Modeling and Forecasting Dead-on-Arrival in Broilers Using Time Series Methods: A Case Study from Thailand
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Rearing, Handling, and Transportation Protocols
2.3. Determination of Trends, Seasonal Patterns, and Residual Components in Actual %DOA
2.4. Time Series Models for Determining and Forecasting %DOA
2.4.1. Seasonal AutoRegressive Integrated Moving Average (SARIMA) Model
2.4.2. Neural Network AutoRegressive (NNAR) Model
2.4.3. Trigonometric Box-Cox ARMA Trend Seasonal (TBATS) Model
2.4.4. Exponential Smoothing State Space (ETS) Model
2.4.5. Extreme Gradient Boosting (XGBoost) Model
2.5. Analytical and Modeling Procedure
3. Results
3.1. Exploratory Time Series Analysis of %DOA (2018–2024)
3.2. Forecasting Model Performance on Test Data (2024)
3.3. Forecasting %DOA for 2025
4. Discussion
4.1. Interpreting DOA Patterns in ABF Broiler Production
4.2. Model Performance
4.3. Forecasting Applications and Future Directions
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABF | antibiotics-free program |
%DOA | percentage of dead-on-arrival birds |
SARIMA | Seasonal AutoRegressive Integrated Moving Average |
NNAR | Neural Network AutoRegressive |
TBATS | Trigonometric Box-Cox ARMA Trend Seasonal |
ETS | Exponential Smoothing State Space |
XGBoost | Extreme Gradient Boosting |
MAE | mean absolute error |
MAPE | mean absolute percentage error |
MASE | mean absolute scaled error |
RMSE | root mean square error |
References
- Pirompud, P.; Sivapirunthep, P.; Punyapornwithaya, V.; Chaosap, C. Preslaughter handling factors affecting dead on arrival, condemnations, and bruising in broiler chickens raised without an antibiotic program. Poult. Sci. 2023, 102, 102828. [Google Scholar] [CrossRef] [PubMed]
- Karavolias, J.; Salois, M.J.; Baker, K.T.; Watkins, K. Raised without antibiotics: Impact on animal welfare and implications for food policy. Transl. Anim. Sci. 2018, 2, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Bracke, M.B.M.; Vermeer, H.M.; van Emous, R.A. Animal Welfare Regulations and Practices in 7 (Potential) Trade-Agreement Partners of the EU with a Focus on Laying Hens, Broilers and Pigs: Mexico, Chile, Indonesia, Australia, New Zealand, Turkey and the Philippines; Wageningen Livestock Research: Wageningen, the Netherlands, 2019. [Google Scholar]
- Valkova, L.; Vladimir, V.; Eva, V.; Michal, K.; Daniela, T.; Brscic, M. Animal welfare during transport: Comparison of mortality during transport from farm to slaughter of different animal species and categories in the Czech Republic. Ital. J. Anim. Sci. 2022, 21, 914–923. [Google Scholar] [CrossRef]
- Gickel, J.; Visscher, C.; Kemper, N.; Spindler, B. Analysis of the broiler chicken dead-on-arrival (DOA) rate in relation to normal transport conditions in practice in Germany. Animals 2024, 14, 1947. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.E.; Parker, C.D.; Verheyen, K.L.P.; Nicol, C.J.; Chang, Y.M. Effects of external ambient temperature at loading, journey duration and flock characteristics on the dead-on-arrival rate in broiler chickens transported to slaughter in Great Britain. Poult. Sci. 2023, 102, 102634. [Google Scholar] [CrossRef]
- Jacobs, L.; Delezie, E.; Duchateau, L.; Goethals, K.; Tuyttens, F.A. Broiler chickens dead on arrival: Associated risk factors and welfare indicators. Poult. Sci. 2017, 96, 259–265. [Google Scholar] [CrossRef]
- Petracci, M.; Bianchi, M.; Cavani, C.; Gaspari, P.; Lavazza, A. Preslaughter mortality in broiler chickens, turkeys, and spent hens under commercial slaughtering. Poult. Sci. 2006, 85, 1660–1664. [Google Scholar] [CrossRef]
- Nijdam, E.; Arens, P.; Lambooij, E.; Decuypere, E.; Stegeman, J. Factors influencing bruises and mortality of broilers during catching, transport, and lairage. Poult. Sci. 2004, 83, 1610–1615. [Google Scholar] [CrossRef]
- Schwartzkopf-Genswein, K.S.; Faucitano, L.; Dadgar, S.; Shand, P.; González, L.A.; Crowe, T.G. Road transport of cattle, swine and poultry in North America and its impact on animal welfare, carcass and meat quality: A review. Meat Sci. 2012, 92, 227–243. [Google Scholar] [CrossRef]
- Jacobs, L.; Delezie, E.; Duchateau, L.; Goethals, K.; Tuyttens, F.A. Impact of the separate pre-slaughter stages on broiler chicken welfare. Poult. Sci. 2017, 96, 266–273. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and practice, 3rd ed.; OTexts: Melbourn, Australia, 2021. [Google Scholar]
- Rad, M.R.N.; Gerdefaramarzi, S.S.; Akano, H.A.; Cheema, A. Seasonal autoregressive integrated moving average (SARIMA) for melon (Cucumis melo) yield from 2011 to 2020 based on planting date period. Curr. Agric. Res. 2023, 11, 753–760. [Google Scholar] [CrossRef]
- Klaharn, K.; Ngampak, R.; Chudam, Y.; Salvador, R.; Jainonthee, C.; Punyapornwithaya, V. Analyzing and forecasting poultry meat production and export volumes in Thailand: A time series approach. Cogent Food Agric. 2024, 10, 2378173. [Google Scholar] [CrossRef]
- Al Khatib, A.; Yonar, H.; Abotaleb, M.; Mishra, P.; Yonar, A.; Karakaya, K.; Badr, A.; Dhaka, V. Modeling and forecasting of egg production in India using time series models. Eurasian J. Vet. Sci. 2021, 37, 265–273. [Google Scholar] [CrossRef]
- Punyapornwithaya, V.; Arjkumpa, O.; Buamithup, N.; Kuatako, N.; Klaharn, K.; Sansamur, C.; Jampachaisri, K. Forecasting of daily new lumpy skin disease cases in Thailand at different stages of the epidemic using fuzzy logic time series, NNAR, and ARIMA methods. Prev. Vet. Med. 2023, 217, 105964. [Google Scholar] [CrossRef]
- Chhabra, A.; Singh, S.K.; Sharma, A.; Kumar, S.; Gupta, B.B.; Arya, V.; Chui, K.T. Sustainable and intelligent time-series models for epidemic disease forecasting and analysis. Sustain. Technol. Entrep. 2024, 3, 100064. [Google Scholar] [CrossRef]
- Punyapornwithaya, V.; Thanapongtharm, W.; Jainonthee, C.; Chinsorn, P.; Sagarasaeranee, O.; Salvador, R.; Arjkumpa, O. Time series analysis and forecasting of the number of canine rabies confirmed cases in Thailand based on national-level surveillance data. Front. Vet. Sci. 2023, 10, 1294049. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, W.; Wu, T.; Lu, N.; He, J.; Wang, J.; Rao, J.; Gu, Y.; Cheng, X.; Li, Y.; et al. Time series models in prediction of severe fever with thrombocytopenia syndrome cases in Shandong province, China. Infect. Dis. Model. 2024, 9, 224–233. [Google Scholar] [CrossRef]
- Al-Sakkaf, A.; Jones, G. Comparison of time series models for predicting campylobacteriosis risk in New Zealand. Zoonoses Public Health 2014, 61, 167–174. [Google Scholar] [CrossRef]
- Kim, J.; Rupasinghe, R.; Halev, A.; Huang, C.; Rezaei, S.; Clavijo, M.J.; Robbins, R.C.; Martínez-López, B.; Liu, X. Predicting antimicrobial resistance of bacterial pathogens using time series analysis. Front. Microbiol. 2023, 14, 1160224. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Zhang, D.; Zhu, Y.; Liu, L.; Li, C.; Wang, Z.; Li, X. SARFIMA model prediction for infectious diseases: Application to hemorrhagic fever with renal syndrome and comparing with SARIMA. BMC Med. Res. Methodol. 2020, 20, 243. [Google Scholar] [CrossRef]
- Yu, G.; Feng, H.; Feng, S.; Zhao, J.; Xu, J. Forecasting hand-foot-and-mouth disease cases using wavelet-based SARIMA–NNAR hybrid model. PLoS ONE 2021, 16, e0246673. [Google Scholar] [CrossRef]
- Perone, G. Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy. Eur. J. Health Econ. 2021, 23, 917–940. [Google Scholar] [CrossRef] [PubMed]
- Thayyib, P.; Thorakkattle, M.N.; Usmani, F.; Yahya, A.T.; Farhan, N.H. Forecasting Indian goods and services tax revenue using TBATS, ETS, Neural Networks, and hybrid time series models. Cogent Econ. Finance 2023, 11, 2285649. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B.; Ord, J.K.; Snyder, R.D. Forecasting with Exponential Smoothing: The State Space Approach; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Akermi, S.E.; L’Hadj, M.; Selmane, S. Epidemiology and time series analysis of human brucellosis in Tebessa province, Algeria, from 2000 to 2020. J. Res. Health Sci. 2021, 22, e00544. [Google Scholar] [CrossRef] [PubMed]
- Pontoh, R.S.; Toharudin, T.; Ruchjana, B.N.; Gumelar, F.; Putri, F.A.; Agisya, M.N.; Caraka, R.E. Jakarta pandemic to endemic transition: Forecasting COVID-19 using NNAR and LSTM. Appl. Sci. 2022, 12, 5771. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Z.; Fu, Y.; Rao, F. Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms. Results Phys. 2021, 27, 104462. [Google Scholar] [CrossRef]
- Aguinis, H.; Gottfredson, R.K.; Joo, H. Best-practice recommendations for defining, identifying, and handling outliers. Organ. Res. Methods 2013, 16, 270–301. [Google Scholar] [CrossRef]
- Boschetti, L.; Kunzle, A.; Brivio, P.; Mussio, L. Non parametric statistical tests for the analysis of multiple-sensor time series of remotely sensed data. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, 31 July–4 August 2006; pp. 200–203. [Google Scholar]
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 27, 1–22. [Google Scholar] [CrossRef]
- R Developement Core Team. The R Project for Statistical Computing. Available online: https://www.R-project.org (accessed on 10 March 2025).
- Arumugam, V.; Natarajan, V. Time series modeling and forecasting using autoregressive integrated moving average and seasonal autoregressive integrated moving average models. Instrum. Mes. Metrol. 2023, 22, 161–168. [Google Scholar] [CrossRef]
- Almarashi, A.M.; Daniyal, M.; Jamal, F. Modelling the GDP of KSA using linear and non-linear NNAR and hybrid stochastic time series models. PLoS ONE 2024, 19, e0297180. [Google Scholar] [CrossRef]
- Daniyal, M.; Tawiah, K.; Muhammadullah, S.; Opoku-Ameyaw, K. Comparison of conventional modeling techniques with the neural network autoregressive model (NNAR): Application to COVID-19 data. J. Healthc. Eng. 2022, 2022, 4802743. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Nasseri, S.; Aminabad, M.S.; Hadi, M. Comparison of ARIMA and NNAR models for forecasting water treatment plant’s influent characteristics. KSCE J. Civ. Eng. 2018, 22, 3233–3245. [Google Scholar] [CrossRef]
- Yu, C.; Chunjie, X.; Yuhong, L.; Sanqiao, Y.; Yichun, B.; Jizhen, L.; Lei, W.; Weidong, W.; Wang, Y. Time series analysis and forecasting of the hand-foot-mouth disease morbidity in China using an advanced exponential smoothing state space TBATS model. Infect. Drug Resist. 2021, 14, 2809–2821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, X.; Rubasinghe, O.; Liu, Y.; Chow, Y.H.; Iu, H.H.C.; Fernando, T. Long-term energy and peak power demand forecasting based on sequential-XGBoost. IEEE Trans. Power Syst. 2024, 39, 3088–3104. [Google Scholar] [CrossRef]
- Tuan, D.A.; Dang, T.N. Leveraging climate data for dengue forecasting in Ba Ria Vung Tau province, Vietnam: An advanced machine learning approach. Trop. Med. Infect. Dis. 2024, 9, 250. [Google Scholar] [CrossRef]
- Azad, A.S.; Sokkalingam, R.; Daud, H.; Adhikary, S.K.; Khurshid, H.; Mazlan, S.N.A.; Rabbani, M.B.A. Water level prediction through hybrid SARIMA and ANN models based on time series analysis: Red Hills Reservoir case study. Sustainability 2022, 14, 1843. [Google Scholar] [CrossRef]
- Castro, F.; Chai, L.; Arango, J.; Owens, C.; Smith, P.; Reichelt, S.; DuBois, C.; Menconi, A. Poultry industry paradigms: Connecting the dots. J. Appl. Poult. Res. 2023, 32, 100310. [Google Scholar] [CrossRef]
- Caffrey, N.P.; Dohoo, I.R.; Cockram, M.S. Factors affecting mortality risk during transportation of broiler chickens for slaughter in Atlantic Canada. Prev. Vet. Med. 2017, 147, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.R.; Mitchell, M.A.; Carlisle, A.J. Wetting of broilers during cold weather transport: A major source of physiological stress? Br. Poult. Sci. 1999, 40, S48–S49. [Google Scholar] [CrossRef]
- Oviedo-Rondón, E.O. Optimizing the Health of Broilers; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Vecerkova, L.; Vecerek, V.; Voslarova, E. Welfare of end-of-lay hens transported for slaughter: Effects of ambient temperature, season, and transport distance on transport-related mortality. Poult. Sci. 2019, 98, 6217–6224. [Google Scholar] [CrossRef]
- Di Martino, G.; Capello, K.; Russo, E.; Mazzucato, M.; Mulatti, P.; Ferrè, N.; Garbo, A.; Brichese, M.; Marangon, S.; Bonfanti, L. Factors associated with pre-slaughter mortality in turkeys and end of lay hens. Animal 2017, 11, 2295–2300. [Google Scholar] [CrossRef] [PubMed]
- Van Limbergen, T.; Sarrazin, S.; Chantziaras, I.; Dewulf, J.; Ducatelle, R.; Kyriazakis, I.; McMullin, P.; Méndez, J.; Niemi, J.K.; Papasolomontos, S.; et al. Risk factors for poor health and performance in European broiler production systems. BMC Vet. Res. 2020, 16, 287. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, C.; Hillion, S.; Balaine, L.; Michel, V.; Peraste, J.; Petetin, I.; Lupo, C.; Le Bouquin, S. Factors associated with mortality of broilers during transport to slaughterhouse. Animal 2011, 5, 287–293. [Google Scholar] [CrossRef]
- Rowe, E.; Dawkins, M.S.; Gebhardt-Henrich, S.G. A systematic review of precision livestock farming in the poultry sector: Is technology focussed on improving bird welfare? Animals 2019, 9, 614. [Google Scholar] [CrossRef]
- Teke, B. Survey on dead on arrival of broiler chickens under commercial transport conditions. Large Anim. Rev. 2019, 25, 237–241. [Google Scholar]
- Saraiva, S.; Esteves, A.; Oliveira, I.; Mitchell, M.; Stilwell, G. Impact of pre-slaughter factors on welfare of broilers. Vet. Anim. Sci. 2020, 10, 100146. [Google Scholar] [CrossRef]
- Niloofar, P.; Francis, D.P.; Lazarova-Molnar, S.; Vulpe, A.; Vochin, M.-C.; Suciu, G.; Balanescu, M.; Anestis, V.; Bartzanas, T. Data-driven decision support in livestock farming for improved animal health, welfare and greenhouse gas emissions: Overview and challenges. Comput. Electron. Agric. 2021, 190, 106406. [Google Scholar] [CrossRef]
Model | Training Dataset | Test Dataset | ||||||
---|---|---|---|---|---|---|---|---|
MAE | MAPE | MASE | RMSE | MAE | MAPE | MASE | RMSE | |
SARIMA | 0.08 | 23.74 | 0.81 | 0.11 | 0.08 | 24.30 | 0.59 | 0.11 |
NNAR | 0.04 | 11.24 | 0.44 | 0.06 | 0.18 | 54.36 | 1.22 | 0.21 |
TBATS | 0.07 | 18.35 | 0.68 | 0.10 | 0.08 | 21.22 | 0.54 | 0.10 |
ETS | 0.07 | 20.04 | 0.70 | 0.10 | 0.08 | 22.11 | 0.54 | 0.11 |
XGBoost | 0.02 | 4.49 | 0.17 | 0.03 | 0.10 | 29.33 | 0.73 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jainonthee, C.; Sivapirunthep, P.; Pirompud, P.; Punyapornwithaya, V.; Srisawang, S.; Chaosap, C. Modeling and Forecasting Dead-on-Arrival in Broilers Using Time Series Methods: A Case Study from Thailand. Animals 2025, 15, 1179. https://doi.org/10.3390/ani15081179
Jainonthee C, Sivapirunthep P, Pirompud P, Punyapornwithaya V, Srisawang S, Chaosap C. Modeling and Forecasting Dead-on-Arrival in Broilers Using Time Series Methods: A Case Study from Thailand. Animals. 2025; 15(8):1179. https://doi.org/10.3390/ani15081179
Chicago/Turabian StyleJainonthee, Chalita, Panneepa Sivapirunthep, Pranee Pirompud, Veerasak Punyapornwithaya, Supitchaya Srisawang, and Chanporn Chaosap. 2025. "Modeling and Forecasting Dead-on-Arrival in Broilers Using Time Series Methods: A Case Study from Thailand" Animals 15, no. 8: 1179. https://doi.org/10.3390/ani15081179
APA StyleJainonthee, C., Sivapirunthep, P., Pirompud, P., Punyapornwithaya, V., Srisawang, S., & Chaosap, C. (2025). Modeling and Forecasting Dead-on-Arrival in Broilers Using Time Series Methods: A Case Study from Thailand. Animals, 15(8), 1179. https://doi.org/10.3390/ani15081179