causes Control 2014, 25, 1587–1593. [Google Scholar] [CrossRef]
- Gounden, V.; Zain Warasally, M.; Magwai, T.; Naidoo, R.; Chuturgoon, A. A pilot study: Bisphenol-A and Bisphenol-A glucuronide levels in mother and child pairs in a South African population. Reprod. Toxicol. 2019, 89, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Gounden, V.; Warasally, M.Z.; Magwai, T.; Naidoo, R.; Chuturgoon, A. A pilot study: Relationship between Bisphenol A, Bisphenol A glucuronide and sex steroid hormone levels in cord blood in A South African population. Reprod. Toxicol. 2021, 100, 83–89. [Google Scholar] [CrossRef]
- Kovaříková, S.; Maršálek, P.; Habánová, M.; Konvalinová, J. Serum concentration of bisphenol A in elderly cats and its association with clinicopathological findings. J. Feline Med. Surg. 2021, 23, 105–114. [Google Scholar] [CrossRef]
- Makowska, K.; Martín, J.; Rychlik, A.; Aparicio, I.; Santos, J.L.; Alonso, E.; Gonkowski, S. Hair sample analysis as a method of monitoring exposure to bisphenol A in dogs. Int. J. Environ. Res. Public Health 2022, 19, 4600. [Google Scholar] [CrossRef]
- Herrero, L.; Quintanilla-López, J.E.; Fernández, M.A.; Gómara, B. Plasticisers and preservatives in commercial milk products: A comprehensive study on packages used in the Spanish market. Food Chem. 2021, 338, 128031. [Google Scholar] [CrossRef]
- Wang, X.; Nag, R.; Brunton, N.P.; Siddique, M.A.B.; Harrison, S.M.; Monahan, F.J.; Cummins, E. Human health risk assessment of bisphenol A (BPA) through meat products. Environ. Res. 2022, 213, 113734. [Google Scholar] [CrossRef]
- Wang, X.; Nag, R.; Brunton, N.P.; Siddique, M.A.B.; Harrison, S.M.; Monahan, F.J.; Cummins, E. Risk assessment of bisphenol A (BPA) in Irish meat and meat products. Sci. Total Environ. 2023, 881, 163496. [Google Scholar] [CrossRef] [PubMed]
- Šturm, S.; Škibin, A.; Pogačnik, M.; Cerkvenik-Flajs, V. Determination of free and total bisphenol A in the urine and feces of orally and subcutaneously dosed sheep by high-performance liquid chromatography with fluorescence detection. J. Environ. Sci. Health B 2020, 55, 655–668. [Google Scholar] [CrossRef]
- Makowska, K.; Staniszewska, M.; Bodziach, K.; Calka, J.; Gonkowski, S. Concentrations of bisphenol a (BPA) in fresh pork loin meat under standard stock-farming conditions and after oral exposure—A preliminary study. Chemosphere 2022, 295, 133816. [Google Scholar] [CrossRef]
- Di Marco Pisciottano, I.; Guadagnuolo, G.; Busico, F.; Alessandroni, L.; Neri, B.; Vecchio, D.; Di Vuolo, G.; Cappelli, G.; Martucciello, A.; Gallo, P. Determination of 20 endocrine-disrupting compounds in the buffalo milk production chain and commercial bovine milk by UHPLC-MS/MS and HPLC-FLD. Animals 2022, 12, 410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shi, J.; Liu, X.; Zhan, X.; Dang, J.; Bo, T. Occurrence of free estrogens, conjugated estrogens, and bisphenol A in fresh livestock excreta and their removal by composting in North China. Environ. Sci. Pollut. Res. Int. 2014, 21, 9939–9947. [Google Scholar] [CrossRef]
- Santonicola, S.; Ferrante, M.C.; Murru, N.; Gallo, P.; Mercogliano, R. Hot topic: Bisphenol A in cow milk and dietary exposure at the farm level. J. Dairy Sci. 2019, 102, 1007–1013. [Google Scholar] [CrossRef]
- Wang, H.; Tang, Z.; Liu, Z.H.; Zeng, F.; Zhang, J.; Dang, Z. Ten bisphenol analogs were abundantly found in swine and bovine urines collected from two Chinese farms: Concentration profiles and risk evaluation. Environ. Sci. Pollut. Res. Int. 2023, 30, 13407–13417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yan, X.; Tang, B.; Luo, W.; Chen, S.; Luo, X.; Zheng, J.; Mai, B.; Yu, Y. Human hair as a noninvasive matrix to assess exposure to micro-organic contaminants: State of the art review. Sci. Total Environ. 2023, 892, 164341. [Google Scholar] [CrossRef] [PubMed]
- Appenzeller, B.M.; Tsatsakis, A.M. Hair analysis for biomonitoring of environmental and occupational exposure to organic pollutants: State of the art, critical review and future needs. Toxicol. Lett. 2012, 210, 119–140. [Google Scholar] [CrossRef]
- Gonkowski, S.; Tzatzarakis, M.; Vakonaki, E.; Meschini, E.; Rytel, L. Exposure assessment to bisphenol A (BPA) and its analogues bisphenol S (BPS) and bisphenol F (BPF) in wild boars by hair analysis. Sci. Total Environ. 2023, 905, 167076. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Zhang, L.; Lou, C.; Wang, Y. Phenols in soils and agricultural products irrigated with reclaimed water. Environ. Pollut. 2021, 276, 116690. [Google Scholar] [CrossRef] [PubMed]
- Robin, J.; Albouy, M.; Jourdain, B.; Binson, G.; Sauvaget, A.; Pierre-Eugène, P.; Wu, L.; Migeot, V.; Dupuis, A.; Venisse, N. Assessment of Endocrine Disruptor Exposure in Hospital Professionals Using Hair and Urine Analyses: An Awareness Campaign. Ther. Drug Monit. 2024, 46, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.J.; Hardy, E.M.; Béranger, R.; Mezzache, S.; Bourokba, N.; Bastien, P.; Li, J.; Zaros, C.; Chevrier, C.; Palazzi, P.; et al. Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: A comparison between two adult female populations in China and France. Environ. Pollut. 2020, 267, 115425. [Google Scholar] [CrossRef]
- Robin, J.; Binson, G.; Albouy, M.; Sauvaget, A.; Pierre-Eugène, P.; Migeot, V.; Dupuis, A.; Venisse, N. Analytical method for the biomonitoring of bisphenols and parabens by liquid chromatography coupled to tandem mass spectrometry in human hair. Ecotoxicol. Environ. Saf. 2022, 243, 113986. [Google Scholar] [CrossRef]
- Karzi, V.; Tzatzarakis, M.N.; Vakonaki, E.; Alegakis, T.; Katsikantami, I.; Sifakis, S.; Rizos, A.; Tsatsakis, A.M. Biomonitoring of bisphenol A, triclosan and perfluorooctanoic acid in hair samples of children and adults. J. Appl. Toxicol. 2018, 38, 1144–1152. [Google Scholar] [CrossRef]
- Katsikantami, I.; Tzatzarakis, M.N.; Karzi, V.; Stavroulaki, A.; Xezonaki, P.; Vakonaki, E.; Alegakis, A.K.; Sifakis, S.; Rizos, A.K.; Tsatsakis, A.M. Biomonitoring of bisphenols A and S and phthalate metabolites in hair from pregnant women in Crete. Sci. Total Environ. 2020, 712, 135651. [Google Scholar] [CrossRef] [PubMed]
- Fäys, F.; Hardy, E.M.; Palazzi, P.; Haan, S.; Beausoleil, C.; Appenzeller, B.M.R. Biomonitoring of fast-elimination endocrine disruptors—Results from a 6-month follow up on human volunteers with repeated urine and hair collection. Sci. Total Environ. 2021, 778, 146330. [Google Scholar] [CrossRef]
- Iglesias-González, A.; Schweitzer, M.; Palazzi, P.; Peng, F.; Haan, S.; Letellier, E.; Appenzeller, B.M.R. Investigating children’s chemical exposome—Description and possible determinants of exposure in the region of Luxembourg based on hair analysis. Environ. Int. 2022, 165, 107342. [Google Scholar] [CrossRef]
- Nehring, I.; Staniszewska, M.; Falkowska, L. Human hair, Baltic grey seal (Halichoerus grypus) fur and herring gull (Larus argentatus) feathers as accumulators of bisphenol A and alkylphenols. Arch. Environ. Contam. Toxicol. 2017, 72, 552–561. [Google Scholar] [CrossRef]
- Gonkowski, S.; Tzatzarakis, M.; Dermitzaki, E.; Makowska, K.; Wojtkiewicz, J. Hair sample analysis of residents from Olsztyn, Northeastern Poland, to evaluate levels of bisphenol S and bisphenol A: A pilot study. Med. Sci. Monit. 2022, 28, e936738. [Google Scholar] [CrossRef]
- Alves, A.; Jacobs, G.; Vanermen, G.; Covaci, A.; Voorspoels, S. New approach for assessing human perfluoroalkyl exposure via hair. Talanta 2015, 144, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Analytical method for biomonitoring of endocrine-disrupting compounds (bisphenol A, parabens, perfluoroalkyl compounds and a brominated flame retardant) in human hair by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2016, 945, 95–101. [Google Scholar] [CrossRef]
- Staniszewska, M.; Falkowska, L.; Grabowski, P.; Kwaśniak, J.; Mudrak-Cegiołka, S.; Reindl, A.R.; Sokołowski, A.; Szumiło, E.; Zgrundo, A. Bisphenol A, 4-tert-octylphenol, and 4-nonylphenol in the Gulf of Gdańsk (Southern Baltic). Arch. Environ. Contam. Toxicol. 2014, 7, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Czarczyńska-Goślińska, B.; Zgoła-Grześkowiak, A.; Jeszka-Skowron, M.; Frankowski, R.; Grześkowiak, T. Detection of bisphenol A, cumylphenol and parabens in surface waters of Greater Poland Voivodeship. J. Environ. Manag. 2017, 204, 50–60. [Google Scholar] [CrossRef]
- Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose Response 2015, 13, 1559325815598308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Csókás, A.; Schally, G.; Szabó, L.; Csányi, S.; Kovács, F.; Heltai, M. Space use of wild boar (Sus Scrofa) in Budapest: Are they resident or transient city dwellers? Biol. Futur. 2020, 71, 39–51. [Google Scholar] [CrossRef]
- Goeury, K.; Vo Duy, S.; Munoz, G.; Prévost, M.; Sauvé, S. Assessment of automated off-line solid-phase extraction LC-MS/MS to monitor EPA priority endocrine disruptors in tap water, surface water, and wastewater. Talanta 2022, 241, 123216. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, X.; Xu, D.; Xiang, Y.; Ling, W.; Chen, M. Contamination and risk assessment of estrogens in livestock manure: A case study in Jiangsu Province, China. Int. J. Environ. Res. Public Health 2018, 15, 125. [Google Scholar] [CrossRef]
- Tao, H.Y.; Zhang, J.; Shi, J.; Guo, W.; Liu, X.; Zhang, M.; Ge, H.; Li, X.Y. Occurrence and emission of phthalates, bisphenol A, and oestrogenic compounds in concentrated animal feeding operations in Southern China. Ecotoxicol. Environ. Saf. 2021, 207, 111521. [Google Scholar] [CrossRef]
- Xiong, L.; Yan, P.; Chu, M.; Gao, Y.Q.; Li, W.H.; Yang, X.L. A rapid and simple HPLC-FLD screening method with QuEChERS as the sample treatment for the simultaneous monitoring of nine bisphenols in milk. Food. Chem. 2018, 244, 371–377. [Google Scholar] [CrossRef]
- Mercogliano, R.; Santonicola, S.; Albrizio, S.; Ferrante, M.C. Occurrence of bisphenol A in the milk chain: A monitoring model for risk assessment at a dairy company. J. Dairy Sci. 2021, 104, 5125–5132. [Google Scholar] [CrossRef] [PubMed]
- Frankowski, R.; Grześkowiak, T.; Czarczyńska-Goślińska, B.; Zgoła-Grześkowiak, A. Occurrence and dietary risk of bisphenols and parabens in raw and processed cow’s milk. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess 2022, 39, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.; Liu, W.; Liu, Y.; Yang, M.; Wang, B.; Zhu, H.; Zhu, L.; Yao, Y.; Zhang, Y.; Zhao, H. Occurrence and profile characteristics of environmental phenols in human urine from a rural area in Northwestern China. Environ. Pollut. 2022, 315, 120405. [Google Scholar] [CrossRef]
- Wang, R.; Tan, T.; Liang, H.; Huang, Y.; Dong, S.; Wang, P.; Su, X. Occurrence and distribution of bisphenol compounds in different categories of animal feeds used in China. Emerg. Contam. 2021, 7, 179–186. [Google Scholar] [CrossRef]
- Karsauliya, K.; Bhateria, M.; Sonker, A.K.; Yahavi, C.; Gautam, S.S.; Karsauliya, S.; Singh, S.P. Detection of bisphenols in Indian surface water, tap water, and packaged drinking water using dispersive liquid-liquid microextraction: Exposure assessment for health risk. Environ. Sci. Pollut. Res. Int. 2023, 30, 17776–17790. [Google Scholar] [CrossRef]
- Zhu, L.; Hajeb, P.; Fauser, P.; Vorkamp, K. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. Sci. Total. Environ. 2023, 874, 162374. [Google Scholar] [CrossRef]
- Maragou, N.C.; Lampi, E.N.; Thomaidis, N.S.; Koupparis, M.A. Determination of bisphenol A in milk by solid phase extraction and liquid chromatography-mass spectrometry. J. Chromatogr. A 2006, 1129, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Grumetto, L.; Gennari, O.; Montesano, D.; Ferracane, R.; Ritieni, A.; Albrizio, S.; Barbato, F. Determination of five bisphenols in commercial milk samples by liquid chromatography coupled to fluorescence detection. J. Food Prot. 2013, 76, 1590–1596. [Google Scholar] [CrossRef]
- Gorecki, S.; Bemrah, N.; Roudot, A.C.; Marchioni, E.; Le Bizec, B.; Faivre, F.; Kadawathagedara, M.; Botton, J.; Rivière, G.; EDEN mother-child cohort study group. Human health risks related to the consumption of foodstuffs of animal origin contaminated by bisphenol A. Food Chem. Toxicol. 2017, 110, 333–339. [Google Scholar] [CrossRef]
- Teeguarden, J.G.; Hanson-Drury, S. A systematic review of Bisphenol A “low dose” studies in the context of human exposure: A case for establishing standards for reporting “low-dose” effects of chemicals. Food Chem. Toxicol. 2013, 62, 935–948. [Google Scholar] [CrossRef]
- Tran, H.T.T.; Herz, C.; Lamy, E. Long-term exposure to “low-dose” bisphenol A decreases mitochondrial DNA copy number, and accelerates telomere shortening in human CD8 + T cells. Sci. Rep. 2020, 10, 15786. [Google Scholar] [CrossRef]
- Guignard, D.; Gayrard, V.; Lacroix, M.Z.; Puel, S.; Picard-Hagen, N.; Viguié, C. Evidence for bisphenol A-induced disruption of maternal thyroid homeostasis in the pregnant ewe at low level representative of human exposure. Chemosphere 2017, 182, 458–467. [Google Scholar] [CrossRef]
- Campen, K.A.; Kucharczyk, K.M.; Bogin, B.; Ehrlich, J.M.; Combelles, C.M.H. Spindle abnormalities and chromosome misalignment in bovine oocytes after exposure to low doses of bisphenol A or bisphenol S. Hum. Reprod. 2018, 33, 895–904. [Google Scholar] [CrossRef]
- Makowska, K.; Gonkowski, S. Changes caused by low doses of bisphenol A (BPA) in the neuro-chemistry of nerves located in the porcine heart. Animals 2021, 11, 780. [Google Scholar] [CrossRef]
- Ferris, J.; Mahboubi, K.; MacLusky, N.; King, W.A.; Favetta, L.A. BPA exposure during in vitro oocyte maturation results in dose-dependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression. Reprod. Toxicol. 2016, 59, 128–138. [Google Scholar] [CrossRef]
- Sabry, R.; Saleh, A.C.; Stalker, L.; LaMarre, J.; Favetta, L.A. Effects of bisphenol A and bisphenol S on microRNA expression during bovine (Bos taurus) oocyte maturation and early embryo development. Reprod. Toxicol. 2021, 99, 96–108. [Google Scholar] [CrossRef]
- Sabry, R.; Nguyen, M.; Younes, S.; Favetta, L.A. BPA and its analogs increase oxidative stress levels in in vitro cultured granulosa cells by altering anti-oxidant enzymes expression. Mol. Cell Endocrinol. 2022, 545, 111574. [Google Scholar] [CrossRef]
- Sabry, R.; Williams, M.; LaMarre, J.; Favetta, L.A. Granulosa cells undergo BPA-induced apoptosis in a miR-21-independent manner. Exp. Cell Res. 2023, 427, 113574. [Google Scholar] [CrossRef]
- Tyner, M.D.W.; Maloney, M.O.; Kelley, B.J.B.; Combelles, C.M.H. Comparing the effects of bisphenol A, C, and F on bovine theca cells in vitro. Reprod. Toxicol. 2022, 111, 27–33. [Google Scholar] [CrossRef]
- Toyohira, Y.; Utsunomiya, K.; Ueno, S.; Minami, K.; Uezono, Y.; Yoshimura, R.; Tsutsui, M.; Izumi, F.; Yanagihara, N. Inhibition of the norepinephrine transporter function in cultured bovine adrenal medullary cells by bisphenol A. Biochem. Pharmacol 2003, 65, 2049–2054. [Google Scholar]
- Sutiaková, I.; Kovalkovičová, N.; Sutiak, V. Micronucleus assay in bovine lymphocytes after exposure to bisphenol A in vitro. Vitr. Cell Dev. Biol. Anim. 2014, 50, 502–506. [Google Scholar] [CrossRef] [PubMed]
BPA | No of Repetitions | |
---|---|---|
Mean % recovery ± SD | 93.1 ± 17.9 | n = 4 |
Mean % accuracy ± SD | 92.7 ± 7.1 | n = 4 |
Precision (%RSD) | 19.8 | n = 3 |
LOD (pg/mg) | 4.8 | n = 3 |
LOQ (pg/mg) | 16.0 | n = 3 |
r2 (standard curves) | 0.9963 | n = 4 |
r2 (spiked curves) | 0.9975 | n = 4 |
Individual Data | ||||||||
---|---|---|---|---|---|---|---|---|
Sokuluk Region | Alamedin Region | Ysyk Ata Region | ||||||
Sample No | Age of Animal | BPA Levels | Sample No | Age of Animal | BPA Levels | Sample No | Age of Animal | BPA Levels |
1 | 5 | 25.0 | 17 | 4 | 38.6 | 32 | 4 | <LOD |
2 | 6 | <LOD | 18 | 7 | <LOD | 33 | 4 | <LOD |
3 | 4 | 19.2 | 19 | 6 | <LOD | 34 | 4 | <LOD |
4 | 8 | 25.6 | 20 | 4 | <LOD | 35 | 4 | 20.0 |
5 | 4 | <LOD | 21 | 6 | <LOD | 36 | 4 | <LOD |
6 | 6 | <LOD | 22 | 4 | 16.1 | 37 | 4 | <LOD |
7 | 4 | 57.4 | 23 | 5 | <LOD | 38 | 4 | <LOD |
8 | 6 | 89.1 | 24 | 6 | <LOD | 39 | 4 | <LOD |
9 | 3 | <LOD | 25 | 5 | <LOD | 40 | 4 | <LOD |
10 | 3 | <LOD | 26 | 7 | <LOD | 41 | 4 | <LOD |
11 | 3 | <LOD | 27 | 6 | <LOD | 42 | 4 | <LOD |
12 | 3 | <LOD | 28 | 4 | <LOD | 43 | 4 | <LOD |
13 | 3 | 60.2 | 29 | 5 | <LOD | 44 | 4 | <LOD |
14 | 3 | <LOD | 30 | 4 | <LOD | 45 | 4 | <LOD |
15 | 3 | <LOD | 31 | 6 | <LOD | 46 | 4 | <LOD |
16 | 3 | <LOD | 47 | 4 | <LOD | |||
48 | 4 | <LOD | ||||||
Cumulative data (from all regions studied) | ||||||||
Range | Arithmetic mean ± SD | Geometric mean ± geometric SD factor | median | Frequency (above LOD) | ||||
<LOD-89.1 | 9.3 ± 19.7 | 3.9 ± 2.9 | <LOD | 18.8 |
Species | Country | n | Method | BPA Concentration Levels (pg/mg) | Reference |
---|---|---|---|---|---|
Human | Belgium | 114 | UPLC-MS/MS | <LOQ-587.1 | [22] |
China | 204 | UPLC-MS/MS | 5.47–596 | [44] | |
France | 311 | UPLC-MS/MS | 17.1–1398 | [44] | |
France | 5 | UPLC-MS/MS | 0.273–7.636 | [45] | |
Greece | 69 | LC-MS | 13.1–192.8 | [18] | |
Greece | 122 | LC-MS | 2.6–205.5 | [46] | |
Greece | 100 | LC-MS | 9.6–650.3 | [47] | |
Korea | 10 | LC-ESI/MS/MS | 17–22.9 | [19] | |
Luxembourg | 16 | LC-MS/MS | <LOD-95.8 | [48] | |
Luxembourg | 264 | LC-MS/MS | 62.34–35,856.1 | [49] | |
Poland | 42 | HPLC | 26.1–1498.6 | [50] | |
Poland | 25 | LC-MS | 3.6–52.9 | [51] | |
Spain | 6 | LC-MS/MS | 9.2–45 | [52] | |
Spain | 6 | LC-MS/MS | 24–158 | [53] | |
Spain | 42 | LC-MS/MS | 24.4–1427 | [16] | |
Dog | Poland | 30 | LC-MS/MS | <LOD-36 | [29] |
Baltic seal | Poland | 17 | HPLC | <LOQ-137.2 | [50] |
Wild boar | Poland | 54 | LC-MS | <LOD-508.7 | [41] |
Country | Matrix | n | BPA Levels | Reference |
---|---|---|---|---|
China | feces (milking cows) | 10 | ND-106.3 * | [59] |
China | feces (milking cows) | 9 | 50.5–72.0 * | [60] |
China | feces (milking cows) | 6 | 2.3–2.7 * | [36] |
China | feces (beef cattle) | 6 | 3.3–4.1 * | [36] |
China | urine (milking cows) | 6 | 0.353–0.413 # | [36] |
China | urine (beef cattle) | 6 | 1.950–2.120 # | [36] |
China | urine (beef cattle) | 8 | 2.3–8.4 (5.4) # | [38] |
China | urine (milking cows) | 6 | 2.9–6.9 (5.4) # | [38] |
China | raw milk | 50 | <3.1–13.74 * | [61] |
Italy | raw milk | 8 | <0.1–2.833 # | [62] |
Italy | raw milk | 72 | 0.035–2.776 # | [37] |
Italy | raw milk | 22 | ND-2.34 # | [1] |
Italy | raw milk (bufalloes) | 46 | 0.5–5.6 | [35] |
Italy | Blood serum (bufalloes) | 190 | 0.16–6.39 | [35] |
Poland | raw milk | 5 | <0.19–<0.64 # | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonkowski, S.; Tzatzarakis, M.; Kadyralieva, N.; Vakonaki, E.; Lamprakis, T.; Sen, I.; Tulobaev, A.; Istanbullugil, F.R.; Zhunushova, A.; Rytel, L. Assessment of Bisphenol A (BPA) Exposure in Dairy Cows Using Hair Samples Analysis. Animals 2025, 15, 939. https://doi.org/10.3390/ani15070939
Gonkowski S, Tzatzarakis M, Kadyralieva N, Vakonaki E, Lamprakis T, Sen I, Tulobaev A, Istanbullugil FR, Zhunushova A, Rytel L. Assessment of Bisphenol A (BPA) Exposure in Dairy Cows Using Hair Samples Analysis. Animals. 2025; 15(7):939. https://doi.org/10.3390/ani15070939
Chicago/Turabian StyleGonkowski, Slawomir, Manolis Tzatzarakis, Nariste Kadyralieva, Elena Vakonaki, Thomas Lamprakis, Ismail Sen, Askarbek Tulobaev, Fatih R. Istanbullugil, Aidai Zhunushova, and Liliana Rytel. 2025. "Assessment of Bisphenol A (BPA) Exposure in Dairy Cows Using Hair Samples Analysis" Animals 15, no. 7: 939. https://doi.org/10.3390/ani15070939
APA StyleGonkowski, S., Tzatzarakis, M., Kadyralieva, N., Vakonaki, E., Lamprakis, T., Sen, I., Tulobaev, A., Istanbullugil, F. R., Zhunushova, A., & Rytel, L. (2025). Assessment of Bisphenol A (BPA) Exposure in Dairy Cows Using Hair Samples Analysis. Animals, 15(7), 939. https://doi.org/10.3390/ani15070939