A Feasibility Study of Privacy Ensuring Emergency Vehicle Approaching Warning System
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Previous Work
1.2. Scientific Contributions and Structure of the Paper
- Formulation of the requirements and the concept of the application protocol for an emergency vehicle warning system based on VANET, with low risk of EV location disclosure;
- Application of the federated telco-traffic simulator and benchmarking of the communication performance of the Ad hoc On-Demand Distance Vector (AODV), GPSR, and Dynamic MANET On-demand (DYMO) routing protocols using realistic scenarios;
- Evaluation of the proposed system in the transport domain in terms of reaction time available to drivers.
2. Definition of System Requirements and Assessment of Fitting Communication Technologies
2.1. Timely Message Dissemination
2.2. Interoperability
2.3. Versatility
2.4. Information Relevance
2.5. Security
2.6. Privacy
2.7. Unobtrusiveness
2.8. Communication Technology
3. Privacy Ensuring Emergency Vehicle Approaching Warning System
- All the vehicles are equipped with the compatible communication modules and other hardware necessary to either display the information to a driver or act autonomously following the received requests.
- All the regular vehicles except for the EV periodically disseminate the CAMs or other similar sources of data that can be used to estimate their current position at a lane-level resolution.
- All the vehicles are equipped with the proposed emergency vehicle warning system deploying the standardized request codes, and drivers obey the requests provided by the system.
4. Simulation Scenarios
4.1. Traffic Simulation Settings
4.2. Communication Simulation Settings
5. Simulation Results
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statement
References
- White Paper Roadmap to a Single European Transport Area-Towards a Competitive and Resource Efficient Transport System. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52011DC0144 (accessed on 3 September 2019).
- Annual Accident Report 2018. Available online: https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/statistics/dacota/asr2018.pdf (accessed on 3 September 2019).
- Greenhouse Gas Emissions from Transport. Available online: https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-11 (accessed on 3 September 2019).
- Hours Spent in Road Congestion Annually. Available online: https://ec.europa.eu/transport/facts-fundings/scoreboard/compare/energy-union-innovation/road-congestion_en (accessed on 3 September 2019).
- Brar, J.S.; Caulfield, B. Impact of autonomous vehicles on pedestrians’ safety. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Favarò, F.M.; Nader, N.; Eurich, S.O.; Tripp, M.; Varadaraju, N. Examining accident reports involving autonomous vehicles in California. PLoS ONE 2017, 12, e0184952. [Google Scholar] [CrossRef] [PubMed]
- Le, L.; Festag, A.; Baldessari, R.; Zhang, W. V2X Communication and Intersection Safety. In Advanced Microsystems for Automotive Applications 2009; Meyer, G., Valldorf, J., Gessner, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-642-00744-6. [Google Scholar]
- European Commission. A European Strategy on Cooperative Intelligent Transport Systems, a Milestone Towards Cooperative, Connected and Automated Mobility; COM (2016) 766; European Commission: Brussels, Belgium, 30 November 2016. [Google Scholar]
- The European Transport Innovation Challenge: Commission Recognises Twelve Projects for Keeping Europe Moving Sustainably. Available online: https://ec.europa.eu/transport/themes/research/challenge_en (accessed on 23 September 2019).
- Jerger, J.; Jerger, S.; Pepe, P.; Miller, R. Race difference in susceptibility to noise-induced hearing loss. Am. J. Otol. 1986, 7, 425–429. [Google Scholar] [PubMed]
- Pepe, P.; Jerger, J.; Miller, R. Accelerated hearing loss in urban emergency medical services firefighters. Ann. Emerg. Med. 1985, 14, 438–442. [Google Scholar] [CrossRef]
- Rasmussen, J.; McLean, J.; Stasiak, R. Sound levels in emergency medical service. J. Environ. Health 1983, 45, 176–178. [Google Scholar] [PubMed]
- Auerbach, P.S.; Morris, J.A.; Phillips, J.B.; Redlinger, S.R.; Vaughn, V.K. An Analysis of Ambulance Accidents in Tennessee. JAMA 1987, 258, 1487–1490. [Google Scholar] [CrossRef] [PubMed]
- Ström, E.G. On medium access and physical layer standards for cooperative intelligent transport systems in Europe. Proc. IEEE 2011, 99, 1183–1188. [Google Scholar] [CrossRef]
- Morgado, A.; Huq, K.M.; Mumtaz, S.; Rodriguez, J. A survey of 5G technologies: Regulatory, standardization and industrial perspectives. Digit. Commun. Netw. 2018, 4, 87–97. [Google Scholar] [CrossRef]
- Buchenscheit, A.; Schaub, F.; Kargl, F.; Weber, M. A VANET-based emergency vehicle warning system. In Proceedings of the 2009 IEEE Vehicular Networking Conference (VNC), Tokyo, Japan, 28–30 October 2009. [Google Scholar]
- Bhosale, S.; Dhawas, D.A.; Burkul, A. VANET Based Communication for Emergency Vehicles. Int. J. Adv. Res. Comput. Sci. Electron. Eng. 2013, 2, 567–571. [Google Scholar]
- Seif, H.G.; Hu, X. Autonomous Driving in the iCity—HD Maps as a Key Challenge of the Automotive Industry. Engineering 2016, 2, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.T.; Jibran, M.A.; Afaq, M.; Song, W. An adaptive approach to vehicle trajectory prediction using multimodel Kalman filter. Trans. Emerg. Telecommun. Technol. 2019. [Google Scholar] [CrossRef]
- Dang, H.Q.; Fürnkranz, J.; Biedermann, A.; Hoepfl, M. Time-to-lane-change prediction with deep learning. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–7. [Google Scholar]
- Kumar, P.; Perrollaz, M.; Lefèvre, S.; Laugier, C. Learning-based approach for online lane change intention prediction. In Proceedings of the IEEE Intelligent Vehicles Symposium, Gold Coast, Australia, 23–26 June 2013; pp. 797–802. [Google Scholar]
- Co-Operative Vehicle-Infrastructure Systems. Available online: https://cordis.europa.eu/project/rcn/79316_en.html (accessed on 25 May 2018).
- E-safety Vehicle Intrusion Protected Applications. Available online: https://www.evita-project.org/ (accessed on 25 May 2018).
- Secure Vehicular Communications. Available online: https://sevecom.eu/ (accessed on 25 May 2018).
- Ďurech, J. Bezpečnostné Riešenia Vanet Siete pre Riadenie Inteligentných Dopravných Systémov. Ph.D. Thesis, University of Žilina, Bratislava, Slovakia, 2016. [Google Scholar]
- Riverbed Modeler. Available online: https://www.riverbed.com/gb/products/steelcentral/steelcentral-riverbed-modeler.html (accessed on 20 May 2018).
- Lin, X.; Li, X. Achieving Efficient Cooperative Message Authentication in Vehicular Ad Hoc Networks. IEEE Trans. Veh. Technol. 2013, 62, 3339–3348. [Google Scholar]
- Sommer, C.; Dressler, F. Vehicluar Networking; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-107-04671-9. [Google Scholar]
- Darshana, S.M. Greedy Perimeter Stateless Routing in Vehicular Ad-Hoc Networks. Int. J. Adv. Eng. Sci. Technol. 2013, 2, 74–79. [Google Scholar]
- ETSI EN 302 636-3. Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 3: Network Architecture, Std.; ETSI: Sophia Antipolis, France, 2010.
- ETSI EN 302 636-4-1. Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 4; Sub-Part 1, Std.; ETSI: Sophia Antipolis, France, 2014.
- Oh, S.; Gruteser, M.; Pompili, D. Coordination-free Safety Messages Dissemination Protocol for Vehicular Network. IEEE Trans. Veh. Technol. 2012. [Google Scholar] [CrossRef]
- Yoshimoto, R.; Nemoto, T. Impact of information and communications technology on road freight transportation. IATSS Res. 2005, 29, 16–21. [Google Scholar] [CrossRef] [Green Version]
- ETSI EN 302 663: Intelligent Transport Systems (ITS); ITS-G5 Access Layer Specification for Intelligent Transport Systems Operating in the 5 GHz Frequency Band. Available online: https://www.etsi.org/deliver/etsi_en/302600_302699/302663/01.03.00_20/en_302663v010300a.pdf (accessed on 3 September 2019).
- Lugano, G. Virtual assistants and self-driving cars. In Proceedings of the 2017 15th International Conference on ITS Telecommunications (ITST), Warsaw, Poland, 29–31 May 2017. [Google Scholar]
- ETSI EN 302 637-2. Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service; ETSI: Sophia Antipolis, France, 2018.
- OpenStreetMap. Available online: https://www.openstreetmap.org (accessed on 15 September 2015).
- Krajzewicz, D.; Erdmann, J.; Behrisch, M.; Bieker, L. Recent Development and Applications of SUMO—Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 2012, 5, 128–138. [Google Scholar]
- Územný general dopravy Mesta Žilina. Available online: http://enviroportal.sk/sk/eia/detail/uzemny-generel-dopravy-mesta-zilina (accessed on 20 July 2017).
- Územný generel dopravy Mesta Bratislava. Available online: https://www.bratislava.sk/sk/uzemny-generel-dopravy (accessed on 24 January 2018).
- OMNeT++ Discrete Event Simulator. Available online: https://www.omnetpp.org/ (accessed on 20 May 2018).
- Sommer, C.; German, R.; Dressler, F. Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis. IEEE Trans. Mob. Comput. 2011, 10, 3–15. [Google Scholar] [CrossRef] [Green Version]
- INET Framework: An open-source OMNeT++ Model Suite for Wired, Wireless and Mobile Networks. Available online: https://www.omnetpp.org/ (accessed on 20 May 2018).
- Khairnar, V.; Kotecha, K. Simulation-Based Performance Evaluation of Routing Protocols in Vehicular Ad-hoc Network. Int. J. Sci. Res. Publ. 2013, arXiv:1311.13783. [Google Scholar]
- Fotohi, R.; Jamali, S.; Sarkohaki, F.; Behzad Bigdilo, S. An improvement over AODV Routing Protocol by limiting Visited Hop Count. Int. J. Inf. Technol. Comput. Sci. 2013, 5, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Evaluation of the Limitations of Emergency Vehicle Sirens and Development of a Public Safety Awareness video. Available online: https://www.emmco.org/Documents/Siren%20abstract.pdf (accessed on 3 September 2019).
- Wang, J.; Yun, M.; Ma, W.; Yang, X. Travel Time Estimation Model for Emergency Vehicles under Preemption Control. Procedia-Soc. Behav. Sci. 2013, 96, 2147–2158. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Requirement(s) Affecting the Choice |
---|---|---|
Message generation interval (Δt) | 1 s | Available reaction time |
Communication range | ≥1000 m | Available reaction time |
Carrier frequency | 5900 MHz | Interoperability, versatility |
Channel bandwidth | 10 MHz | Interoperability, versatility |
Physical and Medium Access layers specification | IEEE 802.11 | Interoperability, versatility |
L3 and higher layer protocols | Ad hoc routing (Ad hoc On-Demand Distance Vector, Greedy Perimeter Stateless Routing, Dynamic MANET On-demand) + User Datagram Protocol (UDP) | Interoperability, versatility, security, information relevance |
Field | Length | Description |
---|---|---|
Ver. | 3b | Version of the application-layer protocol. |
Reserved | 4b | Reserved for future use. |
QoS level | 3b | Definition of the used Enhanced Distributed Channel Access (EDCA) Access Category (AC). |
Allow Acknowledgements (ACK) | 1b | Allow acknowledgements: By default set to value 0. When set to 1, communication is acknowledged, and messages are not periodically resent to the destination. |
Unicast mode (UC) | 1b | Unicast mode: By default set to value 1 (allow unicast). If set to 0, messages are broadcasted. Broadcasting makes it possible to send PEEV-WS messages common to all drivers. |
Receiver type | 4b | Type of the receiver (e.g., passenger, police, public transport, etc.). Intended for future use cases, to enable coordination of emergency services. |
Urgency level (UL) | 2b | Urgency level: The value directly determining the mapping to the IEEE 802.11p access category, i.e., the QoS level. |
Payload length | 14b | Payload length. |
Request code | 16b | Request code: Determines actions required from drivers. |
Distance | 16b | Distance in meters. |
Timestamp | 64b | Timestamp (nanoseconds). |
Payload | 32b | Data field containing additional information for drivers. The number of payload fields is given in the Payload length field. |
Parameter | Scenario | Vehicle | Protocol | |||
---|---|---|---|---|---|---|
AODV | GPSR | DYMO | ||||
Average end-to-end delay of EV to vehicle communication (ms) | Žilina | Best | Value | 0.60 | 0.73 | 48.03 |
σ | 0.64 | 1.17 | 48.03 | |||
CI95 | 0.02 | 0.10 | 4.77 | |||
Worst | Value | 37.87 | 13.65 | 2668.90 | ||
σ | 230.88 | 84.71 | 4588.95 | |||
CI95 | 14.62 | 13.88 | 431.73 | |||
Bratislava | Best | Value | 0.53 | 0.59 | 34.90 | |
σ | 0.12 | 0.11 | 132.18 | |||
CI95 | 0.01 | 0.01 | 8.10 | |||
Worst | Value | 34.95 | 6.31 | 984.85 | ||
σ | 252.82 | 13.14 | 2713.85 | |||
CI95 | 12.37 | 1.56 | 174.98 | |||
Average message delivery probability (%) | Žilina | Best | Value | 99.89 | 23.77 | 43.72 |
σ | 0.20 | 2.71 | 3.86 | |||
CI95 | 0.10 | 1.37 | 1.95 | |||
Worst | Value | 22.89 | 1.11 | 3.67 | ||
σ | 4.58 | 0.35 | 1.59 | |||
CI95 | 2.32 | 0.18 | 0.81 | |||
Bratislava | Best | Value | 99.90 | 23.39 | 53.41 | |
σ | 0.20 | 2.62 | 4.61 | |||
CI95 | 0.10 | 1.33 | 2.33 | |||
Worst | Value | 41.54 | 3.31 | 11.15 | ||
σ | 16.24 | 0.63 | 8.03 | |||
CI95 | 8.22 | 0.32 | 4.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, T.; Pocta, P.; Roman, J.; Buzna, Ľ.; Dado, M. A Feasibility Study of Privacy Ensuring Emergency Vehicle Approaching Warning System. Appl. Sci. 2020, 10, 298. https://doi.org/10.3390/app10010298
Petrov T, Pocta P, Roman J, Buzna Ľ, Dado M. A Feasibility Study of Privacy Ensuring Emergency Vehicle Approaching Warning System. Applied Sciences. 2020; 10(1):298. https://doi.org/10.3390/app10010298
Chicago/Turabian StylePetrov, Tibor, Peter Pocta, Ján Roman, Ľuboš Buzna, and Milan Dado. 2020. "A Feasibility Study of Privacy Ensuring Emergency Vehicle Approaching Warning System" Applied Sciences 10, no. 1: 298. https://doi.org/10.3390/app10010298
APA StylePetrov, T., Pocta, P., Roman, J., Buzna, Ľ., & Dado, M. (2020). A Feasibility Study of Privacy Ensuring Emergency Vehicle Approaching Warning System. Applied Sciences, 10(1), 298. https://doi.org/10.3390/app10010298