Improvement of Gait after Robotic-Assisted Training in Children with Cerebral Palsy: Are We Heading in the Right Direction?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. Suppl. 2007, 49, 8–14. [Google Scholar]
- Eunson, P. Aetiology and epidemiology of cerebral palsy. Paediatr. Child Health 2012, 22, 361–366. [Google Scholar] [CrossRef]
- Himmelmann, K.; Uvebrant, P. The panorama of cerebral palsy in Sweden part XII shows that patterns changed in the birth years 2007–2010. Acta Paediatr. 2018, 107, 462–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.-C.; et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment [published correction appears in JAMA Pediatr]. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Oskoui, M.; Coutinho, F.; Dykeman, J.; Jetté, N.; Pringsheim, T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2013, 55, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020, 16, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Bax, M.; Goldstein, M.; Rosenbaum, P.; Levition, A.; Paneth, N.; Dan, B.; Jacobssom, B.; Damiano, D. Proposed definition and classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 2005, 47, 571–576. [Google Scholar] [CrossRef]
- Bjornson, K.F.; Zhou, C.; Stevenson, R.; Christakis, D.; Song, K. Walking activity patterns in youth with cerebral palsy and youth developing typically. Disabil. Rehabil. 2014, 36, 1279–1284. [Google Scholar] [CrossRef] [Green Version]
- Gorter, H.; Holty, L.; Rameckers, E.E.; Elvers, H.J.; Oostendorp, R.A. Changes in Endurance and Walking Ability Through Functional Physical Training in Children with Cerebral Palsy. Pediatr. Phys. Ther. 2009, 21, 31–37. [Google Scholar] [CrossRef]
- Ammann-Reiffer, C.; Graser, J.V. Walking activities beyond gait training: Priorities in everyday life for parents and adolescents in pediatric neurorehabilitation. J. Pediatr. Rehabil. Med. 2022, 10, 1–11. [Google Scholar] [CrossRef]
- Weinberger, R.; Warken, B.; König, H.; Vill, K.; Gerstl, L.; Borggraefe, I.; Heinen, F.; von Kries, R.; Schroeder, A.S. Three by three weeks of robot-enhanced repetitive gait therapy within a global rehabilitation plan improves gross motor development in children with cerebral palsy—A retrospective cohort study. Eur. J. Paediatr. Neurol. 2019, 23, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Chin, E.M.; Gwynn, H.E.; Robinson, S.; Hoon, A.H., Jr. Principles of Medical and Surgical Treatment of Cerebral Palsy. Neurol. Clin. 2020, 38, 397–416. [Google Scholar] [CrossRef] [PubMed]
- Boel, L.; Pernet, K.; Toussaint, M.; Ides, K.; Leemans, G.; Haan, J.; Van Hoorenbeeck, K.; Verhulst, S. Respiratory morbidity in children with cerebral palsy: An overview. Dev. Med. Child Neurol. 2019, 61, 646–653. [Google Scholar] [CrossRef]
- Koenig, A.; Wellner, M.; Köneke, S.; Meyer-Heim, A.; Lünenburger, L.; Riener, R. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Stud. Health Technol. Inform. 2008, 132, 204–209. [Google Scholar]
- Cherni, Y.; Girardin-Vignola, G.; Ballaz, L.; Begon, M. Reliability of maximum isometric hip and knee torque measurements in children with cerebral palsy using a paediatric exoskeleton—Lokomat. Neurophysiol. Clin. 2019, 49, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Van Kammen, K.; Reinders-Messelink, H.A.; Elsinghorst, A.L.; Wesselink, C.F.; Meeuwisse-de Vries, B.; van der Woude, L.H.; Boonstra, A.M.; den Otter, R. Amplitude and stride-to-stride variability of muscle activity during Lokomat guided walking and treadmill walking in children with cerebral palsy. Eur. J. Paediatr. Neurol. 2020, 29, 108–117. [Google Scholar] [CrossRef]
- Conner, B.C.; Remec, N.M.; Lerner, Z.F. Is robotic gait training effective for individuals with cerebral palsy? A systematic review and meta-analysis of randomized controlled trials. Clin. Rehabil. 2022, 36, 873–882. [Google Scholar] [CrossRef]
- Te Velde, A.; Morgan, C. Gross Motor Function Measure (GMFM-66 & GMFM-88) User’s Manual, 3rd Edition, Book Review. Pediatr. Phys Ther. 2022, 34, 88–89. [Google Scholar] [CrossRef]
- Beckers, L.W.; Bastiaenen, C.H. Application of the Gross Motor Function Measure-66 (GMFM-66) in Dutch clinical practice: A survey study. BMC Pediatr. 2015, 15, 146. [Google Scholar] [CrossRef] [Green Version]
- Davis, E.; Mackinnon, A.; Waters, E. Parent-proxy reported quality of life for children with cerebral palsy: Is it related to parental psychosocial distress? Child Care Health Dev. 2011, 38, 553–560. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 15 April 2022).
- Drużbicki, M.; Rusek, W.; Snela, S.; Dudek, J.; Szczepanik, M.; Zak, E.; Durmala, J.; Czernuszenko, A.; Bonikowski, M.; Sobota, G. Functional effects of robotic-assisted locomotor treadmill thearapy in children with cerebral palsy. J. Rehabil. Med. 2013, 45, 358–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallard, L.; Dietrich, G.; Kerlirzin, Y.; Bredin, J. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Eur. J. Paediatr. Neurol. 2017, 21, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Wallard, L.; Dietrich, G.; Kerlirzin, Y.; Bredin, J. Effect of robotic-assisted gait rehabilitation on dynamic equilibrium control in the gait of children with cerebral palsy. Gait Posture 2018, 60, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Naro, A.; Russo, M.; Leo, A.; De Luca, R.; Balletta, T.; Buda, A.; Rosa, G.L.; Bramanti, A.; Bramanti, P. The role of virtual reality in improving motor performance as revealed by EEG: A randomized clinical trial. J. Neuroeng. Rehabil. 2017, 14, 1–16. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Naro, A.; Russo, M.; Bramanti, P.; Carioti, L.; Balletta, T.; Buda, A.; Manuli, A.; Filoni, S.; Bramati, A. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: A randomized clinical trial. J. Neuroeng. Rehabil. 2018, 15, 35. [Google Scholar] [CrossRef] [Green Version]
- Baronchelli, F.; Zucchella, C.; Serrao, M.; Intiso, D.; Bartolo, M. The Effect of Robotic Assisted Gait Training With Lokomat® on Balance Control After Stroke: Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 661815. [Google Scholar] [CrossRef]
- Marchal-Crespo, L.; Reinkensmeyer, D.J. Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 2009, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, R.S.; Cacciola, A.; Bertè, F.; Manuli, A.; Leo, A.; Bramanti, A.; Naro, A.; Milardi, D.; Bramanti, P. Robotic gait rehabilitation and substitution devices in neurological disorders: Where are we now? Neurol. Sci. 2016, 37, 503–514. [Google Scholar] [CrossRef]
- Van Hedel, H.; Severini, G.; Scarton, A.; O’Brien, A.; Reed, T.; Gaebler-Spira, D.; Egan, T.; Meyer-Heim, A.; Graser, J.; Chua, K.; et al. Advanced Robotic Therapy Integrated Centers (ARTIC): An international collaboration facilitating the application of rehabilitation technologies. J. Neuroeng. Rehabil. 2018, 15, 30. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Reitano, S.; Leo, A.; De Luca, R.; Melegari, C.; Bramanti, P. Can robot-assisted movement training (Lokomat) improve functional recovery and psychological well-being in chronic stroke? Promising findings from a case study. Funct. Neurol. 2014, 29, 139–141. [Google Scholar]
- Calabrò, R.S.; De Cola, M.C.; Leo, A.; Reitano, S.; Balletta, T.; Trombetta, G.; Naro, A.; Russo, M.; Bertè, F.; De Luca, R.; et al. Robotic neurorehabilitation in patients with chronic stroke: Psychological well-being beyond motor improvement. International journal of rehabilitation research. Internationale Zeitschrift fur Rehabilitationsforschung. Rev. Int. De Rech. De Readapt. 2015, 38, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Tornberg, Å.B.; Lauruschkus, K. Non-ambulatory children with cerebral palsy: Effects of four months of static and dynamic standing exercise on passive range of motion and spasticity in the hip. PeerJ 2020, 8, e8561. [Google Scholar] [CrossRef] [PubMed]
- Llamas-Ramos, R.; Sánchez-González, J.L.; Llamas-Ramos, I. Robotic Systems for the Physiotherapy Treatment of Children with Cerebral Palsy: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 5116. [Google Scholar] [CrossRef]
- Morone, G.; Bragoni, M.; Iosa, M.; De Angelis, D.; Venturiero, V.; Coiro, P.; Pratesi, L.; Paolucci, S. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabilit. Neural Repair 2011, 25, 636–644. [Google Scholar] [CrossRef]
- Dierick, F.; Dehas, M.; Isambert, J.-L.; Injeyan, S.; Bouché, A.-F.; Bleyenheuft, Y.; Portnoy, S. Hemorrhagic versus ischemic stroke: Who can best benefit from blended conventional physiotherapy with robotic-assisted gait therapy? PLoS ONE 2017, 12, e0178636. [Google Scholar] [CrossRef] [PubMed]
- Van Hedel, H.J.; Meyer-Heim, A.; Rüsch-Bohtz, C. Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy. Dev. Neurorehabilit. 2016, 19, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.S.; Von Kries, R.; Riedel, C.; Homburg, M.; Auffermann, H.; Blaschek, A.; Jahn, K.; Heinen, F.; Borggraefe, I.; Berweck, S. Patient-specific determinants of responsiveness to robot-enhanced treadmill therapy in children and adolescents with cerebral palsy. Dev. Med. Child Neurol. 2014, 56, 1172–1179. [Google Scholar] [CrossRef]
- Klobucká, S.; Klobucký, R.; Kollár, B. The effect of patient-specific factors on responsiveness to robot-assisted gait training in patients with bilateral spastic cerebral palsy. NeuroRehabilitation 2021, 49, 375–389. [Google Scholar] [CrossRef]
- Alcobendas-Maestro, M.; Esclarín-Ruz, A.; Casado-López, R. Lokomat training, cervical versus thoracic spinal cord injuries: Comparative study. In Biosystems and Biorobotics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 229–231. [Google Scholar]
- Portaro, S.; Russo, M.; Bramanti, A.; Leo, A.; Billeri, L.; Manuli, A.; Rosa, G.L.; Naro, A.; Calabrò, R.S. The role of robotic gait training and tDCS in Friedrich ataxia rehabilitation: A case report. Medicine 2019, 98, e14447. [Google Scholar] [CrossRef]
GMFM Dimension’s Questionnaire | Means | Standard Deviation | Median | p-Value * | ES | |||
---|---|---|---|---|---|---|---|---|
T0 | T1 | T0 | T1 | T0 | T1 | |||
Total score | 56.58 | 59.31 | 28.74 | 27.02 | 58.25 | 59 | <0.001 | 0.09 |
A. Lying and rolling Lying | 89.42 | 92.35 | 22.38 | 14.64 | 100 | 100 | 0.37 | 0.13 |
60.71 | 60.87 | 6.72 | 6.24 | 60 | 61 | 0.37 | 0.02 | |
Rolling | 35.5 | 39.28 | 12.38 | 6.72 | 37.5 | 40 | 1 | 0.30 |
B. Sitting | 75 | 78.17 | 32.19 | 28.84 | 87.5 | 88.35 | <0.03 | 0.09 |
C. Crawling/kneeling | 51.9 | 55.96 | 44.9 | 41.15 | 58.35 | 60.7 | 0.10 | 0.09 |
D. Standing | 37.7 | 39.49 | 32.39 | 34.40 | 39.75 | 39.75 | 0.097 | 0.07 |
E. Walking, running and jumping | 28.85 | 31.09 | 28.32 | 29.52 | 23.45 | 24.3 | <0.03 | 0.07 |
Walking | 11 | 26.66 | 19.05 | 46.18 | 0 | 0 | <0.03 | 0.82 |
Running | 0 | 0.33 | 1 | 0 | 0 | 0 | NA | NA |
Jumping | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA |
CP QOL | 40 | 52.1 | 10.54 | 11.23 | 45 | 55 | <0.005 | 1.14 |
T0 score | T1 score | Percentage of improvement | ||||||
35 | 40 | 5% | ||||||
25 | 35 | 10% | ||||||
45 | 55 | 5% | ||||||
25 | 40 | 15% | ||||||
55 | 60 | 5% | ||||||
45 | 55 | 10% | ||||||
30 | 45 | 15% | ||||||
45 | 66 | 21% | ||||||
45 | 60 | 15% | ||||||
50 | 60 | 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, R.; Bonanno, M.; Settimo, C.; Muratore, R.; Calabrò, R.S. Improvement of Gait after Robotic-Assisted Training in Children with Cerebral Palsy: Are We Heading in the Right Direction? Med. Sci. 2022, 10, 59. https://doi.org/10.3390/medsci10040059
De Luca R, Bonanno M, Settimo C, Muratore R, Calabrò RS. Improvement of Gait after Robotic-Assisted Training in Children with Cerebral Palsy: Are We Heading in the Right Direction? Medical Sciences. 2022; 10(4):59. https://doi.org/10.3390/medsci10040059
Chicago/Turabian StyleDe Luca, Rosaria, Mirjam Bonanno, Carmela Settimo, Rosalia Muratore, and Rocco Salvatore Calabrò. 2022. "Improvement of Gait after Robotic-Assisted Training in Children with Cerebral Palsy: Are We Heading in the Right Direction?" Medical Sciences 10, no. 4: 59. https://doi.org/10.3390/medsci10040059