The Emerging Role of Environmental Cadmium Exposure in Prostate Cancer Progression
Abstract
:1. Introduction
1.1. Methodology, Literature Review, and Study Selection Criteria
1.2. Epidemiological Studies
- A.
- Population Studies:
- 1.
- Studies that found an association between Cd exposure and PCa outcome:
- i.
- The earliest evidence for the link between Cd and PCa outcome was documented in occupational populations in 1965 when Potts noticed three out of eight deaths among battery plant workers were due to PCa [25]. This finding set the foundation for epidemiological studies addressing the link between Cd exposure and PCa mortality in battery plant workers.
- ii.
- A study demonstrated that death from PCa was borderline higher in men who had Cd exposure in male residents of Japan’s contaminated Jinzu River basin [8].
- iii.
- Our recent study addressing the role of environmental Cd exposure and PCa progression showed that air Cd exposure was associated with higher PCa pathological grade and metastasis at the time of diagnosis in nonmetropolitan, urban areas in the United States [26]. In this article, we pointed out that signs of tumor aggressiveness at the time of diagnosis are more reliable tumor aggressiveness measures than mortality because mortality may depend more on comorbidities attributable to high Cd, disparities in treatment modalities, and access to medical care.
- iv.
- In 2022, another study showed that cumulative 3- and 5-year average concentrations of air Cd are linked to lower PCa survival in a 78,914 PCa population from Pennsylvania [27].
- v.
- Cheung et al. in 2014 attempted to evaluate the NHAHES III dataset for the association between urinary cadmium (U-Cd) and PCa mortality [20]. While the univariate analysis demonstrated an association between U-Cd and PCa mortality, the multivariate analysis lacked statistical significance. They attributed this discrepancy to confounding factors and the few cancer deaths in the population studied.
- vi.
- Bryś et al. demonstrated an association between increased tissue Cd levels in PCa and benign prostatic hyperplasia (BPH) compared to normal tissues [22]. Notably, they reported a decrease in zinc levels in PCa as compared to normal tissues.
- vii.
- Feustel et al. demonstrated a similar pattern in Cd and zinc levels in benign and tumor prostate tissues [28].
- viii.
- To address this question, our group addressed the association between Cd levels in normal-appearing prostate tissue adjacent to cancer and biochemical recurrence after prostatectomy. The data showed that patients in the highest quartile of Cd levels in the normal-appearing area of the prostate have a higher risk of biochemical recurrence [23], favoring the hypothesis that Cd overburden preceded PCa.
- ix.
- In 2023, Tyagi et al. published a study that showed increased cadmium levels in prostate cancer tissues as compared to normal adjacent tissues [24].
- 2.
- Studies that did not report an association between Cd exposure and PCa outcome:
- i.
- The Strong Heart Study in American Indians reported a non-significant inverse association between U-Cd levels and PCa mortality [21]. This study had a prospective design and long-term follow-up.
- 3.
- Studies that showed a trend for increased PCa mortality:
- i.
- Another study by Elinder et al. in 1985 showed a non-statistically significant increase in mortality among workers in a Swedish Cd-Nickel battery factory as defined by standardized mortality ratio (SMR) [30].
- ii.
- In 1979, a study conducted on 269 Cd-Nickel factory workers and 94 Cd-Copper factory workers found a non-statistically significant increase in PCa mortality [31].
- 4.
- Limitations and Strengths of Population/Epidemiological Studies:
- B.
- Meta-analysis Studies:
- C.
- Future directions for epidemiological studies:
1.3. Experimental Evidence
- 1.
- Current Standing of in vitro studies:
- 2.
- Limitations and Future Directions for Experimental Studies:
2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, H.; Hu, R.; Huang, G.; Pu, W.; Chu, X.; Xing, C.; Zhang, C. Molybdenum and cadmium co-exposure induces endoplasmic reticulum stress-mediated apoptosis by Th1 polarization in Shaoxing duck (Anas platyrhyncha) spleens. Chemosphere 2022, 298, 134275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, Z.; Hu, R.; Pi, S.; Wei, Z.; Wang, C.; Yang, F.; Xing, C.; Nie, G.; Hu, G. New insights into crosstalk between pyroptosis and autophagy co-induced by molybdenum and cadmium in duck renal tubular epithelial cells. J. Hazard. Mater. 2021, 416, 126138. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, H.; Oguma, E.; Sasaki, S.; Miyamoto, K.; Ikeda, Y.; Machida, M.; Kayama, F. Dietary exposure to cadmium at close to the current provisional tolerable weekly intake does not affect renal function among female Japanese farmers. Environ. Res. 2004, 95, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Substances, A.F.T.; Disease, R. How Are People Exposed to Cadmium? Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.atsdr.cdc.gov/csem/cadmium/How-Are-People-Exposed-to-Cadmium.html&ved=2ahUKEwjt5v_4o4OIAxXI6DQHHUdjCY8QFnoECBQQAQ&usg=AOvVaw1HbOE9I39fzhwReO-Bn2iP (accessed on 21 March 2024).
- Satarug, S.; Vesey, D.A.; Gobe, G.C. Health Risk Assessment of Dietary Cadmium Intake: Do Current Guidelines Indicate How Much is Safe? Environ. Health Perspect. 2017, 125, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, E.; Suwazono, Y.; Uetani, M.; Inaba, T.; Oishi, M.; Kido, T.; Nishijo, M.; Nakagawa, H.; Nogawa, K. Estimation of benchmark dose for renal dysfunction in a cadmium non-polluted area in Japan. J. Appl. Toxicol. JAT 2006, 26, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Ezaki, T.; Tsukahara, T.; Moriguchi, J.; Furuki, K.; Fukui, Y.; Ukai, H.; Okamoto, S.; Sakurai, H.; Honda, S.; Ikeda, M. Analysis for threshold levels of cadmium in urine that induce tubular dysfunction among women in non-polluted areas in Japan. Int. Arch. Occup. Environ. Health 2003, 76, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Nishijo, M.; Nakagawa, H.; Suwazono, Y.; Nogawa, K.; Sakurai, M.; Ishizaki, M.; Kido, T. Cancer Mortality in Residents of the Cadmium-Polluted Jinzu River Basin in Toyama, Japan. Toxics 2018, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Mannino, D.M.; Holguin, F.; Greves, H.M.; Savage-Brown, A.; Stock, A.L.; Jones, R.L. Urinary cadmium levels predict lower lung function in current and former smokers: Data from the Third National Health and Nutrition Examination Survey. Thorax 2004, 59, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Substances, A.f.T.; Disease, R. Public Health Statement for Cadmium. Available online: https://wwwn.cdc.gov/TSP/PHS/PHS.aspx?phsid=46&toxid=15 (accessed on 12 May 2023).
- Society, A.C. Key Statistics for Prostate Cancer. Available online: https://www.cancer.org/cancer/types/prostate-cancer/about/key-statistics.html (accessed on 12 February 2023).
- Merriel, S.W.D.; May, M.T.; Martin, R.M. Predicting prostate cancer progression: Protocol for a retrospective cohort study to identify prognostic factors for prostate cancer outcomes using routine primary care data. BMJ Open 2018, 8, e019409. [Google Scholar] [CrossRef]
- Dai, C.; Heemers, H.; Sharifi, N. Androgen Signaling in Prostate Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a030452. [Google Scholar] [CrossRef]
- Desai, K.; McManus, J.M.; Sharifi, N. Hormonal Therapy for Prostate Cancer. Endocr Rev 2021, 42, 354–373. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; He, H.; Han, T.; Wang, B.; Ji, P.; Wu, X.; Qian, J.; Shao, P. Environmental explanation of prostate cancer progression based on the comprehensive analysis of perfluorinated compounds. Ecotoxicol Environ Saf 2023, 263, 115267. [Google Scholar] [CrossRef] [PubMed]
- Kolluru, V.; Pal, D.; Papu John, A.M.S.; Ankem, M.K.; Freedman, J.H.; Damodaran, C. Induction of Plac8 promotes pro-survival function of autophagy in cadmium-induced prostate carcinogenesis. Cancer Lett. 2017, 408, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Kolluru, V.; Tyagi, A.; Chandrasekaran, B.; Ankem, M.; Damodaran, C. Induction of endoplasmic reticulum stress might be responsible for defective autophagy in cadmium-induced prostate carcinogenesis. Toxicol. Appl. Pharmacol. 2019, 373, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Waalkes, M.P.; Anver, M.R.; Diwan, B.A. Chronic toxic and carcinogenic effects of oral cadmium in the Noble (NBL/Cr) rat: Induction of neoplastic and proliferative lesions of the adrenal, kidney, prostate, and testes. J. Toxicol. Environ. Health. Part A 1999, 58, 199–214. [Google Scholar] [CrossRef]
- Waalkes, M.P.; Rehm, S.; Riggs, C.W.; Bare, R.M.; Devor, D.E.; Poirier, L.A.; Wenk, M.L.; Henneman, J.R.; Balaschak, M.S. Cadmium carcinogenesis in male Wistar [Crl:(WI)BR] rats: Dose-response analysis of tumor induction in the prostate and testes and at the injection site. Cancer Res. 1988, 48, 4656–4663. [Google Scholar]
- Cheung, M.R.; Kang, J.; Ouyang, D.; Yeung, V. Association between urinary cadmium and all cause, all cancer and prostate cancer specific mortalities for men: An analysis of national health and nutrition examination survey (NHANES III) data. Asian Pac. J. Cancer Prev. APJCP 2014, 15, 483–488. [Google Scholar] [CrossRef] [PubMed]
- García-Esquinas, E.; Pollan, M.; Tellez-Plaza, M.; Francesconi, K.A.; Goessler, W.; Guallar, E.; Umans, J.G.; Yeh, J.; Best, L.G.; Navas-Acien, A. Cadmium exposure and cancer mortality in a prospective cohort: The strong heart study. Environ. Health Perspect. 2014, 122, 363–370. [Google Scholar] [CrossRef]
- Bryś, M.; Nawrocka, A.D.; Miekoś, E.; Zydek, C.; Foksiński, M.; Barecki, A.; Krajewska, W.M. Zinc and cadmium analysis in human prostate neoplasms. Biol. Trace Elem. Res. 1997, 59, 145–152. [Google Scholar] [CrossRef]
- Sarafanov, A.G.; Todorov, T.I.; Centeno, J.A.; Macias, V.; Gao, W.; Liang, W.M.; Beam, C.; Gray, M.A.; Kajdacsy-Balla, A.A. Prostate cancer outcome and tissue levels of metal ions. Prostate 2011, 71, 1231–1238. [Google Scholar] [CrossRef]
- Tyagi, B.; Chandrasekaran, B.; Tyagi, A.; Shukla, V.; Saran, U.; Tyagi, N.; Talluri, S.; Juneau, A.D.; Fu, H.; Ankem, M.K.; et al. Exposure of environmental trace elements in prostate cancer patients: A multiple metal analysis. Toxicol. Appl. Pharmacol. 2023, 479, 116728. [Google Scholar] [CrossRef]
- Potts, C.L. Cadmium proteinuria—The health of battery workers exposed to cadmium oxide dust. Ann. Occup. Hyg. 1965, 8, 55–61. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Abern, M.R.; Jagai, J.S.; Kajdacsy-Balla, A. Observational Study of the Association between Air Cadmium Exposure and Prostate Cancer Aggressiveness at Diagnosis among a Nationwide Retrospective Cohort of 230,540 Patients in the United States. Int. J. Environ. Res. Public Health 2021, 18, 8333. [Google Scholar] [CrossRef]
- McDonald, A.C.; Gernand, J.; Geyer, N.R. Ambient air exposures to arsenic and cadmium and overall and prostate cancer-specific survival among prostate cancer cases in Pennsylvania, 2004 to 2014. Cancer 2022, 128, 1832–1839. [Google Scholar] [CrossRef]
- Feustel, A.; Wennrich, R.; Steiniger, D.; Klauss, P. Zinc and cadmium concentration in prostatic carcinoma of different histological grading in comparison to normal prostate tissue and adenofibromyomatosis (BPH). Urol. Res. 1982, 10, 301–303. [Google Scholar] [CrossRef]
- Ogunlewe, J.O.; Osegbe, D.N. Zinc and cadmium concentrations in indigenous blacks with normal, hypertrophic, and malignant prostate. Cancer 1989, 63, 1388–1392. [Google Scholar] [CrossRef]
- Elinder, C.G.; Kjellström, T.; Hogstedt, C.; Andersson, K.; Spång, G. Cancer mortality of cadmium workers. Br. J. Ind. Med. 1985, 42, 651–655. [Google Scholar] [CrossRef]
- Kjellström, T.; Friberg, L.; Rahnster, B. Mortality and cancer morbidity among cadmium-exposed workers. Environ. Health Perspect. 1979, 28, 199–204. [Google Scholar] [CrossRef]
- Adams, S.V.; Passarelli, M.N.; Newcomb, P.A. Cadmium exposure and cancer mortality in the Third National Health and Nutrition Examination Survey cohort. Occup. Environ. Med. 2012, 69, 153–156. [Google Scholar] [CrossRef]
- Ju-Kun, S.; Yuan, D.B.; Rao, H.F.; Chen, T.F.; Luan, B.S.; Xu, X.M.; Jiang, F.N.; Zhong, W.D.; Zhu, J.G. Association Between Cd Exposure and Risk of Prostate Cancer: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine 2016, 95, e2708. [Google Scholar] [CrossRef]
- Chen, C.; Xun, P.; Nishijo, M.; Carter, S.; He, K. Cadmium exposure and risk of prostate cancer: A meta-analysis of cohort and case-control studies among the general and occupational populations. Sci. Rep. 2016, 6, 25814. [Google Scholar] [CrossRef]
- Wroblewski, K.; Wojnicka, J.; Tutka, P.; Szmagara, A.; Blazewicz, A. Measurements of cadmium levels in relation to tobacco dependence and as a function of cytisine administration. Sci. Rep. 2024, 14, 1883. [Google Scholar] [CrossRef]
- Webb, M.; Cain, K. Functions of metallothionein. Biochem. Pharmacol. 1982, 31, 137–142. [Google Scholar] [CrossRef]
- WHO. Cadmium in Drinking-Water; WHO: Geneva, Switzerland, 2011; Available online: https://cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/cadmium.pdf?sfvrsn=4dd545bd_4 (accessed on 2 July 2024).
- Thijssen, S.; Maringwa, J.; Faes, C.; Lambrichts, I.; Van Kerkhove, E. Chronic exposure of mice to environmentally relevant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels. Toxicology 2007, 229, 145–156. [Google Scholar] [CrossRef]
- Cui, Z.G.; Ahmed, K.; Zaidi, S.F.; Muhammad, J.S. Ins and outs of cadmium-induced carcinogenesis: Mechanism and prevention. Cancer Treat. Res. Commun. 2021, 27, 100372. [Google Scholar] [CrossRef]
- Hinkle, P.M.; Kinsella, P.A.; Osterhoudt, K.C. Cadmium uptake and toxicity via voltage-sensitive calcium channels. J. Biol. Chem. 1987, 262, 16333–16337. [Google Scholar]
- Misra, U.K.; Gawdi, G.; Pizzo, S.V. Induction of mitogenic signalling in the 1LN prostate cell line on exposure to submicromolar concentrations of cadmium+. Cell Signal. 2003, 15, 1059–1070. [Google Scholar] [CrossRef]
- Golovine, K.; Makhov, P.; Uzzo, R.G.; Kutikov, A.; Kaplan, D.J.; Fox, E.; Kolenko, V.M. Cadmium down-regulates expression of XIAP at the post-transcriptional level in prostate cancer cells through an NF-kappaB-independent, proteasome-mediated mechanism. Mol. Cancer 2010, 9, 183. [Google Scholar] [CrossRef]
- Hu, W.; Xia, M.; Zhang, C.; Song, B.; Xia, Z.; Guo, C.; Cui, Y.; Jiang, W.; Zhang, S.; Xu, D.; et al. Chronic cadmium exposure induces epithelial mesenchymal transition in prostate cancer cells through a TGF-β-independent, endoplasmic reticulum stress induced pathway. Toxicol. Lett. 2021, 353, 107–117. [Google Scholar] [CrossRef]
- Callejon-Leblic, B.; Arias-Borrego, A.; Pereira-Vega, A.; Gomez-Ariza, J.L.; Garcia-Barrera, T. The Metallome of Lung Cancer and its Potential Use as Biomarker. Int. J. Mol. Sci. 2019, 20, 778. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; Jin, J.; Ren, C. Recent advances in the application of metallomics in diagnosis and prognosis of human cancer. Metallomics 2022, 14, mfac037. [Google Scholar] [CrossRef] [PubMed]
- Keltie, E.; Hood, K.M.; Cui, Y.; Sweeney, E.; Ilie, G.; Adisesh, A.; Dummer, T.; Bharti, V.; Kim, J.S. Arsenic Speciation and Metallomics Profiling of Human Toenails as a Biomarker to Assess Prostate Cancer Cases: Atlantic PATH Cohort Study. Front. Public Health 2022, 10, 818069. [Google Scholar] [CrossRef]
- Hood, K.M.; Sweeney, E.; Ilie, G.; Keltie, E.; Kim, J.S. Toenail arsenic species and metallome profiles associated with breast, cervical, prostate, and skin cancer prevalence in the Atlantic Partnership for Tomorrow’s Health cohort. Front. Public Health 2023, 11, 1148283. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Wang, W.; Zhang, L.; Ling, W.; Wang, C.; Jiang, J.; Song, J.; Liu, Y.; Lu, D.; et al. Machine learning-aided metallomic profiling in serum and urine of thyroid cancer patients and its environmental implications. Sci. Total Environ. 2023, 895, 165100. [Google Scholar] [CrossRef] [PubMed]
- Gabbiani, C.; Magherini, F.; Modesti, A.; Messori, L. Proteomic and metallomic strategies for understanding the mode of action of anticancer metallodrugs. Anticancer Agents Med. Chem. 2010, 10, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Gao, Y.T.; Huang, Y.H.; McGee, E.E.; Lam, T.; Wang, B.; Shen, M.C.; Rashid, A.; Pfeiffer, R.M.; Hsing, A.W.; et al. A Metallomic Approach to Assess Associations of Serum Metal Levels with Gallstones and Gallbladder Cancer. Hepatology 2020, 71, 917–928. [Google Scholar] [CrossRef]
- Ossolinski, K.; Ruman, T.; Copie, V.; Tripet, B.P.; Nogueira, L.B.; Nogueira, K.; Kolodziej, A.; Plaza-Altamer, A.; Ossolinska, A.; Ossolinski, T.; et al. Metabolomic and elemental profiling of blood serum in bladder cancer. J. Pharm. Anal. 2022, 12, 889–900. [Google Scholar] [CrossRef]
Exposure Mode | Cells Lines | Cd Doses (µM) | Effects | Mechanisms | References |
---|---|---|---|---|---|
Acute | 1LN prostate cells | 0.5 µM–1 µM | ↑ Cell proliferation | ↑ p-MEK1/2, ↑ p-ERK1/2, ↑ p-p38, ↑ p-MAPK, ↑ p-JNK, ↑ p-Akt, and ↑ NFκB | [41] |
Acute | PC-3 and DU-145 | 10 µM, 20 µM, and 30 µM | ↑ Sensitivity of cells to TNFσ-mediated apoptosis | ↓ XIAP | [42] |
Chronic | PC-3 and DU145 | 0.5 and 2 µM (three months) | ↑ Cell migration and ↑ invasion | ↑ EMT, ↑ Smad3, ↑ metal metalloproteinase 2, ↓ E-cadherin, and ↑ vimentin, ↑ ER stress, and ↑ ROS | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad, R.; Hussein, M.A.; Munirathinam, G.; Kajdacsy-Balla, A. The Emerging Role of Environmental Cadmium Exposure in Prostate Cancer Progression. Environments 2024, 11, 181. https://doi.org/10.3390/environments11080181
Saad R, Hussein MA, Munirathinam G, Kajdacsy-Balla A. The Emerging Role of Environmental Cadmium Exposure in Prostate Cancer Progression. Environments. 2024; 11(8):181. https://doi.org/10.3390/environments11080181
Chicago/Turabian StyleSaad, Rama, Mohamed Ali Hussein, Gnanasekar Munirathinam, and André Kajdacsy-Balla. 2024. "The Emerging Role of Environmental Cadmium Exposure in Prostate Cancer Progression" Environments 11, no. 8: 181. https://doi.org/10.3390/environments11080181
APA StyleSaad, R., Hussein, M. A., Munirathinam, G., & Kajdacsy-Balla, A. (2024). The Emerging Role of Environmental Cadmium Exposure in Prostate Cancer Progression. Environments, 11(8), 181. https://doi.org/10.3390/environments11080181