Photonic Integrated Circuits for NGPON2 ONU Transceivers (Invited)
Abstract
:1. Introduction
2. PIC Evolution
- InP: Fraunhofer Heinrich-Hertz-Institut–Fraunhofer HHI (Berlin, Germany); Smart Photonics (Eindhoven, The Netherlands); Global Communication Semiconductors, LLC (Torrance, CA, USA); and fabless solution providers, e.g., the INTENGENT III/V Photonics Company (Ontario, Canada), VLC Photonics (Valencia, Spain), Bright Photonics (Eindhoven, The Netherlands), and PICadvanced (Aveiro, Portugal);
- Si: Acacia Communications, Inc. (Maynard, MA, USA); Luxtera Inc. (Carlsbad, CA, USA); Intel Corporation (Mountain View, CA, USA); Cisco Systems Inc. (San José, CA, USA); Mellanox Technologies (Sunnyvale, CA, Israel/USA); Finisar Corporation (Sunnyvale, CA, USA); Hamamatsu Photonics K.K. (Shimokanzo, Iwata City, Japan); International Business Machines Corporation (IBM, Armonk, NY, USA); GlobalFoundries Inc. (Santa Clara, CA, USA); NeoPhotonics Corporation (San José, CA, USA); Oclaro Inc. (San José, CA, USA); CompoundTek (Singapore); and the American Institute for Manufacturing Integrated Photonics (AIM Photonics, Albany, NY, USA);
- SiN: Ligentec (Ecublens, Switzerland); Lionix (Enschede, Netherlands); Institute of Microelectronics of Barcelona IBM-CNM, “Silicon Nitride Technology,” (Barcelona, Spain).
3. Passive Optical Networks
4. PIC for Next-Generation PON
4.1. Technology and Impact on Reach
4.2. Band and Wavelength Selection Criteria
4.3. Integrated Photonics Packaging
4.4. Control Complexity, Power Dissipation and Form Factor
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Teixeira, A.; Shahpari, A.; Ferreira, R.; Guiomar, F.P.; Reis, J.D. Coherent Access. In Proceedings of the OFC 2016—Optical Fiber Communication Conference, Anaheim, CA, USA, 20–24 March 2016; p. M3C.5. [Google Scholar]
- Shahpari, A.; Ferreira, R.M.; Luis, R.S.; Vujicic, Z.; Guiomar, F.P.; Reis, J.D.; Teixeira, A.L. Coherent Access: A Review. J. Lightwave Technol. 2017, 35, 1050–1058. [Google Scholar] [CrossRef] [Green Version]
- Micolta, J.C.V. Next Generation Optical Access Networks and Coexistence with Legacy PONs. Ph.D. Thesis, Unversitat Politecnica de Catalunya, Barcelona, Spain, 2019. [Google Scholar]
- Grand View Research. Photonic Integrated Circuit (IC) Market Size Report. 2016. Available online: http://www.grandviewresearch.com/industry-analysis/photonic-integrated-circuit-ic-market (accessed on 12 February 2020).
- Chovan, J.; Uherek, F. Photonic Integrated Circuits for Communication Systems. Radio Eng. 2018, 27, 357–363. [Google Scholar] [CrossRef]
- Latkowski, S.; Pustakhod, D.; Chatzimichailidis, M.; Yao, W.; Leijtens, X.J.M. Open Standards for Automation of Testing of Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2019, 25. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A. Photonic Integrated Circuits for NG-PON2 ONU Transceivers. In Proceedings of the OFC 2019—Optical Fiber Communications Conference, San Diego, CA, USA, 3–7 March 2019; p. M4G.4 1–34. [Google Scholar]
- Teixeira, A. NG-PON2 direct modulation-based optics status and evolution path, Broadband Forum Broadband Acceleration Seminar: NG-PON2 Roadmap and Evolution—A Universal Platform for Residential, Business, and Wireless/5G? In Proceedings of the OFC 2019—Optical Fiber Communications Conference, San Diego, CA, USA, 3–7 March 2019; pp. 8–10. [Google Scholar]
- Smit, M.; Williams, K.; van der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 2019, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Desurvire, E.; Kazmierski, C.; Lelarge, F.; Marcadet, X.; Scavennec, A.; Kish, F.A.; Welch, D.F.; Nagarajan, R.; Joyner, C.H.; Schneider, R.P.; et al. Science and technology challenges in XXIst century optical communications. Comptes Rendus Phys. 2011, 12, 387–416. [Google Scholar] [CrossRef]
- Pinho, C.; Tavares, A.; Cabral, G.; Morgado, T.; Shahpari, A.; Lima, M.; Teixeira, A. Design and Characterization of an Optical Chip for Data Compression based on Haar Wavelet Transform. In Proceedings of the OFC 2017—Optical Fiber Communication Conference, Los Angeles, CA, USA, 19–23 March 2017; p. Th2A.9(3). [Google Scholar]
- Pinho, C.; Neto, B.; Morgado, T.M.; Neto, H.; Lima, M.; Teixeira, A. InP AAC for Data Compression Applications. IET Optoelectron. Spec. Issue 2019, 13, 67–71. [Google Scholar] [CrossRef]
- Pinho, C.; Micó, G.; Lima, M.; Muñoz, P.; Teixeira, A. Optimized Design of Si3N4 Structures for Photonic Integrated Data Compression Applications. In Proceedings of the IMOC 2019—International Microwave and Optoelectronics Conference, Aveiro, Portugal, 10–14 November 2019; pp. 1–3. [Google Scholar]
- Pinho, C.; Morgado, T.; Neto, B.; Lima, M.; Teixeira, A. Implementation and Optimization of a Cost-Effective 2D Haar Transform Network for Image Compression. In Proceedings of the FIO+LS 2018—OSA Frontiers in Optics and Laser Science Conference, Washington, DC, USA, 16–20 September 2018; p. JTu3A.88(2). [Google Scholar]
- Brodnik, G.M.; Pinho, C.; Chang, F.; Blumenthal, D.J. Extended Reach 40km Transmission of C-Band Real-Time 53.125 Gbps PAM-4 Enabled with a Photonic Integrated Tunable Lattice Filter Dispersion Compensator. In Proceedings of the OFC 2018—Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. W2A.30(3). [Google Scholar]
- Gundavarapu, S.; Brodnik, G.M.; Puckett, M.; Huffman, T.; Bose, D.; Behunin, R.; Wu, J.; Qiu, T.; Pinho, C.; Chauhan, N.; et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photonics 2019, 13, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Huffman, T.A.; Brodnik, G.M.; Pinho, C.; Gundavarapu, S.; Baney, D.; Blumenthal, D.J. Integrated Resonators in an Ultralow Loss Si3N4/SiO2 Platform for Multifunction Applications. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–9. [Google Scholar] [CrossRef]
- Gundavarapu, S.; Puckett, M.; Huffman, T.; Behunin, R.; Wu, J.; Qiu, T.; Brodnik, G.M.; Pinho, C.; Bose, D.; Rakich, P.T.; et al. Integrated Waveguide Brillouin Laser. In Physics Archive (Physics-arXiv); Cornell University Library: New York, USA, 2017; pp. 1–15. [Google Scholar]
- Pinho, C.; Gordon, G.S.D.; Neto, B.; Morgado, T.M.; Rodrigues, F.; Tavares, A.; Lima, M.; Wilkinson, T.D.; Teixeira, A. Flexible Spatial Light Modulator Based Coupling Platform for Photonic Integrated Processors. Int. J. Adv. Telecommun. 2018, 11, 20–31. [Google Scholar]
- Pinho, C.; Rodrigues, F.; Tavares, A.; Gordon, G.S.D.; Shahpari, A.; Lima, M.M.; Wilkinson, T.D.; Teixeira, A.A. Flexible Platform for Feeding Photonic Integrated Processors. In Proceedings of the AICT 2017—Advanced International Conference on Telecommunications, Venice, Italy, 25–19 June 2017; pp. 1–4. [Google Scholar]
- Pashkova, T.; O’Brien, P. Development of silicon grating-to-grating coupling technology and demonstration of fan-in/fan-out for multi-core fiber applications. In Proceedings of the EPTC 2019—IEEE 21st Electronics Packaging Technology Conference, Singapore, 4–6 December 2019; pp. 582–585. [Google Scholar]
- González, A.B.; Pozo, J. The Biophotonics Revolution in Healthcare. Opt. Photonik 2017, 12, 16–17. [Google Scholar]
- Wang, R.; Vasiliev, A.; Muneeb, M.; Malik, A.; Sprengel, S.; Boehm, G.; Amann, M.-C.; Šimonyte, I.; Vizbaras, A.; Vizbaras, K.; et al. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range. Sensors 2017, 17, 1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, V.C.; Prata, J.G.; Ribeiro, C.F.; Nogueira, R.N.; Winzer, G.; Zimmermann, L.; Walker, R.; Clements, S.; Filipowicz, M.; Napierala, M.; et al. Modular coherent photonic-aided payload receiver for communications satellites. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, M.; van der Tol, J.; Hill, M. Moore’s law in photonics. Laser Photonics Rev. 2012, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.; Brattain, W.H. Three-Electrode Circuit Element Utilizing Semiconductive Materials. U.S. Patent 2,524,035, 17 June 1948. [Google Scholar]
- William, S. Circuit Element Utilizing Semiconductive Material. U.S. Patent 2,569,347, 26 June 1948. [Google Scholar]
- Alferov, M.K.; Andreev, Z.I.; Portnoi, V.M.; Trukan, E.L. AlAs-GaAs Heterojunction injection lasers with a low room-temperature threshold. Fizika i Tekhnika Poluprovodnikov Soviet Physics Semiconductors 1969, 3, 1328–1332. [Google Scholar]
- Kilby, J.S. Miniaturized Electronic Circuits. U.S. Patent 3,138,743, 6 February 1959. [Google Scholar]
- Wanlass, F.M.; Sah, C.T. Nanowatt logic using field-effect metal-oxide semiconductor triodes. In Proceedings of the IEEE International Solid-State Circuits Conference, Philadelphia, PA, USA, 20–22 February 1963; Volume VI, pp. 32–33. [Google Scholar]
- Suzuki, M.; Noda, Y.; Tanaka, H.; Akiba, S.; Kushiro, Y.; Isshiki, H. Monolithic integration of InGaAsP/InP distributed feedback laser and electroabsorption modulator by vapor phase epitaxy. J. Lightwave Technol. 1987, 5, 1277–1285. [Google Scholar] [CrossRef]
- Moore, G.E. Moore’s law at 40. In Understanding Moore’s Law: Four Decades of Innovation; Brock, D.C., Ed.; Chemical Heritage Foundation: Philadelphia, PA, USA, 2006; pp. 67–84. [Google Scholar]
- JePPIX—Joint European Platform for Photonic Integration of Components and Circuits. JePPIX Roadmap 2018. May 2018. Available online: http://www.jeppix.eu/introduction-to-roadmaps (accessed on 22 November 2019).
- AIM Photonics. MIT Microphotonics Center, and International Electronics Manufacturing Initiative (iNEMI). 2017 Integrated Photonic Systems Roadmap (IPSR). 2018. Available online: https://aimphotonics.academy/roadmap/ipsr-roadmap (accessed on 20 December 2019).
- JePPIX. JePPIX—Joint European Platform for Photonic Integration of Components and Circuits. 2019. Available online: http://www.jeppix.eu/ (accessed on 22 November 2019).
- Heideman, R.G.; Leinse, A.; Hoekman, M.; Schreuder, F.; Falke, F.H. TriPleX: The low loss passive photonics platform, Industrial applications through Multi Project Wafer runs. In Proceedings of the 2014 IEEE Photonics Conference, San Diego, CA, USA, 12–16 October 2014; pp. 224–225. [Google Scholar]
- EPIXfab. ePIXfab-European Silicon Photonics Alliance. 2019. Available online: http://epixfab.eu/ (accessed on 6 January 2020).
- Fahrenkopf, N.M.; McDonough, C.; Leake, G.L.; Su, Z.; Timurdogan, E.; Coolbaugh, D.D. The AIM Photonics MPW: A Highly Accessible Cutting Edge Technology for Rapid Prototyping of Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–6. [Google Scholar] [CrossRef]
- Schmitt, A.; Wilkinson, S. OFC 2019—The Future of Optical Networking and Communications—Post-Show Report, An Overview of the Market; Cignal AI-Active Insight: San Diego, CA, USA, 2019. [Google Scholar]
- Carey, E.; Lidholm, S. Millimeter-Wave Integrated Circuits; Springer: New York, NY, USA, 2005. [Google Scholar]
- Tien, P.K. Integrated optics and new wave phenomena in optical waveguides. Rev. Mod. Phys. 1977, 49, 361–420. [Google Scholar] [CrossRef]
- Lim, A.E.-J.; Song, J.; Fang, Q.; Li, C.; Tu, X.; Duan, N.; Chen, K.K.; Tern, R.P.-C.; Tsung-Yang, L. Review of Silicon Photonics Foundry Efforts. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 405–416. [Google Scholar] [CrossRef]
- Coldren, L.A.; Corzine, S.W.; Mašanović, M.L. Diode Lasers and Photonic Integrated Circuits, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Bowers, J.E.; Park, H.; Kuo, Y.h.; Fang, A.W.; Jones, R.; Paniccia, M.J.; Cohen, O.; Raday, O. Integrated optical amplifiers on silicon waveguides. In Proceedings of the OSA IPNRA 2007—Integrated Photonics and Nanophotonics Research and Applications, Salt Lake City, UT, USA, 8–11 July 2007; p. ITuG1-3. [Google Scholar]
- Matsui, Y.; Eriksson, U.; Wesstrom, J.O.; Liu, Y.; Hammerfeldt, S.; Hassler, M.; Stoltz, B.; Carlsson, N.; Siraj, S.; Goobar, E. Narrow linewidth tunable semiconductor laser. In Proceedings of the 2016 Compound Semiconductor Week, CSW 2016—Includes 28th International Conference on Indium Phosphide and Related Materials, IPRM and 43rd International Symposium on Compound Semiconductors, ISCS 2016, Toyama, Japan, 26–30 June 2016. [Google Scholar]
- Velásquez, J.C.; Tabares, J.; Prat, J. Differential 8-APSK monolithically integrated dual-EML transmitter for flexible coherent PONs. Opt. Lett. 2019, 44, 2760. [Google Scholar] [CrossRef]
- Connelly, M.J. Semiconductor by Optical Amplifiers; Kluwer Academic: Boston, MA, USA, 2002. [Google Scholar]
- Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef] [PubMed]
- Bowers, J.E.; Komljenovic, T.; Davenport, M.; Hulme, J.; Liu, A.Y.; Santis, C.T.; Spott, A.; Srinivasan, S.; Stanton, E.J.; Zhang, C. Recent advances in silicon photonic integrated circuits. In Proceedings of the Next-Generation Optical Communication: Components, Sub-Systems, and Systems, San Francisco, CA, USA, 16–18 February 2016; Volume 977402, pp. 1–18. [Google Scholar]
- Helkey, R.; Saleh, A.A.M.; Buckwalter, J.; Bowers, J.E. High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron. 2019, 25. [Google Scholar] [CrossRef]
- Nagarajan, R.; Kato, M.; Pleumeekers, J.; Evans, P.; Corzine, S.; Hurtt, S.; Dentai, A.; Murthy, S.; Missey, M.; Muthiah, R.; et al. InP Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1113–1125. [Google Scholar] [CrossRef]
- Ławniczuk, K.; Augustin, L.M.; Grote, N.; Wale, M.J.; Smit, M.K.; Williams, K.A. Open access to technology platforms for InP-based photonic integrated circuits. Adv. Opt. Technol. 2015, 4, 157–165. [Google Scholar] [CrossRef]
- Soares, F.M.; Baier, M.; Gaertner, T.; Feyer, M.; Möhrle, M.; Grote, N.; Schell, M. High-Performance InP PIC Technology Development based on a Generic Photonic Integration Foundry. In Proceedings of the OFC 2018—Optical Fiber Communications Conference, San Diego, CA, USA, 11–15 March 2018; p. M3F.3(3). [Google Scholar]
- Stroganov, A.; Geiselmann, M. Silicon Nitride PICS Platform Development From a Foundry Perspective: From Concepts to Real Applications. In Proceedings of the ECIO 2019-European Conference on Integrated Optics, Ghent, Belgium, 24–26 April 2019; pp. 1–3. [Google Scholar]
- John, D.D.; Brodnik, G.; Gundavarapu, S.; Moreira, R.L.; Belt, M.; Huffman, T.; Blumenthal, D.J. Low-Loss Photonic Integration: Applications in Datacenters. In Datacenter Connectivity Technologies: Principles and Practice; Chang, F., Ed.; River Publishers Series in Optics and Photonics: Gistrup, Denmark, 2018; pp. 431–480. [Google Scholar]
- Augustin, L.; Smit, M.; Grote, N.; Wale, M.; Visser, R. Standardized process could revolutionize photonic integration. Euro Photonics 2013, 18, 30–34. [Google Scholar]
- Pinho, C. Optimized Photonic Integrated Solutions for Next Generation Optical Systems. Ph.D. Thesis, University of Aveiro, Averio, Portugal, 2019. [Google Scholar]
- Bauters, J.F.; Heck, M.J.R.; John, D.D.; Barton, J.S.; Bruinink, C.M.; Leinse, A.; Heideman, R.G.; Blumenthal, D.J.; Bowers, J.E. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 2011, 19, 24090–24101. [Google Scholar] [CrossRef] [PubMed]
- Belt, M.; Blumenthal, D.J. Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform. Opt. Express 2014, 22, 10655–10660. [Google Scholar] [CrossRef] [PubMed]
- Liehr, M.; Baier, M.; Hoefler, G.; Fahrenkopf, N.M.; Bowers, J.; Gladhill, R.; O’Brien, P.; Timurdogan, E.; Su, Z.; Kish, F. Foundry capabilities for photonic integrated circuits. In Optical Fiber Telecommunications VII.; Elsevier: London, UK; Academic Press: London, UK, 2019; pp. 143–193. [Google Scholar]
- Ramirez, J.M.; Elfaiki, H.; Verolet, T.; Besancon, C.; Gallet, A.; Néel, D.; Hassan, K.; Olivier, S.; Jany, C.; Malhouitre, S.; et al. III-V-on-Silicon Integration: From Hybrid Devices to Heterogeneous Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2020, 26. [Google Scholar] [CrossRef]
- PIXAPP—H2020-EU.2.1.1. Report Summary-Photonic Integrated Circuits Assembly and Packaging Pilot line (PIXAPP), H2020-EC, CORDIS, European Commission. 2019. Available online: https://cordis.europa.eu/project/rcn/206352/factsheet/en (accessed on 17 November 2019).
- Photonics 21—Public Private Partnership. PIXAPP—Photonic Integrated Circuits Assembly and Packaging Pilot Line. 2017. Available online: https://pixapp.eu/ (accessed on 17 November 2019).
- Stern, J.R.; Ballance, J.W.; Faulkner, D.W.; Hornung, S.; Payne, D.B.; Oakley, K. Passive Optical Local Networks for Telephony Applications And Beyond. Electron. Lett. 1987, 23, 1255–1256. [Google Scholar] [CrossRef]
- Effenberger, F. PONs: State of the Art and Standardized. In Optical Fiber Telecommunications—Systems and Networks, 6th ed.; Elsevier: Orlando, FL, USA; Academic Press: Orlando, FL, USA, 2013; pp. 1314–1363. [Google Scholar]
- Point Topic Global Broadband Statistics. Point Topic—World Broadband Statistics (Q4 2017). In Point Topic; 2017; Available online: http://point-topic.com/free-analysis/world-broadband-statistics-q4-2017/ (accessed on 17 November 2019).
- Wong, E. Next-generation broadband access networks and technologies. J. Lightwave Technol. 2012, 30, 597–608. [Google Scholar] [CrossRef]
- ITU-T Recommendation G. 989.2. 40-Gigabit-Capable Passive Optical Networks 2 (NG-PON2): Physical Media Dependent (PMD) Layer Specification. 2014. Available online: https://www.itu.int/rec/T-REC-G.989.2-201412-I/en (accessed on 6 February 2020).
- IEEE P802.3av Task Force, “10Gb/s Ethernet Passive Optical Network. 2009. Available online: http://www.ieee802.org/3/av/ (accessed on 6 February 2020).
- Lam, C.F.; Yin, S. Evolution of fiber access networks. In Optical Fiber Telecommunications VII; Elsevier: Amsterdam, The Netherlands, 2020; pp. 827–865. [Google Scholar]
- ITU-T Recommendation G. 989.2, “G.989.2: 40-Gigabit-Capable Passive Optical Networks 2 (NG-PON2): Physical Media Dependent (PMD) Layer Specification. Sep. 2019. Available online: https://www.itu.int/rec/T-REC-G.989.2 (accessed on 6 February 2020).
- Kim, K.; Doo, K.-H.; Lee, H.H.; Kim, S.; Park, H.; Oh, J.-Y.; Chung, H.S. High Speed and Low Latency Passive Optical Network for 5G Wireless Systems. J. Lightwave Technol. 2019, 37, 2873–2882. [Google Scholar] [CrossRef]
- O’Byrne, V.; Lee, C.H.; Kim, Y.; Zhao, Z. FTTX Worldwide Deployment. In Optical Fiber Telecommunications—Systems and Networks; Elsevier: Orlando, FL, USA; Academic Press: Orlando, FL, USA, 2013; pp. 1448–1525. [Google Scholar]
- Alimi, I.; Tavares, A.; Pinho, C.; Abdalla, A.M.; Monteiro, P.; Teixeira, A. Enabling optical wired and wireless technologies for 5G and beyond networks. In Telecommunication Systems; IntechOpen: London, UK, 2019; pp. 1–31. [Google Scholar]
- Tavares, A.; Lopes, A.; Rodrigues, C.; Mãocheia, P.; Mendes, T.; Brandão, S.; Rodrigues, F.; Ferreira, R.; Teixeira, A. Photonic integrated transmitter and receiver for NG-PON2. In Proceedings of the AOP 2014—International Conference on Applications of Optics and Photonics, Aveiro, Portugal, 26–30 May 2014; Volume 9286, p. 928605(4). [Google Scholar]
- Teixeira, A.; Tavares, A.; Lopes, A.P.S.; Rodrigues, C.E. Photonic Integrated Tunable Multi-Wavelength Transmitter Circuit. U.S. Patent 10,326,529, 18 June 2019. [Google Scholar]
- Ciaramella, E. Assessment of a Polarization-Independent DSP-Free Coherent Receiver for Intensity-Modulated Signals. J. Lightwave Technol. 2020, 38, 676–683. [Google Scholar] [CrossRef]
- ITU-T G.9807.1, “10-Gigabit-Capable Symmetric Passive Optical Network (XGS-PON). 2016. Available online: https://www.itu.int/rec/T-REC-G.9807.1-201606-I/en (accessed on 6 February 2020).
- Muhammetgulyyev, A.; Kinaci, B.; Aho, A.; Yalcin, Y.; Cetinkaya, C.; Kuruoglu, F.; Guina, M.; Erol, A. V-groove etched 1-eV-GaInNAs nipi solar cell. Appl. Phys. A Mater. Sci. Process. 2019, 125, 1–7. [Google Scholar] [CrossRef]
- Wetzel, C.; Detchprohm, T. Development of high power green light emitting diode chips. MRS Internet J. Nitride Semicond. Res. 2005, 10, 1–38. [Google Scholar] [CrossRef] [Green Version]
- PICadvanced. XFP NG-PON2 ONU Class 3|PICadvanced. 2020. Available online: https://www.picadvanced.store/product-page/xfp-ng-pon2-onu-class-3 (accessed on 12 October 2019).
- Fischer-Hirchert, U.H.P. Photonic Packaging Sourcebook: Fiber-Chip Coupling for Optical Components, Basic Calculations, Modules; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Pavarelli, N.; Lee, J.S.; O’Brien, P.A. Packaging challenges for integrated silicon photonic circuits. In Proceedings of the Silicon Photonics and Photonic Integrated Circuits IV, Brussels, Belgium, 1 May 2014; Volume 9133, p. 91330F-1–9. [Google Scholar]
- Carroll, L.; Lee, J.-S.; Scarcella, C.; Gradkowski, K.; Duperron, M.; Lu, H.; Zhao, Y.; Eason, C.; Morrissey, P.; Rensing, M.; et al. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Appl. Sci. 2016, 6, 426. [Google Scholar] [CrossRef]
- HHI, “Fraunhofer Heinrich-Hertz-Institut–Fraunhofer HHI. 2020. Available online: https://www.hhi.fraunhofer.de/ (accessed on 6 February 2020).
- Cano, I.N.; Velasquez, J.C.; Prat, J. 7.5 Gb/s direct DFB phase modulation with 8-DPSK for 6.25 GHz spaced coherent UDWDM-PONs. In Proceedings of the OFC 2016-Optical Fiber Communications Conference and Exhibition, Anaheim, CA, USA, 20–24 March 2016; p. M3C.4(1–3). [Google Scholar]
- O’Brien, P. Scaling of Integrated Photonic Packaging for Volume Manufacture. In Proceedings of the International Conference on Optical MEMS and Nanophotonics, Lausanne, Switzerland, 29 July–2 August 2018; Volume INV-3, pp. 30–31. [Google Scholar]
- Lam, C.F. PON Architectures Review. In Passive Optical Networks; Lam, C.F., Ed.; Elsevier: Burlington, MA, USA; Academic Press: Burlington, MA, USA, 2007; pp. 19–86. [Google Scholar]
- Mack, B.; Graham, T. Pluggable Optics Modules-Thermal Specifications. In Electronics Cooling; 2016; Available online: https://www.electronics-cooling.com/2016/07/pluggable-optics-modules-thermal-specifications-part-1 (accessed on 3 November 2019).
Building Block (BB) | InP | Si | SiN |
---|---|---|---|
Passive components | ✓✓ | ✓✓ | ✓✓✓ |
Lasers | ✓✓✓ | ⚪ H | ⚪ H |
Modulators | ✓✓✓ | ✓✓ | ✓ |
Switches | ✓✓ | ✓✓ | ✓ |
Optical amplifiers | ✓✓✓ | ⚪ H | ⚪ H |
Detectors | ✓✓✓ | ✓✓ | ⚪ H |
Footprint | ✓✓ | ✓✓✓ | ✓ |
Chip cost | ✓ | ✓✓ | ✓✓ |
CMOS compatibility | ⚪⚪ | ✓✓ | ✓ |
Low-cost packaging | ⚪ | ⚪ 1/✓✓ 2 | ✓✓ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinho, C.; Rodrigues, F.; Tavares, A.M.; Rodrigues, C.; Rodrigues, C.E.; Teixeira, A. Photonic Integrated Circuits for NGPON2 ONU Transceivers (Invited). Appl. Sci. 2020, 10, 4024. https://doi.org/10.3390/app10114024
Pinho C, Rodrigues F, Tavares AM, Rodrigues C, Rodrigues CE, Teixeira A. Photonic Integrated Circuits for NGPON2 ONU Transceivers (Invited). Applied Sciences. 2020; 10(11):4024. https://doi.org/10.3390/app10114024
Chicago/Turabian StylePinho, Cátia, Francisco Rodrigues, Ana Maia Tavares, Carla Rodrigues, Cláudio Emanuel Rodrigues, and António Teixeira. 2020. "Photonic Integrated Circuits for NGPON2 ONU Transceivers (Invited)" Applied Sciences 10, no. 11: 4024. https://doi.org/10.3390/app10114024
APA StylePinho, C., Rodrigues, F., Tavares, A. M., Rodrigues, C., Rodrigues, C. E., & Teixeira, A. (2020). Photonic Integrated Circuits for NGPON2 ONU Transceivers (Invited). Applied Sciences, 10(11), 4024. https://doi.org/10.3390/app10114024