Rockfall Investigation and Hazard Assessment from Nang County to Jiacha County in Tibet
Abstract
:1. Introduction
2. Basic Geological Conditions of the Study Area
3. Methodology
4. Distribution Characteristics and Mechanism of Rockfall Source Areas
5. Numerical Simulation of Rockfall
5.1. Back Analysis of Rebound Parameters
5.2. 3D Numerical Simulation
6. Rockfall Hazard Assessment in the Study Area
6.1. Reclassification of Rockfall Calculation Parameters
6.2. Rockfall Hazard Assessment
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yin, Y. Study on Characteristics and Disaster Reduction of Giant Landslide along Bomi-Yigong Highway in Tibet. Hydrogeol. Eng. Geol. 2000, 27, 8–11. [Google Scholar] [CrossRef]
- Tan, L.; Ye, D.; Li, P.; Peng, Q.; Tan, Y. Application of 3S Technology in Hydrological Monitoring on Motuo Barrier Lake in Tibet. J. China Hydrol. 2013, 33, 47–51. [Google Scholar] [CrossRef]
- Liu, W. Study on the characteristics of huge scale-super highspeed-long distance landslide chain in Yigong, Tibet. Chin. J. Geol. Hazard Control 2002, 13, 9–18. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Xu, B.; Shang, Y.J.; Zhu, J.W.; Yang, Z.F. Engineering Geological Investigation and Assessment on Rockfall Hazard Along Basu-Linzhi Section of South Line of Sichuan-Tibet Highway. Chin. J. Rock Mech. Eng. 2004, 23, 1551–1557. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z. Risk Analysis of Encountering Rockfalls On Highway-A Case Study. Chin. J. Rock Mech. Eng. 2004, 23, 5543–5548. [Google Scholar] [CrossRef]
- Li, X.Z.; Zhong, W.; Zhang, X.G.; Bian, J.H.; Cui, Y.; Huang, S.W. Hazard Ways of Landslide and Avalanches On Road Engineering In Sichuan-Tibet Traffic Corridor. J. Eng. Geol. 2017, 25, 1245–1251. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G.; D’Urso, A.; Calcaterra, D. Event tree analysis for rockfall risk assessment along a strategic mountainous transportation route. Environ. Earth Sci. 2017, 76, 620. [Google Scholar] [CrossRef] [Green Version]
- Mutar, F.A.; Biswajeet, P. A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS. Catena 2019, 172, 435–450. [Google Scholar] [CrossRef]
- Michoud, C.; Derron, M.H.; Horton, P.; Jaboyedoff, M.; Baillifard, F.J.; Loye, A.; Nicolet, P.; Pedrazzini, A.; Queyrel, A. Rockfall hazard and risk assessments along roads at a regional scale: Example in Swiss Alps. Nat. Hazards Earth Syst. Sci. 2012, 12, 615–629. [Google Scholar] [CrossRef] [Green Version]
- Abbruzzese, J.M.; Labiouse, V. New Cadanav methodology for quantitative rock fall hazard assessment and zoning at the local scale. Landslides 2014, 11, 551–564. [Google Scholar] [CrossRef]
- Ferrari, F.; Giacomini, A.; Thoeni, K. Qualitative Rockfall Hazard Assessment: A Comprehensive Review of Current Practices. Rock Mech. Rock Eng. 2016, 49, 2865–2922. [Google Scholar] [CrossRef]
- Guzzetti, F.; Crosta, G.; Detti, R.; Agliardi, F. STONE: A computer program for the three-dimensional simulation of rock-falls. Comput. Geosci. 2002, 28, 1079–1093. [Google Scholar] [CrossRef]
- Christen, M.; Bartelt, P.; Gruber, U. RAMMS—A modelling system for snow avalanches, debris flows and rockfalls based on IDL. Photogramm. Fernerkund. Geoinf. 2007, 4, 289–292. [Google Scholar]
- Dorren, L.K.A. Rockyfor3D (V5. 2) Revealed—Transparent Description of the Complete 3D Rockfall Model; EcorisQ Paper; Association ecorisQ: Geneva, Switzerland, 2015. [Google Scholar]
- Jaboyedoff, M.; Labiouse, V. Etablissement d’une méthodologie de Mise en Œuvre des Cartes de Dangers Naturels du Canton de Vaud Cadanav—Méthodologie Instabilities Rocheuses; Rapport Pour le Canton de Vaud; LMR-EPFL: Lausanne, Switzerland, 2002. [Google Scholar]
- Rouiller, J.D. Pentes instables dans le Pennique valaisan: Matterock: une méthodologie d’auscultation des falaises et de détection des éboulements majeurs potentiels; vdf Hochschulverlag AG: Zurich, Switzerland, 1998. [Google Scholar]
- Desvarreux, P. Considérations sur le zonage en France, Lecture notes. In Université Européenne d’été sur les Risques Naturels 2002: Glissements de Terrain et Instabilités de Falaise; European University: Sion, Switzerland, 2002. [Google Scholar]
- Crosta, G.B.; Agliardi, F. A methodology for physically based rockfall hazard assessment. Nat. Hazards Earth Syst. Sci. 2003, 3, 407–422. [Google Scholar] [CrossRef]
- Lan, H.; Martin, C.D.; Lim, C.H. RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput. Geosci. 2007, 33, 262–279. [Google Scholar] [CrossRef]
- Mavrouli, O.C.; Abbruzzese, J.; Corominas, J.; Labiouse, V. Review and Advances in Methodologies for Rockfall Hazard and Risk Assessment. In Mountain Risks: From Prediction to Management and Governance; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Tibet Geology and Mining Bureau. Report of Regional Geological Survey, 8-46-(27), Scale 1:200,000. 1995. Available online: http://www.ngac.org.cn/Data/FileList.aspx?MetaId=F5F68B3497B81B60E0430100007F0760&Mdidnt=x00086428 (accessed on 25 October 2019).
- Yunnan Geological Survey. Report of Regional Geological Survey, H46C003003, Scale 1:250,000. 2003. Available online: http://www.ngac.org.cn/Data/FileList.aspx?MetaId=F5F68B34856D1B60E0430100007F0760&Mdidnt=d00122708 (accessed on 25 October 2019).
- Bureau of Land and Resources of Tibet. Plan for the Prevention and Control of Geological Disasters in Linzhi City, Tibet. 2008. Available online: http://www.gtzyj.linzhi.gov.cn/gtzyj/c104614/201901/7b4784624e3f4b7ba9d60ee89e83d353.shtml (accessed on 10 August 2019).
- Pappalardo, G.; Imposa, S.; Barbano, M.S.; Grassi, S.; Mineo, S. Study of landslides at the archaeological site of Abakainon necropolis (NE Sicily) by geomorphological and geophysical investigations. Landslides 2018, 15, 1279–1297. [Google Scholar] [CrossRef]
- Martino, S.; Moscatelli, M.; Mugnozza, G.S. Quaternary mass movements controlled by a structurally complex setting in the central Apennines (Italy). Eng. Geol. 2004, 72, 33–55. [Google Scholar] [CrossRef]
- Seyitoglu, G.; Kazancl, N.; Karadenizli, L.; Şen, S.; Varol, B.; Karablylkoglu, T. Rockfall avalanche deposits associated with normal faulting in the NW of Çanklrl basin: Implications for the postcollisional tectonic evolution of the Neo-Tethyan suture zone. Terra Nova 2000, 12, 245–251. [Google Scholar] [CrossRef]
- Dong, H.; Xu, Z.; Zhou, X.; Badeng, Z.; Li, H.; Yi, Z.; Chen, X.; Ma, X.; Wu, C. Activity Timing and Tectonic Evolution of the Eastern Segment of the Great Count Thrus in the Northern Margin of the Himalayan Orogen Belt. Acta Geol. Sin. 2016, 90, 3011–3022. [Google Scholar]
- Li, B.; Diao, G.; Zou, L.; Xu, X.; Ma, X. Review of source papameters of the M7.7 earthquake in southeastern Nang County, Tibet, 1947. Seismol. Geomagn. Obs. Res. 2014, 85–91. [Google Scholar] [CrossRef]
- Jaeger, J.J.; Courtillot, V.; Tapponnier, P. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology 1989, 17, 316–319. [Google Scholar] [CrossRef]
- Wang, R. Identification and Hazard Assessment of Collapse in Southeastern Tibet—Taking the Area along the Central Tibet Grid Interconnection Project as an Example. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- Wang, R. Identification and main controlling factor analysis of collapse and landslide based on fine DEM—Taking Jiacha-Langxian section of Yarlung Zangbo structure zone as an example. J. Eng. Geol. 2019, 27, 1146–1152. [Google Scholar] [CrossRef]
- Zhou, J.; Lan, H.X.; Zhang, L.Q.; Yang, D.X.; Song, J.; Wang, S. Novel grain-based model for simulation of brittle failure of Alxa porphyritic granite. Eng. Geol. 2019, 251, 100–114. [Google Scholar] [CrossRef]
- Volkwein, A.; Schellenberg, K.; Labiouse, V.; Agliardi, F.; Berger, F.; Bourrier, F.; Dorren, L.; Gerber, W.; Jaboyedoff, M. Rockfall characterisation and structural protection-a review. Nat. Hazards Earth Syst. Sci. 2011, 11, 2617–2651. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Zhou, C.; Chen, S.S.; He, J.C.; Wu, Y.J.H.; Zhang, G.R. Numerical simulation of flexible gabion arch dam to prevent and control debris flow blocks. Chin. J. Geotech. Eng. 2015, 37, 269–275. [Google Scholar] [CrossRef]
- Wang, X.; Ran, Y.; Li, J. Analysis of Shock Resistance of New Debris Flow Dam with Continuous Crash Bearers. J. Disaster Prev. Mitig. Eng. 2017, 3, 474–480. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; van den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
Zone Number | Rg70 | Rg20 | Rg10 | Soiltype |
---|---|---|---|---|
① | 0.03 | 0.1 | 0.15 | 5 |
② | 0.05 | 0.15 | 0.35 | 4 |
③ | 0.05 | 0.2 | 0.6 | 3 |
④ | 100 | 100 | 100 | 0 |
Parameters | Value |
---|---|
Block size (m³) | 4 × 3 × 3 |
Calculation times | 100 |
Block shape/blshape | Cuboid/1 |
Rock mass density (kg/m3) | 2800 |
Rank | c/NO. (Standardized) | k/Kinetic Energy (kJ) | h/Height (m) |
---|---|---|---|
1 | <0.2 | ≤2500 | ≤5 |
2 | 0.2–1 | 2500–40,000 | 5–10 |
3 | >1 | ≥40,000 | ≥10 |
C | H | V | |RHV| | Rank | C | H | V | |RHV| | Rank | C | H | V | |RHV| | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1.732 | III | 2 | 1 | 1 | 2.449 | III | 3 | 1 | 1 | 3.317 | II |
1 | 1 | 2 | 2.449 | III | 2 | 1 | 2 | 3.000 | III | 3 | 1 | 2 | 3.742 | II |
1 | 1 | 3 | 3.317 | II | 2 | 1 | 3 | 3.742 | II | 3 | 1 | 3 | 4.359 | I |
1 | 2 | 1 | 2.449 | III | 2 | 2 | 1 | 3.000 | III | 3 | 2 | 1 | 3.742 | II |
1 | 2 | 2 | 3.000 | III | 2 | 2 | 2 | 3.464 | II | 3 | 2 | 2 | 4.123 | II |
1 | 2 | 3 | 3.742 | II | 2 | 2 | 3 | 4.123 | II | 3 | 2 | 3 | 4.690 | I |
1 | 3 | 1 | 3.317 | II | 2 | 3 | 1 | 3.742 | II | 3 | 3 | 1 | 4.359 | I |
1 | 3 | 2 | 3.742 | II | 2 | 3 | 2 | 4.123 | II | 3 | 3 | 2 | 4.690 | I |
1 | 3 | 3 | 4.359 | I | 2 | 3 | 3 | 4.690 | I | 3 | 3 | 3 | 5.196 | I |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, X.; Liao, X.; Sun, J.; Zhang, S. Rockfall Investigation and Hazard Assessment from Nang County to Jiacha County in Tibet. Appl. Sci. 2020, 10, 247. https://doi.org/10.3390/app10010247
Liu H, Wang X, Liao X, Sun J, Zhang S. Rockfall Investigation and Hazard Assessment from Nang County to Jiacha County in Tibet. Applied Sciences. 2020; 10(1):247. https://doi.org/10.3390/app10010247
Chicago/Turabian StyleLiu, Haiyang, Xueliang Wang, Xiaohui Liao, Juanjuan Sun, and Su Zhang. 2020. "Rockfall Investigation and Hazard Assessment from Nang County to Jiacha County in Tibet" Applied Sciences 10, no. 1: 247. https://doi.org/10.3390/app10010247
APA StyleLiu, H., Wang, X., Liao, X., Sun, J., & Zhang, S. (2020). Rockfall Investigation and Hazard Assessment from Nang County to Jiacha County in Tibet. Applied Sciences, 10(1), 247. https://doi.org/10.3390/app10010247