Effects of Agricultural Pesticides on Decline in Insect Species and Individual Numbers
Abstract
:1. Introduction
2. Pesticides Usage and Distribution in Agricultural Production
3. Global Pesticide Usage per Agricultural Value
4. Persistence of Residues and Their Bioavailability
5. Impact of Pesticide Application on Insects’ Biodiversity
5.1. Direct Effect
5.1.1. Lepidoptera
5.1.2. Hymenoptera
5.1.3. Diptera
5.1.4. Coleoptera
5.1.5. Hemiptera
5.1.6. Orthoptera
5.1.7. Odonata
5.2. Indirect Effects
5.2.1. Herbicides’ Indirect Effects
5.2.2. Insecticides’ Indirect Effects
Poisoning of Non-Target Insects
Pathogens in Insect Pollinators
6. Ban on Harmful Pesticides and Alternative Techniques for Agricultural Production
7. Insect Biodiversity Decline and Its Contributing Factors
8. Sustainable Management Strategies to Safeguard Insect Biodiversity Declines
8.1. Organic Agriculture and Integrated Pest Management Strategies
8.2. Sustainable Farming Practices
8.3. Crop Heterogeneity
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Emmerson, M.; Morales, M.B.; Onate, J.J.; Batary, P.; Berendse, F.; Liira, J. How agricultural intensification affects biodiversity and ecosystem services. Adv. Ecol. Res. 2016, 55, 43–97. [Google Scholar]
- Population Reference Bureau (PRB). World Population Data Sheet. 2019. Available online: https://interactives.prb.org/2020-wpds/ (accessed on 7 February 2020).
- WTO (World Trade Organization). Trade in Medical Goods in the Context of Tackling COVID-19: Developments in the First Half of 2020; WTO: Geneva, Switzerland, 2020. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.R. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Raven, P.H.; Wagner, D.L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. USA 2021, 118, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Köhler, H.R.; Triebskorn, R. Wildlife ecotoxicology of pesticides: Can we track effects to the population level 300 and beyond? Science 2013, 341, 759–765. [Google Scholar] [CrossRef]
- Fishel, F.M. Pesticide Effects on Nontarget Organisms; EDIS PI-85; University of Florida Institute 302 of Food and Agricultural Sciences: Gainesville, FL, USA, 2005. [Google Scholar]
- Woodcock, B.A. Impacts of neonicotinoid use on long-term population changes in wild bees in England 311. Nat. Commun. 2016, 7, 12–45. [Google Scholar] [CrossRef]
- Druille, M.; García-Parisi, P.A.; Golluscio, R.A.; Cavagnaro, F.P.; Omacini, M. Repeated annual glyphosate 313 applications may impair beneficial soil microorganisms in temperate grassland. Agric. Ecosyst. Environ. 2016, 230, 184–190. [Google Scholar] [CrossRef]
- Triques, M.C. Assessing single effects of sugarcane pesticides fipronil and 2, 4-D on plants and soil 316 organisms. Ecotox. Environ. Saf. 2021, 208, 11–16. [Google Scholar] [CrossRef]
- Tsvetkov, N.; Samson-Robert, O.; Sood, K.; Patel, H.S.; Malena, D.A.; Gajiwala, P.H.; Maciukiewicz, P.; Fournier, V.; Zayed, A. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 2017, 356, 1395–1397. [Google Scholar] [CrossRef]
- Baker, N.J.; Bancroft, B.A.; Garcia, T.S. A meta-analysis of the effects of pesticides and fertilizers on 322 survival and growth of amphibians. Sci. Total Environ. 2013, 449, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Eng, M.L.; Stutchbury, B.; Morrissey, C.A. A neonicotinoid insecticide reduces fueling and delays migration 324 in songbirds. Science 2019, 365, 1177–1180. [Google Scholar] [CrossRef]
- Prahl, M.; Odorizzi, P.; Gingrich, D.; Muhindo, M.; McIntyre, T.; Budker, R.; Jagannathan, P.; Farrington, L.; Nalubega, M.; Nankya, F.; et al. Exposure to pesticides in utero impacts the fetal immune system and response to vaccination in 326 infancy. Nat. Commun. 2021, 12, 132–148. [Google Scholar] [CrossRef] [PubMed]
- Graf, N.; Battes, K.P.; Cimpean, M.; Dittrich, P.; Entling, M.H.; Link, M.; Scharmüller, A.; Schreiner, V.C.; Szöcs, E.; Schäfer, R.B. Do agricultural pesticides in streams influence riparian spiders? Sci. Total Environ. 2019, 660, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.A.; Telfer, M.G.; Roy, D.B.; Preston, C.D.; Greenwood, J.J.D.; Asher, J.; Fox, R.; Clarke, R.T.; Lawton, J.H. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 2004, 303, 1879–1881. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Pesticides Use; FAO: Rome, Italy, 2024. [Google Scholar]
- Prakash, S.; Verma, A.K. Effect of Organophosphorus Pesticide (Chlorpyrifos) on the Haematology of Heteropneustes fossilis (Bloch). Int. J. Fauna Biol. Stud. 2014, 1, 95–98. [Google Scholar]
- Baird, D.J.; Van den Brink, P.J. Using biological traits to predict species sensitivity to toxic substances. Ecotoxicol. Environ. Saf. 2007, 67, 296–301. [Google Scholar] [CrossRef]
- Baxter, J.; Cummings, S.P. The degradation of the herbicide bromoxynil and its impact on bacterial diversity in a top soil. J. Appl. Microbiol. 2008, 104, 1605–1616. [Google Scholar] [CrossRef]
- Grondona, S.I.; Lima, M.L.; Massone, H.E.; Miglioranza, K.S.B. Pesticides in aquifers from Latin America and the Caribbean. Sci. Total Environ. 2023, 901, 16–25. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Pesticides Trade; FAO: Rome, Italy, 2022. [Google Scholar]
- FAO. FAOSTAT: Pesticides Use; FAO: Rome, Italy, 2022. [Google Scholar]
- Sánchez-Bayo, F. Impacts of Agricultural Pesticides on Terrestrial Ecosystems, Ecological Impacts of Toxic Chemicals. Ecol. Impacts Toxic Chem. 2011, 2011, 63–87. [Google Scholar]
- Ahmad, R.; Kookana, R.S.; Megharaj, M.; Alston, A.M. Aging reduces the bioavailability of even a weakly sorbed pesticide (carbaryl) in soil. Environ. Toxicol. Chem. 2004, 23, 2084–2089. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.P.; Macfadyen, S.; Nash, M.A. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ 2017, 5, 41–79. [Google Scholar] [CrossRef]
- Kannan, M.; Elango, K.; Tamilnayagan, T.; Preetha, S.; Kasivelu, G. Impact of nanomaterials on beneficial insects in agricultural ecosystems. In Nanotechnology for Food, Agriculture, and Environment; Springer: Cham, Switzerland, 2020; pp. 379–393. [Google Scholar]
- Feber, R.E.; Johnson, P.J.; Firbank, L.G.; Hopkins, A.; Macdonald, D.W. A comparison of butterfly populations on organically and conventionally managed farmland. J. Zool. 2007, 273, 30–39. [Google Scholar] [CrossRef]
- Stuart, A. Impacts of Pesticides on Biodiversity and the Environment What Do We Now Know? Pesticide Action Network UK: Brighton, UK, 2021; pp. 1–3. [Google Scholar]
- Bengtsson, J.; Ahnström, J.; Weibull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 4, 2–7. [Google Scholar] [CrossRef]
- Fletcher, M.; Barnett, L. Bee pesticide poisoning incidents in the United Kingdom. Bull. Insectol. 2003, 56, 141–145. [Google Scholar]
- Scott-Dupree, C.D.; Conroy, L.; Harris, C.R. Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymentoptera: Megachilidae), and Osmia lignaria (Hymenoptera: Megachilidae). J. Econ. Entomol. 2009, 102, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Z.; Wang, G.; Yan, L. Effects of imidacloprid on arthropod community structure and its dynamics in alfalfa field. Chin. J. Appl. Ecol. 2008, 18, 2379–2383. [Google Scholar]
- Fox, R. The decline of moths in Great Britain: A review of possible causes. Insect Conserv. Divers. 2013, 6, 5–19. [Google Scholar] [CrossRef]
- Hahn, M.; Schotthöfer, A.; Schmitz, J.; Franke, L.A.; Brühl, C.A. The effects of agrochemicals on Lepidoptera, with a focus on moths, and their pollination service in field margin habitats. Agric. Ecosyst. Environ. 2015, 207, 153–162. [Google Scholar] [CrossRef]
- Maes, D.; Van Dyck, H. Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol. Conserv. 2001, 99, 263–276. [Google Scholar] [CrossRef]
- van Dyck, H.; van Strien, A.J.; Maes, D.; van Swaay, C.A.M. Declines in common, widespread butterflies in a landscape under intense human use. Conserv. Biol. 2009, 23, 957–965. [Google Scholar] [CrossRef]
- Groenendijk, D.; van der Meulen, J. Conservation of moths in The Netherlands: Population trends, distribution patterns and monitoring techniques of day-flying moths. J. Insect Conserv. 2004, 8, 109–118. [Google Scholar] [CrossRef]
- Franzén, M.; Johannesson, M. Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics. J. Insect Conserv. 2007, 11, 367–390. [Google Scholar] [CrossRef]
- Kuussaari, M.; Heliölä, J.; Pöyry, J.; Saarinen, K. Contrasting trends of butterfly species preferring seminatural grasslands, field margins and forest edges in northern Europe. J. Insect Conserv. 2007, 11, 351–366. [Google Scholar] [CrossRef]
- Melero, Y.; Stefanescu, C.; Pino, J. General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biol. Conserv. 2016, 201, 336–342. [Google Scholar] [CrossRef]
- van Swaay, C.; Warren, M.; Lois, G. Biotope use and trends of European butterflies. J. Insect Conserv. 2006, 10, 189–209. [Google Scholar] [CrossRef]
- van Swaay, C.; Cuttelod, A.; Collins, S.; Maes, D.; Munguira, M.L.P.; Šašić, M. European Red List of Butterflies; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Swengel, S.R.; Swengel, A.B. Assessing abundance patterns of specialized bog butterflies over 12 years in northern Wisconsin USA. J. Insect Conserv. 2015, 19, 293–304. [Google Scholar] [CrossRef]
- Breed, G.A.; Stichter, S.; Crone, E.E. Climate-driven changes in northeastern US butterfly communities. Nat. Clim. Chang. 2012, 3, 142. [Google Scholar] [CrossRef]
- Nakamura, Y. Conservation of butterflies in Japan: Status, actions and strategy. J. Insect Conserv. 2011, 1, 5–22. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Shiu, H.J.; Holloway, J.D.; Benedick, S.; Chey, V.K. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 2011, 20, 34–45. [Google Scholar] [CrossRef]
- Habel, J.C.; Segerer, A.; Ulrich, W.; Torchyk, O.; Weisser, W.W.; Schmitt, T. Butterfly community shifts over two centuries. Conserv. Biol. 2016, 30, 754–762. [Google Scholar] [CrossRef]
- Conrad, K.F.; Warren, M.S.; Fox, R.; Parsons, M.S.; Woiwod, I.P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 2006, 132, 279–291. [Google Scholar] [CrossRef]
- Conrad, K.F.; Woiwod, I.P.; Parsons, M.; Fox, R.; Warren, M.S. Long-term population trends in widespread British moths. J. Insect Conserv. 2006, 8, 119–136. [Google Scholar] [CrossRef]
- Dennis, E.B.; Brereton, T.M.; Morgan, B.J.T.; Fox, R.; Shortall, C.R.; Prescott, T.; Foster, S. Trends and indicators for quantifying moth abundance and occupancy in Scotland. J. Insect Conserv. 2019, 23, 369–380. [Google Scholar] [CrossRef]
- Gallai, N.; Salles, J.M.; Settele, J.; Vaissiere, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Cameron, S.A.; Lozier, J.D.; Strange, J.P.; Koch, J.B.; Cordes, N.; Solter, L.F. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 2011, 108, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D.; Hanley, M.E.; Darvill, B.; Ellis, J.S.; Knight, M.E. Causes of rarity in bumblebees. Biol. Conserv. 2005, 122, 1–8. [Google Scholar] [CrossRef]
- Dupont, Y.L.; Damgaard, C.; Simonsen, V. Quantitative historical change in bumblebee (Bombus spp.) assemblages of red clover fields. PLoS ONE 2011, 6, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Kosior, A.; Celary, W.; Olejniczak, P.; Fijal, J.; Król, W.; Solarz, W. The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of Western and Central Europe. Oryx 2007, 41, 79–88. [Google Scholar] [CrossRef]
- Bommarco, R.; Lundin, O.; Smith, H.G.; Rundlöf, M. Drastic historic shifts in bumble-bee community composition in Sweden. Proc. R. Soc. B Biol. Sci. 2012, 279, 309–315. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R. Mammal population losses and the extinction crisis. Science 2002, 296, 904–907. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trend. Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- New, T.R. Hymenoptera and Conservation; Wiley Blackwell: Hoboken, NJ, USA, 2012; 232p. [Google Scholar]
- Ellis, J. The honey bee crisis. Outlooks Pest Manag. 2012, 23, 35–40. [Google Scholar] [CrossRef]
- Ellis, J.D.; Evans, J.D.; Pettis, J. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. J. Apic. Res. 2010, 49, 134–136. [Google Scholar] [CrossRef]
- Anderson, K.E.; Sheehan, T.H.; Eckholm, B.J.; Mott, B.M.; DeGrandi-Hoffman, G. An emerging paradigm of colony health: Microbial balance of the honey bee and hive (Apis mellifera). Insectes Soc. 2011, 58, 431–444. [Google Scholar] [CrossRef]
- Johnson, R.M.; Dahlgren, L.; Siegfried, B.D.; Ellis, M.D. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS ONE 2013, 8, 40–52. [Google Scholar] [CrossRef]
- Williams, G.R.; Troxler, A.; Retschnig, G.; Roth, K.; Yañez, O.; Shutler, D.; Neumann, P.; Gauthier, L. Neonicotinoid pesticides severely affect honey bee queens. Sci. Rep. 2015, 5, 14621. [Google Scholar] [CrossRef]
- Thorp, R.W.; Shepherd, M.D. Profile: Subgenus Bombus. In Red List of Pollinator Insects of North America; Shepherd, M.D., Vaughan, D.M., Black, S.H., Eds.; The Xerces Society for Invertebrate Conservation: Portland, OR, USA, 2005. [Google Scholar]
- Brandt, A.; Hohnheiser, B.; Sgolastra, F.; Bosch, J.; Meixner, M.D.; Büchler, R. Immunosuppression response to the neonicotinoid insecticide thiacloprid in females and males of the red mason bee Osmia bicornis L. Sci. Rep. 2020, 10, 4670. [Google Scholar] [CrossRef]
- Paukkunen, J.; Poyry, J.; Kuussaari, M. Species traits explain long-term population trends of Finnish cuckoo wasps (Hymenoptera: Chrysididae). Insect Conserv. Divers. 2018, 11, 58–71. [Google Scholar] [CrossRef]
- Cooling, M.; Hoffmann, B.D. Here today, gone tomorrow: Declines and local extinctions of invasive ant populations in the absence of intervention. Biol. Invasions 2015, 17, 3351–3357. [Google Scholar] [CrossRef]
- Brown, P.M.; Roy, H.E. Native ladybird decline caused by the invasive harlequin ladybird Harmonia axyridis: Evidence from a long-term field study. Insect Conserv. Divers. 2018, 3, 230–239. [Google Scholar] [CrossRef]
- Ball-Damerow, J.E.; M’Gonigle, L.K.; Resh, V.H. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodivers. Conserv. 2014, 23, 2107–2126. [Google Scholar] [CrossRef]
- Futahashi, R. Diversity of UV reflection patterns in Odonata. Front. Ecol. Evol. 2020, 8, 201–215. [Google Scholar] [CrossRef]
- Tierno de Figueroa, J.M.; López-Rodríguez, M.J.; Lorenz, A.; Graf, W.; Schmidt-Kloiber, A.; Hering, D. Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change. Biodivers. Conserv. 2010, 19, 1269–1277. [Google Scholar] [CrossRef]
- McCafferty, P.W.; Lenat, D.R.; Jacobus, L.M.; Meyer, M.D. The mayflies (Ephemeroptera) of the Southeastern United States. Trans. Am. Entomol. Soc. 2010, 136, 221–233. [Google Scholar] [CrossRef]
- Jinguji, H.; Thuyet, D.; Ueda, T.; Watanabe, H. Effect of imidacloprid and fipronil pesticide application on Sympetrum infuscatum (Libellulidae: Odonata) larvae and adults. Paddy Water Environ. 2013, 11, 277–284. [Google Scholar] [CrossRef]
- Houghton, D.C.; Holzenthal, R.W. Historical and contemporary biological diversity of Minnesota caddisflies: A case study of landscape-level species loss and trophic composition shift. J. N. Am. Benthol. Soc. 2010, 29, 480–495. [Google Scholar] [CrossRef]
- Brooks, D.R.; Bater, J.E.; Clark, S.J.; Monteith, D.T.; Andrews, C.; Corbett, S.J. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J. Appl. Ecol. 2012, 49, 1009–1019. [Google Scholar] [CrossRef]
- McGuinness, C.A. Carabid beetle (Coleoptera: Carabidae) conservation in New Zealand. J. Insect Conserv. 2007, 11, 31–41. [Google Scholar] [CrossRef]
- Turin, H.; Den Boer, P.J. Changes in the distribution of carabid beetles in The Netherlands since II. Isolation of habitats and long-term time trends in the occurence of carabid species with different powers of dispersal (Coleoptera, Carabidae). Biol. Conserv. 1988, 44, 179–200. [Google Scholar] [CrossRef]
- Barendregt, A.; Zeegers, T.; van Steenis, W.; Jongejans, E. Forest hoverfly community collapse: Abundance and species richness drop over four decades. Insect Conserv. Divers. 2022, 15, 510–521. [Google Scholar] [CrossRef]
- Andersen, E.E.; Dons Henriksen, J.; Lykke Corfixen, N.; Garn, A.-K.; Leus, K.; Lees, C. Moving from Assessment to Conservation Planning for Hoverflies in Denmark; IUCN SSC Conservation Planning Specialist Group: Apple Valley, MN, USA, 2022; pp. 5–8. [Google Scholar]
- Hallmann, C.A.; Ssymank, A.; Sorg, M.; de Kroon, H.; Jongejans, E. Insect biomass decline scaled to species diversity: General patterns derived from a hoverfly community. Proc. Natl. Acad. Sci. USA 2021, 118, 200–255. [Google Scholar] [CrossRef]
- Reemer, M.; Smit, J.T.; Zeegers, T. Basisrapport voor de Rode Lijst Zweefvliegen. EIS Kenniscentrum Insecten. EIS 2024, 20, 2–3. [Google Scholar]
- Harmon, J.P.; Stephens, E.; Losey, J. The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada. J. Insect Conserv. 2007, 11, 85–94. [Google Scholar] [CrossRef]
- Barretto, J.W.; Cultid-Medina, C.A.; Escobar, F. Annual abundance and population structure of two dung beetle species in a human-modified landscape. Insect. 2019, 10, 12–20. [Google Scholar] [CrossRef]
- Wheeler, A.G.; Hoebeke, E.R. Rise and fall of an immigrant lady beetle: Is Coccinella undecimpunctata L. (Coleoptera: Coccinellidae) still present in North America? Proc. Entomol. Soc. Wash. 2008, 110, 817–823. [Google Scholar] [CrossRef]
- Sato, S.; Dixon, A.F. Effect of intraguild predation on the survival and development of three species of aphidophagous ladybirds: Consequences for invasive species. Agric. For. Entomol. 2004, 1, 21–24. [Google Scholar] [CrossRef]
- Lumaret, J.-P. Atlas des Coléopteres Scara-Béides Laparosticti de France; Secrétariat Faune Flore/MNHN: Paris, France, 1990. [Google Scholar]
- Lobo, J.M.; Lumaret, J.-P.; Jay-Robert, P. Diversity, distinctiveness and conservation status of the Mediterranean coastal dung beetle assemblage in the Regional Natural Park of the Camargue (France). Divers. Dist. 2001, 7, 257–270. [Google Scholar] [CrossRef]
- Stefanescu, C.; Aguado, L.O.; Asís, J.D.; Baños-Picón, L.; Cerdá, X.; García, M.A.M. Diversidad de insectos polinizadores en la peninsula ibérica. Ecosistemas Rev. Cietifica Tec. Ecol. Medio Ambiente 2018, 27, 9–22. [Google Scholar]
- Clausnitzer, V.; Kalkman, V.J.; Ram, M.; Collen, B.; Baillie, J.E.M.; Bedjanič, M. Odonata enter the biodiversity crisis debate: The first global assessment of an insect group. Biol. Conserv. 2009, 142, 1864–1869. [Google Scholar] [CrossRef]
- Schuch, S.; Wesche, K.; Schaefer, M. Long-term decline in the abundance of leafhoppers and planthoppers (Auchenorrhyncha) in Central European protected dry grasslands. Biol. Conserv. 2012, 149, 75–83. [Google Scholar] [CrossRef]
- Nieto, A.; Alexander, K.N. The Status and Conservation of Saproxylic Beetles in Europe; University of Alicante: Alicante, Spain, 2010. [Google Scholar]
- DeWalt, R.E.; Favret, C.; Webb, D.W. Just how imperiled are aquatic insects? A case study of stoneflies (Plecoptera) in Illinois. Ann. Entomol. Soc. Am. 2005, 98, 941–950. [Google Scholar] [CrossRef]
- Nakanishi, K.; Nishida, T.; Kon, M.; Sawada, H. Effects of environmental factors on the species composition of aquatic insects in irrigation ponds. Entomol. Sci. 2014, 17, 251–261. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Rosi, E.J.; Gessner, M.O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 2017, 15, 84–90. [Google Scholar] [CrossRef]
- Habel, J.C.; Samways, M.J.; Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 2019, 28, 1343–1360. [Google Scholar] [CrossRef]
- Gianessi, L.P. The increasing importance of herbicides in worldwide crop production. Pest Manag. Sci. 2013, 69, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Jha, P.; Reddy, G.V.P. Multidimensional relationships of herbicides with insect-crop food webs. Sci. Total Environ. 2018, 643, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Zattara, E.E.; Aizen, M.A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 2021, 4, 114–123. [Google Scholar] [CrossRef]
- Rands, S.A.; Whitney, H.M. Field margins, foraging distances and their impacts on nesting pollinator success. PLoS ONE 2011, 6, 2–5. [Google Scholar] [CrossRef]
- Kampfraath, A.A.; Giesen, D.; van Gestel, C.A.M.; Le Lann, C. Pesticide stress on plants negatively affects parasitoid fitness through a bypass of their phytophage hosts. Ecotoxicology 2017, 26, 383–395. [Google Scholar] [CrossRef]
- Norris, R.F.; Kogan, M. Interactions between weeds, arthropod pests, and their natural enemies in managed ecosystems. Weed Sci. 2000, 48, 94–158. [Google Scholar] [CrossRef]
- Holland, J.M.; Luff, M.L. The effects of agricultural practices on Carabidae in temperate agroecosystems. Integr. Pest Manag. Rev. 2000, 5, 109–129. [Google Scholar] [CrossRef]
- Pleasants, J.M.; Oberhauser, K.S. Milkweed loss in agricultural fields because of herbicide use: Effect on the monarch butterfly population. Insect Conserv. Divers. 2013, 6, 135–144. [Google Scholar] [CrossRef]
- Resende-Silva, G.A.; Turchen, L.M.; Guedes, R.N.C.; Cutler, G.C. Imidacloprid soil drenches affect weight and functional response of spined soldier bug (Hemiptera: Pentatomidae). J. Econ. Entomol. 2019, 112, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Gordon, G.; Gimme, W. Effects of neem-fed prey on the predacious insects Harmonia conformis (Boisduval) (Coleoptera; Coccinellidae) and Mallada signatus (Schneider) (Neuroptera: Chrysopidae). Biol. Control 2001, 22, 185–190. [Google Scholar] [CrossRef]
- Scarpellini, J.R.; Andrade, D.J.d. The effect of insecticides on the lady beetle Cycloneda sanguinea L. (Coleoptera, Coccinellidae) and on the aphid Aphis gossypii Glover (Hemiptera, Aphididae) on cotton plants [Efeito de inseticidas sobrea joaninha Cycloneda sanguinea L. (Coleoptera, Coccinellidae) e sobre o pulgao Aphis gossypii Glover (Hemiptera, Aphididae) em algodoeiro]. Arq. Inst. Biol. 2011, 78, 393–399. [Google Scholar]
- Gontijo, P.C.; Moscardini, V.F.; Michaud, J.P.; Carvalho, G.A. Non-target effects of two sunflower seed treatments on Orius insidiosus (Hemiptera: Anthocoridae). Pest Manag. Sci. 2015, 71, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bayo, F.; Goulson, D.; Pennacchio, F.; Nazzi, F.; Goka, K.; Desneux, N. Are bee diseases linked to pesticides?—A brief review. Environ. Int. 2016, 89, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Nieh, J.C.; Tosi, S. Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation. Chemosphere 2019, 237, 124408. [Google Scholar] [CrossRef] [PubMed]
- Pettis, J.; van Engelsdorp, D.; Johnson, J.; Dively, G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften Sci. Nat. 2012, 99, 153–158. [Google Scholar] [CrossRef]
- Rothman, J.A.; Russell, K.A.; Leger, L.; McFrederick, Q.S.; Graystock, P. The direct and indirect effects of environmental toxicants on the health of bumblebees and their microbiomes: Impact of toxicants on bumblebee health. Proc. R. Soc. B 2020, 287, 20200980. [Google Scholar] [CrossRef]
- Alburaki, M.; Boutin, S.; Mercier, P.-L.; Loublier, Y.; Chagnon, M.; Derome, N. Neonicotinoid-coated Zea mays seeds indirectly affect honeybee performance and pathogen susceptibility in field trials. PLoS ONE 2015, 10, 12–15. [Google Scholar] [CrossRef]
- Chandler, A.J.; Drummond, F.A.; Drummond, F.A.; Collins, J.A.; Lund, J.; Alnajjar, G. Exposure of the common eastern bumble bee, Bombus impatiens (Cresson), to sub-lethal doses of acetamiprid and propiconazole in wild blueberry. J. Agric. Urban Entomol. 2020, 36, 1–23. [Google Scholar] [CrossRef]
- Herrick, N.J.; Cloyd, R.A. Direct and indirect effects of pesticides on the insidious flower bug (Hemiptera: Anthocoridae) under laboratory conditions. J. Econ. Entomol. 2017, 110, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Pozzebon, A.; Borgo, M.; Duso, C. The effects of fungicides on non-target mites can be mediated by plant pathogens. Chemosphere 2010, 79, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Imperatriz Fonseca, V.; Ngo, H.T.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.; Garibaldi, L.A.; Hill, R.; Settele, J.; Vanbergen, A.J. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; IPBES: Bonn, Germany, 2016; Available online: https://ri.conicet.gov.ar/handle/11336/130568 (accessed on 4 February 2016).
- World Health Organization. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019; World Health Organization: Geneva, Switzerland, 2019; Available online: https://apps.who.int/iris/bitstream/handle/10665/332193/9789240005662-eng.pdf (accessed on 1 May 2020).
- United Nations Environment Programme: Bees, Bans and Broad-Spectrum Pesticides. 2021. Available online: https://www.unep.org/news-and-stories/story/bees-bans-and-broad-spectrum-pesticides (accessed on 20 May 2021).
- Birthal, P.; Sharma, O.; Kumar, S. Economics of integrated pest management: Evidences and issues. Indian J. Agric. Econ. 2000, 55, 644–659. [Google Scholar]
- Ministry of Agriculture and Farmers Welfare. The Gazette of India: Extraordinary; PART II—Section 3—Sub-section (ii), No. 1351; Government of India: New Delhi, India, 2020; Available online: http://egazette.nic.in/WriteReadData/2020/219423.Pdf (accessed on 31 October 2023).
- Bonvoisin, T.; Utyasheva, L.; Knipe, D.; Gunnell, D.; Eddleston, M. Suicide by pesticide poisoning in India: A review of pesticide regulations and their impact on suicide trends. BMC Public Health 2020, 20, 2–5. [Google Scholar] [CrossRef]
- Government of Kerala. Substitutes for Pesticides Banned by Govt of Kerala Vide G.O. (MS) No. 116/2011/Agri Dated 7-5-2011. 2011. Available online: https://keralaagriculture.gov.in/wp-content/uploads/2019/01/go_and_circular/GO_MS_116_B.pdf (accessed on 16 May 2012).
- Gunnell, D.; Fernando, R.; Hewagama, M.; Priyangika, W.D.; Konradsen, F.; Eddleston, M. The impact of pesticide regulations on suicide in Sri Lanka. Int. J. Epidemiol. 2007, 36, 1235–1242. [Google Scholar] [CrossRef]
- Chang, S.S.; Lin, C.Y.; Lee, M.B.; Shen, L.J.; Gunnell, D.; Eddleston, M. The early impact of paraquat ban on suicide in Taiwan. Clin. Toxicol. 2021, 6, 131–135. [Google Scholar] [CrossRef]
- Chowdhury, F.R.; Dewan, G.; Verma, V.R.; Knipe, D.W.; Isha, I.T.; Faiz, M.A.; Gunnell, D.J.; Eddleston, M. Bans of WHO Class I Pesticides in Bangladesh-suicide prevention without hampering agricultural output. Int. J. Epidemiol. 2018, 47, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Cha, E.S.; Chang, S.S.; Gunnell, D.; Eddleston, M.; Khang, Y.H.; Lee, W.J. Impact of paraquat regulation on suicide in South Korea. Int. J. Epidemiol. 2016, 45, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Krauss, J.; Gallenberger, I.; Steffan-Dewenter, I. Decreased functional diversity and biological pest control in conventional compared to organic crop fields. PLoS ONE 2011, 6, 5–9. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Council Regulation 1107/2009. In: Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009R1107 (accessed on 24 November 2009).
- US Department of Agriculture. China: China Releases Regulations on Pesticide Management. Foreign Agricultural Service. 2017. Available online: https://www.fas.usda.gov/data/china-china-releases-regulations-pesticide-management (accessed on 28 April 2017).
- Food and Agriculture Organization of the United Nations. Progress in Pesticide Risk Assessment and Phasing-Out of Highly Hazardous Pesticides in Asia; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2015; Available online: http://www.fao.org/3/a-i4362e.pdf (accessed on 1 January 2015).
- Pelaez, V.; da Silva, L.R.; Araujo, E.B. Regulation of pesticides: A comparative analysis. Sci. Public Policy 2013, 40, 644–656. [Google Scholar] [CrossRef]
- Agência Nacional De Vigilância Sanitária (ANVISA). Regularização de Produtos—Agrotóxicos. Monografias Excluídas. Available online: http://portal.anvisa.gov.br/registros-e-autorizacoes/agrotoxicos/produtos/monografia-de-agrotoxicos/excluidas (accessed on 25 June 2018).
- Hole, D.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does organic farming benefit biodiversity? Biol. Cons. 2005, 122, 113–130. [Google Scholar] [CrossRef]
- United Nations. THE 17 GOALS|Sustainable Development. 2015. Available online: https://sdgs.un.org/goals (accessed on 3 March 2022).
- van Swaay, C.; van Strien, A.; Harpke, A.; Fontaine, B.; Stefanescu, C.; Roy, D.; Kühn, E.; Õunap, E.; Švitra, G.; Prokofev, I.; et al. The European grassland butterfly indicator: 1990±2011. EEA Tech. Rep. 2013, 11, 1–34. [Google Scholar]
- Seibold, S.; Gossner, M.M.; Simons, N.K.; Blüthgen, N.; Müller, J.; Ambarlı, D.; Ammer, C.; Bauhus, J.; Fischer, M.; Habel, J.C.; et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 2019, 7, 5–12. [Google Scholar] [CrossRef]
- Noriega, J.A.; March-Salas, M.; Castillo, S.; García-Q, H.; Hortal, J.; Santos, A.M. Human perturbations reduce dung beetle diversity and dung removal ecosystem function. Biotropica 2021, 53, 753–766. [Google Scholar] [CrossRef]
- Feldhaar, H.; Otti, O. Pollutants and their interaction with diseases of social Hymenoptera. Insects 2020, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Fletcher Jr, R.J.; Didham, R.K.; Banks-Leite, C.; Barlow, J.; Ewers, R.M.; Rosindell, J.; Holt, R.D.; Gonzalez, A.; Pardini, R.; Damschen, E.I.; et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 2018, 226, 9–15. [Google Scholar] [CrossRef]
- Cote, I.M.; Darling, E.S.; Brown, C.J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B Biol. Sci. 2016, 283, 20–25. [Google Scholar] [CrossRef]
- Mulieri, P.R.; Migale, S.; Patitucci, L.D.; González, C.R.; Montemayor, S.I. Improving geographic distribution data for a putatively extinct species, a test case with a disappeared fly Improving geographic distribution data for a putatively extinct species, a test case with a disappeared fly. An. Acad. Bras. Cienc. 2022, 94, 7–13. [Google Scholar] [CrossRef]
- Cardoso, P.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, R.; Habel, J.C.; Hallmann, C.A.; et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 2020, 242, 10–18. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Zwick, P. Phylogenetic system and zoogeography of the Plecoptera. Ann. Rev. Entomol. 2000, 45, 709–746. [Google Scholar] [CrossRef]
- Kumela, T.; Simiyu, J.; Sisay, B.; Likhayo, P.; Mendesil, E.; Gohole, L.; Tefera, T. Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int. J. Pest Manag. 2019, 65, 1–9. [Google Scholar] [CrossRef]
- Smith, O.M.; Cohen, A.L.; Reganold, J.P.; Jones, M.S.; Orpet, R.J.; Taylor, J.M.; Thurman, J.H.; Cornell, K.A.; Olsson, R.L.; Ge, Y.; et al. Landscape context affects the sustainability of organic farming systems. Proc Natl. Acad. Sci. USA 2020, 117, 2870–2878. [Google Scholar] [CrossRef] [PubMed]
- Winqvist, C.; Bengtsson, J.; Aavik, T.; Berendse, F.; Clement, L.W.; Eggers, S.; Fischer, C.; Flohre, A.; Geiger, F.; Liira, J.; et al. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J. Appl. Ecol. 2011, 48, 570–579. [Google Scholar] [CrossRef]
- Poolprasert, P.; Jongjitvimol, T. Arthropod communities inhabiting organic rice agroecosystem. In Proceedings of the International Conference on Agricultural, Ecological and Medical Sciences, London, UK, 3–4 July 2014; Volume 29, pp. 1–5. [Google Scholar]
- Yuan, X.; Zhou, W.W.; Jiang, Y.D.; Yu, H.; Wu, S.Y.; Gao, Y.L.; Cheng, J.; Zhu, Z.R. Organic Regime Promotes Evenness of Natural Enemies and Planthopper Control in Paddy Fields. Environ. Entomol. 2019, 48, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Katayama, N.; Osada, Y.; Mashiko, M.; Baba, Y.G.; Tanaka, K.; Kusumoto, Y.; Okubo, S.; Ikeda, H.; Natuhara, Y. Organic farming and associated management practices benefit multiple wildlife taxa: A large-scale field study in rice paddy landscapes. J. Appl. Ecol. 2019, 56, 1970–1981. [Google Scholar] [CrossRef]
- Nakanishi, K.; Uéda, T.; Yokomizo, H.; Hayashi, T.I. Effects of systemic insecticides on the population dynamics of the dragonfly Sympetrum frequens in Japan: Statistical analyses using field census data from 2009 to 2016. Sci. Total Environ. 2020, 703, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Meyling, N.V.; Navntoft, S.; Philipsen, H.; Thorup-Kristensen, K.; Eilenberg, J. Natural regulation of Delia radicum in organic cabbage production. Agric. Ecosyst. Environ. 2013, 164, 183–189. [Google Scholar] [CrossRef]
- Reddy, B.T.; Giraddi, R.S. Diversity of Pest, Beneficial Arthropods and Other Non-Target Biota as Influenced by Degree of Pesticide Usage such as Indiscriminate, High, Moderate and Low Use Situations. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 374–378. [Google Scholar] [CrossRef]
- Senguttuvan, K. Biodiversity of arthropod fauna in Tamilnadu cabbage ecosystems. J. Res. ANGRAU 2018, 46, 1–14. [Google Scholar]
- Tasser, E.; Rüdisser, J.; Plaikner, M.; Wezel, A.; Stöckli, S.; Vincent, A.; Nitsch, H.; Dubbert, M.; Moos, V.; Walde, J. A simple biodiversity assessment scheme supporting nature-friendly farm management. Ecol. Ind. 2019, 107, 10–15. [Google Scholar] [CrossRef]
- Herzon, I.; Birge, T.; Allen, B.; Povellato, A.; Vanni, F.; Hart, K.; Radley, G.; Tucker, G.; Keenleyside, C.; Oppermann, R. Time to look for evidence: Results-based approach to biodiversity conservation on farmland in Europe. Land Policy 2018, 71, 347–354. [Google Scholar] [CrossRef]
- Jabbar, A.; Wu, Q.; Peng, J.; Zhang, J.; Imran, A.; Yao, L. Synergies and determinants of sustainable intensification practices in Pakistan agriculture. Land 2020, 9, 110. [Google Scholar] [CrossRef]
- Elhakeem, A.; van der Werf, W.; Ajal, J.; Luc‘a, D.; Claus, S.; Vico, R.A.; Bastiaans, L. Cover crop mixtures result in a positive net biodiversity effect irrespective of seeding configuration. Agric. Ecosyst. Environ. 2019, 285, 10–27. [Google Scholar] [CrossRef]
- Chateil, C.; Goldringer, I.; Tarallo, L.; Kerbiriou, C.; Le Viol, I.; Ponge, J.F.; Salmon, S.; Gachet, S.; Porcher, E. Crop genetic diversity benefits farmland biodiversity in cultivated fields, Agriculture. Ecosyst. Environ. 2013, 171, 25–32. [Google Scholar] [CrossRef]
Herbicides | Fungicides | Insecticides | Others | |
---|---|---|---|---|
Africa | 30 | 50 | 30 | 10 |
America | 60 | 10 | 20 | 10 |
Asia | 40 | 30 | 40 | 10 |
Europe | 39 | 45 | 10 | 15 |
Oceania | 60 | 10 | 20 | 5 |
Insect Taxon | Declining (%) | Threatened (%) | Reference |
---|---|---|---|
Coleoptera | 49 | 34 | [52] |
Diptera | 25 | 0.7 | [53] |
Ephemeroptera | 37 | 27 | [54] |
Hemiptera | 8 | n.a | [55] |
Hymenoptera | 46 | 44 | [56] |
Lepidoptera | 53 | 34 | [16] |
Odonata | 37 | 13 | [57] |
Orthoptera | 49 | n.a | [58] |
Plecoptera | 35 | 29 | [59] |
Trichoptera | 68 | 63 | [53] |
Taxon | Abundance | Decline | Location | Reference |
---|---|---|---|---|
Hymenoptera | ||||
Bumble bees | 18 species | 7 species | England | [66] |
Bumble bees | 14 species | 8 species | Canada | [64] |
Bumble bees | 60 species | 48 species | Central Europe | [67] |
Honey bees | 6 m colonies | 3.5 m colonies | USA | [68] |
Wild bees | 52% population | Britain | [69] | |
Wild bees | 67% population | Netherlands | [70] | |
Wild bees | 32% population | North America | [68] | |
Cuckoo wasps | 23% population | Finland | [70] | |
Stingless bees | 30 species | 11 species | USA | [71] |
Orchid bees | 24 species | 64% species | Brazil | [68] |
Parasitic wasps | 48 species | 23% species | Finland | [70] |
Coleoptera | ||||
Ground beetles | 419 species | 34% species | Belgium, Denmark | [72] |
Ground beetles | 49 species | 16% species | UK | [51] |
Ladybird beetles | 68% species | USA | [72] | |
Dung beetles | 31% population | Italy | [73] | |
Saproxylic beetles | 436 species | 57% species | Europe | [70] |
Odonata | ||||
Dragonflies | 52 species | 65% population | USA | [71] |
Odonata species | 200 species | 57 species | Japan | [72] |
Odonata species | 155 species | 13 species | South Africa | [73] |
Plecoptera | ||||
Stoneflies | 14 species | 5 species | Czech Republic | [74] |
Stoneflies | 77 species | 29% species | USA | [75] |
Ephemeroptera | ||||
Mayflies | 107 species | 43% species | Czech Republic | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quandahor, P.; Kim, L.; Kim, M.; Lee, K.; Kusi, F.; Jeong, I.-h. Effects of Agricultural Pesticides on Decline in Insect Species and Individual Numbers. Environments 2024, 11, 182. https://doi.org/10.3390/environments11080182
Quandahor P, Kim L, Kim M, Lee K, Kusi F, Jeong I-h. Effects of Agricultural Pesticides on Decline in Insect Species and Individual Numbers. Environments. 2024; 11(8):182. https://doi.org/10.3390/environments11080182
Chicago/Turabian StyleQuandahor, Peter, Leesun Kim, Minju Kim, Keunpyo Lee, Francis Kusi, and In-hong Jeong. 2024. "Effects of Agricultural Pesticides on Decline in Insect Species and Individual Numbers" Environments 11, no. 8: 182. https://doi.org/10.3390/environments11080182
APA StyleQuandahor, P., Kim, L., Kim, M., Lee, K., Kusi, F., & Jeong, I.-h. (2024). Effects of Agricultural Pesticides on Decline in Insect Species and Individual Numbers. Environments, 11(8), 182. https://doi.org/10.3390/environments11080182